Advances in Neurodegenerative Diseases
Author Contributions
Conflicts of Interest
References
- Feigin, V.L.; Vos, T.; Nichols, E.; O Owolabi, M.; Carroll, W.M.; Dichgans, M.; Deuschl, G.; Parmar, P.; Brainin, M.; Murray, C. The global burden of neurological disorders: Translating evidence into policy. Lancet Neurol. 2019, 19, 255–265. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Glidden, A.M.; Holloway, M.R.; Birbeck, G.L.; Schwamm, L.H. Teleneurology and mobile technologies: The future of neurological care. Nat. Rev. Neurol. 2018, 14, 285–297. [Google Scholar] [CrossRef]
- Ivanova, M.J.I.; Birnbaum, H.G.; Samuels, S.; Davis, M.; Phillips, A.L.; Meletiche, D. The Cost of Disability and Medically Related Absenteeism Among Employees with Multiple Sclerosis in the US. Pharmacoeconomics 2009, 27, 681–691. [Google Scholar] [CrossRef]
- Wong, W. Economic burden of Alzheimer’s disease and managed care considerations. Am. J. Manag. Care 2020, 26 (Suppl. 8), S177–S183. [Google Scholar] [PubMed]
- Welch, H.G.; Walsh, J.S.; Larson, E.B. The Cost of Institutional Care in Alzheimer’s Disease: Nursing Home and Hospital Use in a Prospective Cohort. J. Am. Geriatr. Soc. 1992, 40, 221–224. [Google Scholar] [CrossRef]
- Cencioni, M.T.; Mattoscio, M.; Magliozzi, R.; Bar-Or, A.; Muraro, P.A. B cells in multiple sclerosis—From targeted depletion to immune reconstitution therapies. Nat. Rev. Neurol. 2021, 17, 399–414. [Google Scholar] [CrossRef]
- Faissner, S.; Plemel, J.R.; Gold, R.; Yong, V.W. Progressive multiple sclerosis: From pathophysiology to therapeutic strategies. Nat. Rev. Drug Discov. 2019, 18, 905–922. [Google Scholar] [CrossRef]
- Correale, J.; Gaitán, M.I.; Ysrraelit, M.C.; Fiol, M.P. Progressive multiple sclerosis: From pathogenic mechanisms to treatment. Brain 2016, 140, 527–546. [Google Scholar] [CrossRef] [Green Version]
- Oset, M.; Stasiolek, M.; Matysiak, M. Cognitive Dysfunction in the Early Stages of Multiple Sclerosis—How Much and How Important? Curr. Neurol. Neurosci. Rep. 2020, 20, 22. [Google Scholar] [CrossRef] [PubMed]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Lanz, T.V.; Brewer, R.C.; Ho, P.P.; Moon, J.-S.; Jude, K.M.; Fernandez, D.; Fernandes, R.A.; Gomez, A.M.; Nadj, G.-S.; Bartley, C.M.; et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 2022, 603, 321–327. [Google Scholar] [CrossRef]
- University of California SFM-ET; San Francisco MS‐EPIC Team; Cree, B.A.; Hollenbach, J.A.; Bove, R.; Kirkish, G.; Sacco, S.; Caverzasi, E.; Bischof, A.; Gundel, T.; et al. Silent progression in disease activity–free relapsing multiple sclerosis. Ann. Neurol. 2019, 85, 653–666. [Google Scholar]
- Kappos, L.; Butzkueven, H.; Wiendl, H.; Spelman, T.; Pellegrini, F.; Chen, Y.; Dong, Q.; Koendgen, H.; Belachew, S.; Trojano, M.; et al. Greater sensitivity to multiple sclerosis disability worsening and progression events using a roving versus a fixed reference value in a prospective cohort study. Mult. Scler. J. 2018, 24, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Kappos, L.; Wolinsky, J.S.; Giovannoni, G.; Arnold, D.L.; Wang, Q.; Bernasconi, C.; Model, F.; Koendgen, H.; Manfrini, M.; Belachew, S.; et al. Contribution of Relapse-Independent Progression vs Relapse-Associated Worsening to Overall Confirmed Disability Accumulation in Typical Relapsing Multiple Sclerosis in a Pooled Analysis of 2 Randomized Clinical Trials. JAMA Neurol. 2020, 77, 1132. [Google Scholar] [CrossRef]
