Influence of Clinical and Genetic Factors on the Progression of Age-Related Macular Degeneration: A 3-Year Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Initial Management
2.2. Ophthalmologic Examination
2.3. Genotyping
2.4. Statistical Analysis
3. Results
3.1. Systemic Factors Associated with AMD Progression
3.2. Clinical Parameters Associated with AMD Progression
3.3. Genetic Factors Influencing AMD Progression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colijn, J.M.; Buitendijk, G.H.S.; Prokofyeva, E.; Alves, D.; Cachulo, M.L.; Khawaja, A.P.; Cougnard-Gregoire, A.; Merle, B.M.J.; Korb, C.; Erke, M.G.; et al. Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future. Ophthalmology 2017, 124, 1753–1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudnicka, A.R.; Kapetanakis, V.V.; Jarrar, Z.; Wathern, A.K.; Wormald, R.; Fletcher, A.E.; Cook, D.G.; Owen, C.G. Incidence of Late-Stage Age-Related Macular Degeneration in American Whites: Systematic Review and Meta-analysis. Am. J. Ophthalmol. 2015, 160, 85–93.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rofagha, S.; Bhisitkul, R.B.; Boyer, D.S.; Sadda, S.R.; Zhang, K.; SEVEN-UP Study Group. Seven-Year Outcomes in Ranibizumab-Treated Patients in ANCHOR, MARINA, and HORIZON: A multicenter cohort study (SEVEN-UP). Ophthalmology 2013, 120, 2292–2299. [Google Scholar] [CrossRef]
- Tan, J.S.; Mitchell, P.; Smith, W.; Wang, J.J. Cardiovascular Risk Factors and the Long-term Incidence of Age-Related Macular Degeneration: The Blue Mountains Eye Study. Ophthalmology 2007, 114, 1143–1150. [Google Scholar] [CrossRef]
- Smith, W.; Assink, J.; Klein, R.; Mitchell, P.; Klaver, C.C.; Klein, B.E.; Hofman, A.; Jensen, S.; Wang, J.J.; de Jong, P.T. Risk factors for age-related macular degeneration: Pooled findings from three continents. Ophthalmology 2001, 108, 697–704. [Google Scholar] [CrossRef]
- Ulanńczyk, Z.; Grabowicz, A.; Mozolewska-Piotrowska, K.; Safranow, K.; Kawa, M.P.; Pałucha, A.; Krawczyk, M.; Sikora, P.; Matczynńska, E.; Machalinński, B.; et al. Genetic factors associated with age-related macular degeneration: Identification of a novel PRPH2 single nucleotide polymorphism associated with increased risk of the disease. Acta Ophthalmol. 2021, 99, 739–749. [Google Scholar] [CrossRef]
- Stuck, M.W.; Conley, S.M.; Naash, M.I. PRPH2/RDS and ROM-1: Historical context, current views and future considerations. Prog. Retin. Eye Res. 2016, 52, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Krytkowska, E.; Grabowicz, A.; Mozolewska-Piotrowska, K.; Ulańczyk, Z.; Safranow, K.; Machalińska, A. The impact of vascular risk factors on the thickness and volume of the choroid in AMD patients. Sci. Rep. 2021, 11, 15106. [Google Scholar] [CrossRef]
- Ferris, F.L., 3rd; Wilkinson, C.P.; Bird, A.; Chakravarthy, U.; Chew, E.; Csaky, K.; Sadda, S.R. Clinical Classification of Age-related Macular Degeneration. Ophthalmology 2013, 120, 844–851. [Google Scholar] [CrossRef]
