The Level of Surface Coverage of Surgical Site Disinfection Depends on the Visibility of the Antiseptic Agent—A Virtual Reality Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Test Setting
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kirkland, K.B.; Briggs, J.P.; Trivette, S.L.; Wilkinson, W.E.; Sexton, D.J. The impact of surgical-site infections in the 1990s: Attributable mortality, excess length of hospitalization, and extra costs. Infect. Control Hosp. Epidemiol. 1999, 20, 725–730. [Google Scholar] [CrossRef]
- Best, M.; Neuhauser, D. Ignaz Semmelweis and the birth of infection control. Qual. Saf. Health Care 2004, 13, 233–234. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, L.M. Decolonization of the Skin of the Patient and Surgeon. Surg. Infect. 2006, 7, s-3–s-15. [Google Scholar] [CrossRef]
- World Health Organization. Global Guidelines for the Prevention of Surgical Site Infection, 2nd ed.; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Darouiche, R.O.; Wall, M.J., Jr.; Itani, K.M.; Otterson, M.F.; Webb, A.L.; Carrick, M.M.; Miller, H.J.; Awad, S.S.; Crosby, C.T.; Mosier, M.C.; et al. Chlorhexidine-Alcohol versus Povidone-Iodine for Surgical-Site Antisepsis. N. Engl. J. Med. 2010, 362, 18–26. [Google Scholar] [CrossRef]
- Tuuli, M.G.; Liu, J.; Stout, M.J.; Martin, S.; Cahill, A.G.; Odibo, A.O.; Colditz, G.A.; Macones, G.A. A Randomized Trial Comparing Skin Antiseptic Agents at Cesarean Delivery. N. Engl. J. Med. 2016, 374, 647–655. [Google Scholar] [CrossRef]
- Robert-Koch-Institut. Prävention postoperativer Wundinfektionen: Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsblatt Gesundh. Gesundh. 2018, 61, 448–473. [Google Scholar] [CrossRef]
- McDaniel, C.M.; Churchill, R.W.; Argintar, E. Visibility of Tinted Chlorhexidine Gluconate Skin Preparation on Varied Skin Pigmentations. Orthopedics 2017, 40, e44–e48. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Warton, D.I.; Hui, F.K. The arcsine is asinine: The analysis of proportions in ecology. Ecology 2011, 92, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Dumville, J.C.; McFarlane, E.; Edwards, P.; Lipp, A.; Holmes, A. Preoperative skin antiseptics for preventing surgical wound infections after clean surgery. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- Harnoss, J.C.; Assadian, O.; Kramer, A.; Probst, P.; Müller-Lantzsch, C.; Scheerer, L.; Bruckner, T.; Diener, M.K.; Büchler, M.W.; Ulrich, A.B. Comparison of chlorhexidine-isopropanol with isopropanol skin antisepsis for prevention of surgical-site infection after abdominal surgery. Br. J. Surg. 2018, 105, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Levin, I.; Amer-Alshiek, J.; Avni, A.; Lessing, J.B.; Satel, A.; Almog, B. Chlorhexidine and alcohol versus povidone-iodine for antisepsis in gynecological surgery. J. Womens Health 2011, 20, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Maiwald, M.; Chan, E.S. The forgotten role of alcohol: A systematic review and meta-analysis of the clinical efficacy and perceived role of chlorhexidine in skin antisepsis. PLoS ONE 2012, 7, e44277. [Google Scholar] [CrossRef] [PubMed]
- Lutz, J.T.; Diener, I.V.; Freiberg, K.; Zillmann, R.; Shah-Hosseini, K.; Seifert, H.; Berger-Schreck, B.; Wisplinghoff, H. Efficacy of two antiseptic regimens on skin colonization of insertion sites for two different catheter types: A randomized, clinical trial. Infection 2016, 44, 707–712. [Google Scholar] [CrossRef]
- Ghobrial, G.M.; Wang, M.Y.; Green, B.A.; Levene, H.B.; Manzano, G.; Vanni, S.; Starke, R.M.; Jimsheleishvili, G.; Crandall, K.M.; Dididze, M.; et al. Preoperative skin antisepsis with chlorhexidine gluconate versus povidone-iodine: A prospective analysis of 6959 consecutive spinal surgery patients. J. Neurosurg. Spine 2018, 28, 209–214. [Google Scholar] [CrossRef]
- Dior, U.P.; Kathurusinghe, S.; Cheng, C.; Reddington, C.; Daley, A.J.; Ang, C.; Healey, M. Effect of Surgical Skin Antisepsis on Surgical Site Infections in Patients Undergoing Gynecological Laparoscopic Surgery: A Double-Blind Randomized Clinical Trial. JAMA Surg. 2020, 155, 807–815. [Google Scholar] [CrossRef]