- Portaccio, E.; Bellinvia, A.; Fonderico, M.; Pastò, L.; Razzolini, L.; Totaro, R.; Spitaleri, D.; Lugaresi, A.; Cocco, E.; Onofrj, M.; et al. Progression is independent of relapse activity in early multiple sclerosis: A real-life cohort study. Brain 2022, 145, 2796–2805. [Google Scholar] [CrossRef]
- Tur, C.; Carbonell-Mirabent, P.; Cobo-Calvo, Á.; Otero-Romero, S.; Arrambide, G.; Midaglia, L.; Castilló, J.; Vidal-Jordana, Á.; Rodríguez-Acevedo, B.; Zabalza, A.; et al. Association of Early Progression Independent of Relapse Activity With Long-term Disability After a First Demyelinating Event in Multiple Sclerosis. JAMA Neurol. 2023, 80, 151–160. [Google Scholar] [CrossRef]
- Lebrun, C.; Blanc, F.; Brassat, D.; Zephir, H.; de Seze, J.; Cfsep, B.O. Cognitive function in radiologically isolated syndrome. Mult. Scler. J. 2010, 16, 919–925. [Google Scholar] [CrossRef]
- Schulz, D.; Kopp, B.; Kunkel, A.; Faiss, J.H. Cognition in the early stage of multiple sclerosis. J. Neurol. 2006, 253, 1002–1010. [Google Scholar] [CrossRef]
- Rojas, J.I.; Patrucco, L.; Míguez, J.; Besada, C.; Cristiano, E. Brain Atrophy in Radiologically Isolated Syndromes. J. Neuroimaging 2014, 25, 68–71. [Google Scholar] [CrossRef]
- Di Filippo, M.; Anderson, V.M.; Altmann, D.R.; Swanton, J.K.; Plant, G.T.; Thompson, A.J.; Miller, D.H. Brain atrophy and lesion load measures over 1 year relate to clinical status after 6 years in patients with clinically isolated syndromes. J. Neurol. Neurosurg. Psychiatry 2009, 81, 204–208. [Google Scholar] [CrossRef]
- Ward, M.; Goldman, M.D. Epidemiology and Pathophysiology of Multiple Sclerosis. Contin. Lifelong Learn. Neurol. 2022, 28, 988–1005. [Google Scholar] [CrossRef]
- Hauser, S.L.; Cree, B.A. Treatment of Multiple Sclerosis: A Review. Am. J. Med. 2020, 133, 1380–1390.e2. [Google Scholar] [CrossRef]
- Preziosa, P.; Pagani, E.; Meani, A.; Moiola, L.; Rodegher, M.; Filippi, M.; Rocca, M.A. Slowly Expanding Lesions Predict 9-Year Multiple Sclerosis Disease Progression. Neurol. Neuroimmunol. Neuroinflammation 2022, 9, e1139. [Google Scholar] [CrossRef]
- Calvi, A.; Carrasco, F.P.; Tur, C.; Chard, D.T.; Stutters, J.; De Angelis, F.; John, N.; Williams, T.; Doshi, A.; Samson, R.S.; et al. Association of Slowly Expanding Lesions on MRI With Disability in People With Secondary Progressive Multiple Sclerosis. Neurology 2022, 98, e1783–e1793. [Google Scholar] [CrossRef]
- Klistorner, S.; Barnett, M.H.; Graham, S.L.; Wang, C.; Klistorner, A. The expansion and severity of chronic MS lesions follows a periventricular gradient. Mult. Scler. J. 2022, 28, 1504–1514. [Google Scholar] [CrossRef]
- Absinta, M.; Sati, P.; Masuzzo, F.; Nair, G.; Sethi, V.; Kolb, H.; Ohayon, J.; Wu, T.; Cortese, I.C.M.; Reich, D.S. Association of Chronic Active Multiple Sclerosis Lesions With Disability In Vivo. JAMA Neurol. 2019, 76, 1474–1483. [Google Scholar] [CrossRef]
- Eisele, P.; Kraemer, M.; Dabringhaus, A.; Weber, C.E.; Ebert, A.; Platten, M.; Schad, L.R.; Gass, A. Characterization of chronic active multiple sclerosis lesions with sodium (23Na) magnetic resonance imaging—Preliminary observations. Eur. J. Neurol. 2021, 28, 2392–2395. [Google Scholar] [CrossRef]
- Maggi, P.; Kuhle, J.; Schädelin, S.; van der Meer, F.; Weigel, M.; Galbusera, R.; Mathias, A.; Lu, P.-J.; Rahmanzadeh, R.; Benkert, P.; et al. Chronic White Matter Inflammation and Serum Neurofilament Levels in Multiple Sclerosis. Neurology 2021, 97, e543–e553. [Google Scholar] [CrossRef]