- Fleckenstein, M.; Mitchell, P.; Freund, K.B.; Sadda, S.; Holz, F.G.; Brittain, C.; Henry, E.C.; Ferrara, D. The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration. Ophthalmology 2018, 125, 369–390. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Curcio, C.A. Drusen Characterization with Multimodal Imaging. Retina 2010, 30, 1441–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curcio, C.A. Soft Drusen in Age-Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. Investig. Opthalmol. Vis. Sci. 2018, 59, AMD160–AMD181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaide, R.F. Disease Expression in Nonexudative Age-Related Macular Degeneration Varies with Choroidal Thickness. Retina 2018, 38, 708–716. [Google Scholar] [CrossRef]
- Fukuda, Y.; Sakurada, Y.; Yoneyama, S.; Kikushima, W.; Sugiyama, A.; Matsubara, M.; Tanabe, N.; Iijima, H. Clinical and genetic characteristics of pachydrusen in patients with exudative age-related macular degeneration. Sci. Rep. 2019, 9, 11906. [Google Scholar] [CrossRef] [Green Version]
- Wightman, A.J.; Guymer, R.H. Reticular pseudodrusen: Current understanding. Clin. Exp. Optom. 2019, 102, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Chan, H.; Cougnard-Grégoire, A.; Delyfer, M.-N.; Combillet, F.; Rougier, M.-B.; Schweitzer, C.; Dartigues, J.-F.; Korobelnik, J.-F.; Delcourt, C. Multimodal Imaging of Reticular Pseudodrusen in a Population-Based Setting: The Alienor Study. Investig. Opthalmol. Vis. Sci. 2016, 57, 3058–3065. [Google Scholar] [CrossRef] [Green Version]
- Warrow, D.J.; Hoang, Q.V.; Freund, K.B. Pachychoroid Pigment Epitheliopathy. Retina 2013, 33, 1659–1672. [Google Scholar] [CrossRef]
- Chen, G.; Tzekov, R.; Li, W.; Jiang, F.; Mao, S.; Tong, Y. Subfoveal Choroidal Thickness in Central Serous Chorioretinopathy: A Meta-Analysis. PLoS ONE 2017, 12, e0169152. [Google Scholar] [CrossRef] [Green Version]
- Castro-Navarro, V.; Behar-Cohen, F.; Chang, W.; Joussen, A.M.; Lai, T.Y.Y.; Navarro, R.; Pearce, I.; Yanagi, Y.; Okada, A.A. Pachychoroid: Current concepts on clinical features and pathogenesis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 1385–1400. [Google Scholar] [CrossRef]
- Baek, J.; Kook, L.; Lee, W.K. Choriocapillaris Flow Impairments in Association with Pachyvessel in Early Stages of Pachychoroid. Sci. Rep. 2019, 9, 5565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, C.M.G.; Lee, W.K.; Koizumi, H.; Dansingani, K.; Lai, T.Y.Y.; Freund, K.B. Pachychoroid disease. Eye 2019, 33, 14–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bromfield, S.; Keenan, J.; Jolly, P.; McGwin, G. A Suggested Association between Hypothyroidism and Age-Related Macular Degeneration. Curr. Eye Res. 2012, 37, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Chaker, L.; Buitendijk, G.H.S.; Dehghan, A.; Medici, M.; Hofman, A.; Vingerling, J.R.; Franco, O.H.; Klaver, C.C.W.; Peeters, R.P. Thyroid function and age-related macular degeneration: A prospective population-based cohort study—The Rotterdam Study. BMC Med. 2015, 13, 94. [Google Scholar] [CrossRef] [Green Version]
- Johari, M.; Farvardin, M.; Mousavi, S.E.; Zare, K.; Bazdar, S.; Farvardin, Z. Thyroid dysfunction as a modifiable risk factor for wet type age-related macular degeneration: A case–control study. J. Curr. Ophthalmol. 2021, 33, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, B.; Liew, G.; Kifley, A.; Mitchell, P. Thyroid Dysfunction and Ten-Year Incidence of Age-Related Macular Degeneration. Investig. Opthalmol. Vis. Sci. 2016, 57, 5273–5277. [Google Scholar] [CrossRef] [Green Version]