- Davies, B.M.; Patel, H.C. Does chlorhexidine and povidone-iodine preoperative antisepsis reduce surgical site infection in cranial neurosurgery? Ann. R. Coll. Surg. Engl. 2016, 98, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Dobson, P.F.; Reed, M.R. Prevention of infection in primary THA and TKA. EFORT Open Rev. 2020, 5, 604–613. [Google Scholar] [CrossRef]
- Li, J.; Yang, H.; Li, F.; Wu, J. Application of Virtual Reality Technology in Psychotherapy. In Proceedings of the 2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), Sanya, China, 4–6 December 2020; pp. 359–362. [Google Scholar]
- Wu, X.; Liu, H.; Zhang, J.; Chen, W. Virtual reality training system for upper limb rehabilitation. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; pp. 1969–1974. [Google Scholar]
- Slater, M. Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3549–3557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, R.; Oliveira, J.; Giraldi, G. Introduction to Augmented Reality; National Laboratory for Scientific Computation, Av. Getulio Vargas: Petrópolis, Brazil, 2003. [Google Scholar]
- Portelli, M.; Bianco, S.F.; Bezzina, T.; Abela, J.E. Virtual reality training compared with apprenticeship training in laparoscopic surgery: A meta-analysis. Ann. R. Coll. Surg. Engl. 2020, 102, 672–684. [Google Scholar] [CrossRef]
- Gunn, T.; Rowntree, P.; Starkey, D.; Nissen, L. The use of virtual reality computed tomography simulation within a medical imaging and a radiation therapy undergraduate programme. J. Med. Radiat. Sci. 2021, 68, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, A. Virtual Reality and Simulation in Neurosurgical Training. World Neurosurg. 2017, 106, 1015–1029. [Google Scholar] [CrossRef] [PubMed]
- Grassini, S.; Laumann, K.; Rasmussen Skogstad, M. The Use of Virtual Reality Alone Does Not Promote Training Performance (but Sense of Presence Does). Front. Psychol. 2020, 11, 1743. [Google Scholar] [CrossRef] [PubMed]
Colored (N = 74) | Clear (N = 67) | Total (N = 141) | p Value | |
---|---|---|---|---|
Gender | 0.002 | |||
male | 20 (27.0%) | 35 (52.2%) | 55 (39.0%) | |
female | 54 (73.0%) | 32 (47.8%) | 86 (61.0%) | |
VR Experience | 0.470 | |||
no | 59 (79.7%) | 50 (74.6%) | 109 (77.3%) | |
yes | 15 (20.3%) | 17 (25.4%) | 32 (22.7%) | |
Handedness | 0.920 | |||
right-handed | 72 (97.3%) | 65 (97.0%) | 137 (97.2%) | |
left-handed | 2 (2.7%) | 2 (3.0%) | 4 (2.8%) | |
Leg | 0.425 | |||
lean | 37 (50.0%) | 29 (43.3%) | 66 (46.8%) | |
plump | 37 (50.0%) | 38 (56.7%) | 75 (53.2%) | |
Age | 0.886 | |||
Mean (SD) | 28.24 (7.67) | 28.06 (7.44) | 28.16 (7.53) | |
Range | 20–58 | 18–55 | 18–58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burchard, R.; Sayn, L.; Schmidt, R.; Graw, J.A.; Scheicher, T.; Soost, C.; Gruenewald, A. The Level of Surface Coverage of Surgical Site Disinfection Depends on the Visibility of the Antiseptic Agent—A Virtual Reality Randomized Controlled Trial. J. Clin. Med. 2023, 12, 1472. https://doi.org/10.3390/jcm12041472
Burchard R, Sayn L, Schmidt R, Graw JA, Scheicher T, Soost C, Gruenewald A. The Level of Surface Coverage of Surgical Site Disinfection Depends on the Visibility of the Antiseptic Agent—A Virtual Reality Randomized Controlled Trial. Journal of Clinical Medicine. 2023; 12(4):1472. https://doi.org/10.3390/jcm12041472
Chicago/Turabian StyleBurchard, Rene, Lukas Sayn, Ricardo Schmidt, Jan A. Graw, Thomas Scheicher, Christian Soost, and Armin Gruenewald. 2023. "The Level of Surface Coverage of Surgical Site Disinfection Depends on the Visibility of the Antiseptic Agent—A Virtual Reality Randomized Controlled Trial" Journal of Clinical Medicine 12, no. 4: 1472. https://doi.org/10.3390/jcm12041472
APA StyleBurchard, R., Sayn, L., Schmidt, R., Graw, J. A., Scheicher, T., Soost, C., & Gruenewald, A. (2023). The Level of Surface Coverage of Surgical Site Disinfection Depends on the Visibility of the Antiseptic Agent—A Virtual Reality Randomized Controlled Trial. Journal of Clinical Medicine, 12(4), 1472. https://doi.org/10.3390/jcm12041472