- Van Schependom, J.; Guldolf, K.; D’Hooghe, M.B.; Nagels, G.; D’Haeseleer, M. Detecting neurodegenerative pathology in multiple sclerosis before irreversible brain tissue loss sets in. Transl. Neurodegener. 2019, 8, 1–17. [Google Scholar] [CrossRef]
- Oh, J.; Bar-Or, A. Emerging therapies to target CNS pathophysiology in multiple sclerosis. Nat. Rev. Neurol. 2022, 18, 466–475. [Google Scholar] [CrossRef]
- DeLuca, J.; Chiaravalloti, N.D.; Sandroff, B.M. Treatment and management of cognitive dysfunction in patients with multiple sclerosis. Nat. Rev. Neurol. 2020, 16, 319–332. [Google Scholar] [CrossRef]
- Veldkamp, R.; Baert, I.; Kalron, A.; Tacchino, A.; D’hooge, M.; Vanzeir, E.; Van Geel, F.; Ratts, J.; Goetschalckx, M.; Brichetto, G.; et al. Dual task training in persons with Multiple Sclerosis: Effectiveness of an integrated cognitive-motor dual task training compared to a single mobility training. J. Clin. Med. 2019, 8, 2177. [Google Scholar] [CrossRef] [Green Version]
- Sosnoff, J.J.; A Wajda, D.; Sandroff, B.M.; Roeing, K.L.; Sung, J.; Motl, R.W. Dual task training in persons with Multiple Sclerosis: A feasability randomized controlled trial. Clin. Rehabilitation 2017, 31, 1322–1331. [Google Scholar] [CrossRef]
- Barbarulo, A.M.; Lus, G.; Signoriello, E.; Trojano, L.; Grossi, D.; Esposito, M.; Costabile, T.; Lanzillo, R.; Saccà, F.; Morra, V.B.; et al. Integrated Cognitive and Neuromotor Rehabilitation in Multiple Sclerosis: A Pragmatic Study. Front. Behav. Neurosci. 2018, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Peruzzi, A.; Zarbo, I.R.; Cereatti, A.; Della Croce, U.; Mirelman, A. An innovative training program based on virtual reality and treadmill: Effects on gait of persons with multiple sclerosis. Disabil. Rehabilitation 2016, 39, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Dalgas, U.; Langeskov-Christensen, M.; Stenager, E.; Riemenschneider, M.; Hvid, L.G. Exercise as Medicine in Multiple Sclerosis—Time for a Paradigm Shift: Preventive, Symptomatic, and Disease-Modifying Aspects and Perspectives. Curr. Neurol. Neurosci. Rep. 2019, 19, 88. [Google Scholar] [CrossRef]
- Gentile, A.; Musella, A.; De Vito, F.; Rizzo, F.R.; Fresegna, D.; Bullitta, S.; Vanni, V.; Guadalupi, L.; Bassi, M.S.; Buttari, F.; et al. Immunomodulatory Effects of Exercise in Experimental Multiple Sclerosis. Front. Immunol. 2019, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bacmeister, C.M.; Barr, H.J.; McClain, C.R.; Thornton, M.A.; Nettles, D.; Welle, C.G.; Hughes, E.G. Motor learning promotes remyelination via new and surviving oligodendrocytes. Nat. Neurosci. 2020, 23, 819–831. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, R.M.G.; Nguyen, J.A. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat. Neurosci. 2019, 22, 820–827. [Google Scholar] [CrossRef] [Green Version]
- McNamara, N.B.; Munro, D.A.D.; Bestard-Cuche, N.; Uyeda, A.; Bogie, J.F.J.; Hoffmann, A.; Holloway, R.K.; Molina-Gonzalez, I.; Askew, K.E.; Mitchell, S.; et al. Microglia regulate central nervous system myelin growth and integrity. Nature 2023, 613, 120–129. [Google Scholar] [CrossRef]
- Genchi, A.; Brambilla, E.; Sangalli, F.; Radaelli, M.; Bacigaluppi, M.; Furlan, R.; Andolfo, A.; Drago, D.; Magagnotti, C.; Scotti, G.M.; et al. Neural stem cell transplantation in patients with progressive multiple sclerosis: An open-label, phase 1 study. Nat. Med. 2023, 29, 75–85. [Google Scholar] [CrossRef]
- Denissen, S.; Engemann, D.A.; De Cock, A.; Costers, L.; Baijot, J.; Laton, J.; Penner, I.; Grothe, M.; Kirsch, M.; D’Hooghe, M.B.; et al. Brain age as a surrogate marker for cognitive performance in multiple sclerosis. Eur. J. Neurol. 2022, 29, 3039–3049. [Google Scholar] [CrossRef]