- Klein, R.; Klein, B.E.K.; Jensen, S.C.; Cruickshanks, K.J.; Lee, K.E.; Danforth, L.G.; Tomany, S.C. Medication Use and the 5-Year Incidence of Early Age-Related Maculopathy: The Beaver Dam Eye Study. Arch. Ophthalmol. 2001, 119, 1354–1359. [Google Scholar] [CrossRef] [Green Version]
- Age-Related Eye Disease Study Research Group. Risk factors associated with age-related macular degeneration. A case-control study in the age-related eye disease study: Age-Related Eye Disease Study Report Number 3. Ophthalmology 2000, 107, 2224–2232. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, M.; Zhang, Q.; Xu, T.; Tao, L. Thyroid Disease Is Associated with Higher Age-Related Macular Degeneration Risk: Results from a Meta-Analysis of Epidemiologic Studies. Ophthalmic Res. 2021, 64, 696–703. [Google Scholar] [CrossRef]
- Yang, F.; Ma, H.; Ding, X.-Q. Thyroid Hormone Signaling in Retinal Development, Survival, and Disease. In Vitamins and Hormones; Academic Press Inc.: Cambridge, MA, USA, 2018; Volume 106, pp. 333–349. [Google Scholar] [CrossRef]
- Tsai, C.C.; Kao, S.C.; Cheng, C.Y.; Kau, H.C.; Hsu, W.M.; Lee, C.F.; Wei, Y.H. Oxidative Stress Change by Systemic Corticosteroid Treatment Among Patients Having Active Graves Ophthalmopathy. Arch. Ophthalmol. 2007, 125, 1652–1656. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Ma, H.; Belcher, J.; Butler, M.R.; Redmond, T.M.; Boye, S.L.; Hauswirth, W.W.; Ding, X. Targeting iodothyronine deiodinases locally in the retina is a therapeutic strategy for retinal degeneration. FASEB J. 2016, 30, 4313–4325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Yang, F.; Ding, X.-Q. Inhibition of thyroid hormone signaling protects retinal pigment epithelium and photoreceptors from cell death in a mouse model of age-related macular degeneration. Cell Death Dis. 2020, 11, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, K.; Bailey, K.; Baxter, J.; Schwartz, D. The Human Fetal Retinal Pigment Epithelium: A Target Tissue for Thyroid Hormones. Ophthalmic Res. 1999, 31, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Ma, H.; Butler, M.R.; Ding, X.-Q. Deficiency of type 2 iodo-thyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice. FASEB J. 2018, 32, 6316–6329. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, A.-M.; Bakogiannis, N.; Skrapari, I.; Moris, D.; Bakoyiannis, C. Thyroid Dysfunction and Atherosclerosis: A Systematic Review. In Vivo 2020, 34, 3127–3136. [Google Scholar] [CrossRef] [PubMed]
- Domalpally, A.; Danis, R.P.; Trane, R.; Blodi, B.A.; Clemons, T.E.; Chew, E.Y. Atrophy in Neovascular Age-Related Macular Degeneration: Age-Related Eye Disease Study 2 Report Number 15. Ophthalmol. Retin. 2018, 2, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Vitale, S.; Agrón, E.; Clemons, T.E.; Keenan, T.D.L.; Domalpally, A.; Danis, R.P.; Chew, E.Y. Association of 2-Year Progression along the AREDS AMD Scale and Development of Late Age-Related Macular Degeneration or Loss of Visual Acuity: AREDS Report. JAMA Ophthalmol 2020, 138, 610–617. [Google Scholar] [CrossRef]
- Chakravarthy, U.; Bailey, C.C.; Scanlon, P.H.; McKibbin, M.; Khan, R.S.; Mahmood, S.; Downey, L.; Dhingra, N.; Brand, C.; Brittain, C.J.; et al. Progression from Early/Intermediate to Advanced Forms of Age-Related Macular Degeneration in a Large UK Cohort: Rates and Risk Factors. Ophthalmol. Retin. 2020, 4, 662–672. [Google Scholar] [CrossRef]
- Ying, G.-S.; Maguire, M.G.; Daniel, E.; Ferris, F.L.; Jaffe, G.J.; Grunwald, J.E.; Toth, C.A.; Huang, J.; Martin, D.F. Association of Baseline Characteristics and Early Vision Response with 2-Year Vision Outcomes in the Comparison of AMD Treatments Trials (CATT). Ophthalmology 2015, 122, 2523–2531.e1. [Google Scholar] [CrossRef] [Green Version]
- Veluswamy, B.; Lee, A.H.-Y.; Mirza, R.G.; Gill, M.K. Correlation of Baseline Visual Acuity with Outcomes of Treatment with Anti-VEGF in Neovascular Age-Related Macular Degeneration. Clin. Ophthalmol. 2020, 14, 1565–1572. [Google Scholar] [CrossRef]
- Shao, L.; Xu, L.; Bin Wei, W.; Chen, C.X.; Du, K.F.; Li, X.P.; Yang, M.; Wang, Y.X.; You, Q.S.; Jonas, J.B. Visual Acuity and Subfoveal Choroidal Thickness: The Beijing Eye Study. Am. J. Ophthalmol. 2014, 158, 702–709.e1. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Lee, D.H.; Lee, J.Y.; Yoon, Y.H. Correlation Between Subfoveal Choroidal Thickness and the Severity or Progression of Nonexudative Age-Related Macular Degeneration. Investig. Opthalmol. Vis. Sci. 2013, 54, 7812–7818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, A.; Cao, S.; Pakzad-Vaezi, K.; Brasher, P.M.; Merkur, A.B.; Albiani, D.A.; Kirker, A.W.; Cui, J.; Matsubara, J.; Forooghian, F. Optical Coherence Tomography–Based Correlation between Choroidal Thickness and Drusen Load in Dry Age-Related Macular Degeneration. Retina 2013, 33, 1005–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharbiya, M.; Iannetti, L.; Parisi, F.; De Vico, U.; Mungo, M.L.; Marenco, M. Visual and Anatomical Outcomes of Intravitreal Aflibercept for Treatment-Resistant Neovascular Age-Related Macular Degeneration. BioMed Res. Int. 2014, 2014, 273754. [Google Scholar] [CrossRef]
- Broadhead, G.K.; Hong, T.; McCluskey, P.; Grigg, J.R.; Schlub, T.E.; Chang, A.A. Choroidal Thickness and Microperimetry Sensitivity in Age-Related Macular Degeneration. Ophthalmic Res. 2017, 58, 27–34. [Google Scholar] [CrossRef]
- Ouyang, Y.; Heussen, F.M.; Hariri, A.; Keane, P.A.; Sadda, S.R. Optical Coherence Tomography–Based Observation of the Natural History of Drusenoid Lesion in Eyes with Dry Age-related Macular Degeneration. Ophthalmology 2013, 120, 2656–2665. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Abdelfattah, N.S.; Uji, A.; Lei, J.; Ip, M.; Sadda, S.R.; Wykoff, C.C.; on behalf of the TREX-AMD Study Group. Subfoveal choroidal thickness predicts macular atrophy in age-related macular degeneration: Results from the TREX-AMD trial. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 511–518. [Google Scholar] [CrossRef]
- Ferrara, D.; Silver, R.E.; Louzada, R.N.; Novais, E.A.; Collins, G.K.; Seddon, J.M. Optical Coherence Tomography Features Preceding the Onset of Advanced Age-Related Macular Degeneration. Investig. Opthalmol. Vis. Sci. 2017, 58, 3519–3529. [Google Scholar] [CrossRef]