- Costers, L.; Van Schependom, J.; Laton, J.; Baijot, J.; Sjøgård, M.; Wens, V.; De Tiège, X.; Goldman, S.; D’Haeseleer, M.; D’hooghe, M.B.; et al. Spatiotemporal and spectral dynamics of multi-item working memory as revealed by the n-back task using MEG. Hum. Brain Mapp. 2020, 41, 2431–2446. [Google Scholar] [CrossRef] [Green Version]
- Hansson, O.; Lehmann, S.; Otto, M.; Zetterberg, H.; Lewczuk, P. Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer’s Disease. Alzheimers Res. Ther. 2019, 11, 1–15. [Google Scholar] [CrossRef]
- De Vos, M.; Van Schependom, J. Artificial intelligence will change MS care within the next 10 years: No. Mult. Scler. J. 2022, 28, 2173–2174. [Google Scholar] [CrossRef]
- Denissen, S.; Nagels, G. Artificial Intelligence will change MS care within the next ten years: Yes. Mult. Scler. J. 2022, in press. [Google Scholar] [CrossRef]
- Cloosterman, S.; Wijnands, I.; Huygens, S.; Wester, V.; Lam, K.-H.; Strijbis, E.; Teuling, B.D.; Versteegh, M. The Potential Impact of Digital Biomarkers in Multiple Sclerosis in The Netherlands: An Early Health Technology Assessment of MS Sherpa. Brain Sci. 2021, 11, 1305. [Google Scholar] [CrossRef]
- Kadel, R.; Evans-Lacko, S.; Tramarin, A.; Stopazzolo, G. Cost-Effectiveness of Tele-Video-Consultation for the Neuro-Surgical Emergency Management at the General Hospitals in Italy. Front. Neurosci. 2018, 12, 908. [Google Scholar] [CrossRef]
- Sadeghi, N.; Eelen, P.; Nagels, G.; Cuvelier, C.; Van Gils, K.; D’Hooghe, M.B.; Van Schependom, J.; D’Haeseleer, M. Innovating Care in Multiple Sclerosis: Feasibility of Synchronous Internet-Based Teleconsultation for Longitudinal Clinical Monitoring. J. Pers. Med. 2022, 12, 433. [Google Scholar] [CrossRef]
- Beck, C.A.; Beran, D.B.; Biglan, K.M.; Boyd, C.M.; Dorsey, E.R.; Schmidt, P.N.; Simone, R.; Willis, A.; Galifianakis, N.B.; Katz, M.; et al. National randomized controlled trial of virtual house calls for Parkinson disease. Neurology 2017, 89, 1152–1161. [Google Scholar] [CrossRef]
- Strowd, R.E.; Strauss, L.; Graham, R.; Dodenhoff, K.; Schreiber, A.; Thomson, S.; Ambrosini, A.; Thurman, A.M.; Olszewski, C.; Smith, L.D.; et al. Rapid Implementation of Outpatient Teleneurology in Rural Appalachia. Neurol. Clin. Pract. 2020, 11, 232–241. [Google Scholar] [CrossRef]
- Cummings, C.; Almallouhi, E.; Al Kasab, S.; Spiotta, A.M.; Holmstedt, C.A. Blacks Are Less Likely to Present With Strokes During the COVID-19 Pandemic. Stroke 2020, 51, 3107–3111. [Google Scholar] [CrossRef]
- Plow, M.; Motl, R.W.; Finlayson, M.; Bethoux, F. Response heterogeneity in a randomized controlled trial of telerehabilitation interventions among adults with multiple sclerosis. J. Telemed. Telecare 2022, 28, 642–652. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Schependom, J.; D’haeseleer, M. Advances in Neurodegenerative Diseases. J. Clin. Med. 2023, 12, 1709. https://doi.org/10.3390/jcm12051709
Van Schependom J, D’haeseleer M. Advances in Neurodegenerative Diseases. Journal of Clinical Medicine. 2023; 12(5):1709. https://doi.org/10.3390/jcm12051709
Chicago/Turabian StyleVan Schependom, Jeroen, and Miguel D’haeseleer. 2023. "Advances in Neurodegenerative Diseases" Journal of Clinical Medicine 12, no. 5: 1709. https://doi.org/10.3390/jcm12051709
APA StyleVan Schependom, J., & D’haeseleer, M. (2023). Advances in Neurodegenerative Diseases. Journal of Clinical Medicine, 12(5), 1709. https://doi.org/10.3390/jcm12051709