- Manjunath, V.; Goren, J.; Fujimoto, J.G.; Duker, J.S. Analysis of Choroidal Thickness in Age-Related Macular Degeneration Using Spectral-Domain Optical Coherence Tomography. Am. J. Ophthalmol. 2011, 152, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Keenan, T.D.; Klein, B.; Agrón, E.; Chew, E.Y.; Cukras, C.A.; Wong, W.T. Choroidal Thickness and Vascularity Vary with Disease Severity and Subretinal Drusenoid Deposit Presence in Nonadvanced Age-Related Macular Degeneration. Retina 2020, 40, 632–642. [Google Scholar] [CrossRef]
- Sakurada, Y.; Sugiyama, A.; Kikushima, W.; Yoneyama, S.; Tanabe, N.; Matsubara, M.; Iijima, H. Pseudodrusen pattern and development of late age-related macular degeneration in the fellow eye of the unilateral case. Jpn. J. Ophthalmol. 2019, 63, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Gangnon, R.E.; Lee, K.E.; Klein, B.E.K.; Iyengar, S.K.; Sivakumaran, T.A.; Klein, R. Severity of age-related macular degeneration in 1 eye and the incidence and progression of age-related macular degeneration in the fellow eye: The Beaver Dam Eye Study. JAMA Ophthalmol 2015, 133, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, R.; Cachulo, M.; Fonseca, P.; Bernardes, R.; Nunes, S.; Vilhena, N.; de Abreu, J.F. Age-Related Macular Degeneration and Risk Factors for the Development of Choroidal Neovascularisation in the Fellow Eye: A 3-Year Follow-Up Study. Ophthalmologica 2011, 226, 110–118. [Google Scholar] [CrossRef]
- Heesterbeek, T.J.; Lorés-Motta, L.; Hoyng, C.B.; Lechanteur, Y.T.; Hollander, A.I. Risk factors for progression of age-related macular degeneration. Ophthalmic Physiol. Opt. 2020, 40, 140–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, A.O.; Ritter, R.; Abel, K.J.; Manning, A.; Panhuysen, C.; Farrer, L.A. Complement Factor H Polymorphism and Age-Related Macular Degeneration. Science 2005, 308, 421–424. [Google Scholar] [CrossRef] [Green Version]
- Farwick, A.; Wellmann, J.; Stoll, M.; Pauleikhoff, D.; Hense, H.-W. Susceptibility Genes and Progression in Age-Related Maculopathy: A Study of Single Eyes. Investig. Opthalmol. Vis. Sci. 2010, 51, 731–736. [Google Scholar] [CrossRef]
- Yu, Y.; Reynolds, R.; Rosner, B.; Daly, M.J.; Seddon, J.M. Prospective Assessment of Genetic Effects on Progression to Different Stages of Age-Related Macular Degeneration Using Multistate Markov Models. Investig. Opthalmol. Vis. Sci. 2012, 53, 1548–1556. [Google Scholar] [CrossRef]
- Dietzel, M.; Pauleikhoff, D.; Arning, A.; Heimes, B.; Lommatzsch, A.; Stoll, M.; Hense, H.-W. The contribution of genetic factors to phenotype and progression of drusen in early age-related macular degeneration. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 252, 1273–1281. [Google Scholar] [CrossRef]
- Bonyadi, M.H.J.; Yaseri, M.; Nikkhah, H.; Bonyadi, M.; Nazari, R.; Soheilian, M. Comparison of ARMS2/LOC387715 A69S and CFH Y402H risk effect in wet-type age-related macular degeneration: A meta-analysis. Int. Ophthalmol. 2018, 39, 949–956. [Google Scholar] [CrossRef]
- Colijn, J.M.; Meester-Smoor, M.; Verzijden, T.; de Breuk, A.; Silva, R.; Merle, B.M.; Cougnard-Grégoire, A.; Hoyng, C.B.; Fauser, S.; Coolen, A.; et al. Genetic Risk, Lifestyle, and Age-Related Macular Degeneration in Europe: The EYE-RISK Consortium. Ophthalmology 2020, 128, 1039–1049. [Google Scholar] [CrossRef]
Parameter | AMD Progression | No AMD Progression | OR (95% CI) | p-Value * | |
---|---|---|---|---|---|
Number of subjects | 48 | 46 | — | — | |
Sex (male/female) | 16/32 | 16/30 | 0.93 (0.39–2.22) | 1.00 | |
Patient’s age [years] (min–max) | 72.7 (56–84) | 70.4 (54–85) | 1.04 (0.98–1.11) | 0.07 | |
Iris colour (dark/light) | 11/37 | 18/28 | 0.46 (0.19–1.15) | 0.12 | |
Education | Basic (%) | 50% | 50% | 1.03 (0.66–1.60) | 0.99 |
Vocational (%) | 50% | 50% | |||
Secondary (%) | 52.5% | 47.5% | |||
Higher (%) | 51.7% | 48.2% | |||
AMD family history | 46.7% | 53.3% | 0.81 (0.26–2.49) | 0.78 | |
Currently smoking | 36.4% | 52.6% | 0.51 (0.14–1.94) | 0.35 | |
Formerly smoking | 41.9% | 58.7% | 0.51 (0.21–1.19) | 0.14 | |
BMI (kg/m2) | 26.8 ± 4.2 | 27.0 ± 4.9 | 0.68 | ||
Physical activity (MET) | 1624.5 ± 2079.3 | 1890.4 ± 2501.8 | 0.24 | ||
Medical history | |||||
Hypertension | 50% | 50% | 0.93 (0.38–2.30) | 1.00 | |
History of ischemic heart disease | 55.6% | 50.6% | 1.22 (0.30–4.98) | 1.00 | |
History of myocardial infarction | 60% | 50,6% | 1.46 (0.23–9.47) | 1.00 | |
History of peripheral artery disease | 60% | 50.6% | 1.46 (0.23–9.47) | 1.00 | |
History of limb ischemia | 60% | 50.6% | 1.46 (0.23–9.47) | 1.00 | |
Medications use | |||||
Hypotensive drugs/vasodilators | 50.8% | 50% | 1.03 (0.41–2.57) | 1.00 | |
Thyroxine | 75% | 44.4% | 3.75 (1.08–12.97) | 0.05 | |
Steroids | 50% | 50% | 1.00 (0.06–17.18) | 1.00 | |
Statins | 48% | 52% | 0.87 (0.34–2.22) | 0.82 | |
NSAIDs | 55.6% | 49.3% | 1.28 (0.45–3.69) | 0.79 | |
Cardiac medications/antiarrhythmic drugs | 50% | 50.6% | 0.45 (0.10–1.97) | 0.31 | |
Antiasthmatic drugs | 75% | 49.4% | 3.07 (0.30–31.74) | 0.62 | |
Antidepressants | 75% | 49.4% | 3.07 (0.30–31.74) | 0.62 | |
Vitamins and antioxidants | 50% | 51.6% | 0.94 (0.39–2.27) | 1.00 | |
Xanthines (lutein, zeaxanthin) | 53.3% | 44.8% | 1.41 (0.57–3.47) | 0.50 | |
Omega-3 rich oils | 51.9% | 48.7% | 1.14 (0.48–2.68) | 0.83 | |
Resveratrol | 54.8% | 46.81% | 1.37 (0.59–3.21) | 0.53 |
Clinical Parameter | AMD Progression | No AMD Progression | OR (95% CI) | p-Value * | |
---|---|---|---|---|---|
Visual acuity (logMAR) | 0.49 ± 0.35 | 0.35 ± 0.31 | 3.56 (0.96–13.10) | 0.04 | |
Choroidal thickness in the foveal region (μm) | 207.5 ± 84.3 | 245.4 ± 96.6 | 0.995 (0.990–1.00) | 0.0497 | |
Pachychoroid (Y/N) | 4/44 | 1/44 | 4.00 (0.42–38.37) | 0.36 | |
Pachyvessels (Y/N) | 19/29 | 19/26 | 0.90 (0.38–2.07) | 0.83 | |
Retinal thickness in the central ETDRS area (μm) | 317.4 ± 80.8 | 300.6 ± 55.0 | 1.00 (1.00–1.00) | 0.52 | |
Drusen size | 2.43 ± 0.65 | 2.43 ± 0.73 | 0.99 (0.54–1.81) | 0.80 | |
Soft drusen | 65% | 69% | 0.82 (0.34–1.98) | 0.83 | |
Hard drusen | 25% | 22% | 1.17 (0.44–3.08) | 0.81 | |
Subretinal drusenoid deposits (SDD) | 42% | 24% | 2.21 (0.90–5.44) | 0.12 | |
Pachydrusen | 10% | 11% | 0.93 (0.25–3.52) | 1.00 | |
AMD stage | Early | 17.0% | 8.7% | 1.03 (0.56–1.90) | 0.18 |
Intermediate | 38.3% | 56.5% | |||
Late | 44.7% | 34.8% | |||
Wet AMD in one eye (yes [%]) | 37.5% | 32.6% | 4.17 (1.06–16.46) | 0.04 |
Independent Variables | OR | −95% CI | +95% CI | p-Value |
---|---|---|---|---|
Thyroxine supplementation | 6.42 | 1.6 | 25.79 | 0.008 |
Visual acuity (logMAR) | 5.1 | 1.05 | 24.69 | 0.039 |
Choroidal thickness in the foveal region (μm) | 0.1 | 0.99 | 1.0 | 0.12 |
Wet AMD in one eye (yes [%]) | 0.99 | 4.49 | 20.3 | 0.048 |
CFH | 2.76 | 0.98 | 7.79 | 0.05 |
Tested SNP | Genotype | % of Patients with AMD Progression | % of Patients without AMD Progression | p-Value * | Genotypes or Alleles | OR (95% CI) | p-Value * |
---|---|---|---|---|---|---|---|
CFH Y402H | TT | 41.2% | 58.8% | 0.19 | CC + TC vs. TT | 1.47 (0.50–4.36) | 0.48 |
CC vs. TC + TT | 2.40 (0.92–6.21) | 0.069 | |||||
TC | 41.7% | 58.3% | CC vs. TT | 2.43 (0.70–8.41) | 0.16 | ||
C vs. T allele | 1.69 (0.90–3.18) | 0.10 | |||||
CC | 63.0% | 37.0% | TC vs. TT | 1.02 (0.32–3.29) | 0.97 | ||
CC vs. TC | 2.38 (0.85–6.63) | 0.09 | |||||
ARMS2 A69S | GG | 46.9% | 53.1% | 0.69 | TT + GT vs. GG | 1.09 (0.44–2.65) | 0.85 |
TT vs. GT + GG | 1.91 (0.42–8.60) | 0.39 | |||||
GT | 46.3% | 53.7% | TT vs. GG | 1.89 (0.38–9.27) | 0.43 | ||
T vs. G allele | 1.18 (0.62–2.26) | 0.61 | |||||
TT | 62.5% | 37.5% | GT vs. GG | 0.98 (0.39–2.47) | 0.96 | ||
TT vs. GT | 1.93 (0.41–9.16) | 0.40 | |||||
PRPH2 c.582-67T>A (rs3818086) | TT | 42.1% | 57.9% | 0.13 | AA + TA vs. TT | 1.37 (0.49–3.88) | 0.55 |
AA vs. TA + TT | 0.40 (0.14–1.20) | 0.098 | |||||
TA | 58.1% | 41.9% | AA vs. TT | 0.63 (0.17–2.40) | 0.50 | ||
A vs. T allele | 0.82 (0.44–1.52) | 0.53 | |||||
AA | 31.6% | 68.4% | TA vs. TT | 1.91 (0.64–5.70) | 0.24 | ||
AA vs. TA | 0.33 (0.11–1.04) | 0.054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krytkowska, E.; Ulańczyk, Z.; Grabowicz, A.; Safranow, K.; Kawa, M.P.; Pałucha, A.; Wąsowska, A.; Matczyńska, E.; Boguszewska-Chachulska, A.; Machalińska, A. Influence of Clinical and Genetic Factors on the Progression of Age-Related Macular Degeneration: A 3-Year Follow-Up. J. Clin. Med. 2023, 12, 1963. https://doi.org/10.3390/jcm12051963
Krytkowska E, Ulańczyk Z, Grabowicz A, Safranow K, Kawa MP, Pałucha A, Wąsowska A, Matczyńska E, Boguszewska-Chachulska A, Machalińska A. Influence of Clinical and Genetic Factors on the Progression of Age-Related Macular Degeneration: A 3-Year Follow-Up. Journal of Clinical Medicine. 2023; 12(5):1963. https://doi.org/10.3390/jcm12051963
Chicago/Turabian StyleKrytkowska, Elżbieta, Zofia Ulańczyk, Aleksandra Grabowicz, Krzysztof Safranow, Miłosz Piotr Kawa, Andrzej Pałucha, Anna Wąsowska, Ewa Matczyńska, Anna Boguszewska-Chachulska, and Anna Machalińska. 2023. "Influence of Clinical and Genetic Factors on the Progression of Age-Related Macular Degeneration: A 3-Year Follow-Up" Journal of Clinical Medicine 12, no. 5: 1963. https://doi.org/10.3390/jcm12051963
APA StyleKrytkowska, E., Ulańczyk, Z., Grabowicz, A., Safranow, K., Kawa, M. P., Pałucha, A., Wąsowska, A., Matczyńska, E., Boguszewska-Chachulska, A., & Machalińska, A. (2023). Influence of Clinical and Genetic Factors on the Progression of Age-Related Macular Degeneration: A 3-Year Follow-Up. Journal of Clinical Medicine, 12(5), 1963. https://doi.org/10.3390/jcm12051963