The Influence of Male Ejaculatory Abstinence Time on Pregnancy Rate, Live Birth Rate and DNA Fragmentation: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
- P: The study population was men of reproductive age, including men referred to fertility treatment.
- I: The intervention was a short abstinence time between successive ejaculation.
- C: The comparison was a long abstinence time between successive ejaculation.
- O: The main outcome was pregnancy rate, and secondary outcomes were live birth rate and DNA fragmentation.
2.2. Information Sources and Search Strategy
2.3. Study Selection and Data Collection
2.4. Data Items
2.5. Risk of Bias Assessment
2.6. Data Synthesis
- (1)
- Quantitative analysis: The proportion of studies that reported pregnancy rate, live birth rate and DNA fragmentation were compared for subjects with short versus long EA. The results of studies performing statistical analyses are similarly presented in a separate table.
- (2)
- Visual analysis: Studies reporting pregnancy rates as percentages were illustrated in a graph grouped by EA on the x-axis. In the studies where a time interval of abstinence days was used, the mean day of the interval was chosen for illustration.
3. Results
3.1. Study Selection
3.2. Level of Study Evidence
Dahan et al. [18] | Kabukçu et al. [19] | Agarwal et al. [20] | Borges et al. [21] | Vahidi et al. [22] | Comar et al. [23] | Uppangala [24] | Sánchez-Martín et al. [25] | Scarselli et al. [26] | Shen et al. [27] | Gosálvez et al. [28] | Jurema et al. [29] | Mayorga-Torres et al. [30] | Jonge et al. [31] | Kulkarni et al. [32] | Marshburn et al. [33] | Barbagallo et al. [34] | Kably-Ambe et al. [35] | Gupta et al. [36] | Manna et al. [37] | Azizi et al. [38] | Welliver et al. [39] | Periyasamy et al. [40] | Lee et al. [41] | |
Question | ||||||||||||||||||||||||
Selection | ||||||||||||||||||||||||
Assessment | ||||||||||||||||||||||||
Confounding | ||||||||||||||||||||||||
Statistical analysis | ||||||||||||||||||||||||
Quality |
3.3. Pregnancy Rate
3.4. Live Birth Rate
3.5. DNA Fragmentation Index
Author | EA | ART | Pregnancy Rate | Live Birth Rate | DFI |
---|---|---|---|---|---|
Dahan et al. [18] | 3 h and 3 days | ICSI, IVF | ↓ | ||
Kabukçu et al. [19] | 1 and 3 days | IUI | ←→ | ←→ | |
Agarwal et al. [20] | <2, 2–7 and 9–11 days 1, 2, 5, 7, 9, 11 days | ↓ | |||
Borges et al. [21] | <4 and >4 days 1, 2, 3 and 4 days | ICSI | ↑ | ↓ | |
Vahidi et al. [22] | 24 h, 3 and 2–7 days. | ↓ | |||
Comar et al. [23] | <2, 2–5 and >5 days | ↓ | |||
Uppangala et al. [24] | 1, 3, 5 and 7 days | ↓ | |||
Sánchez-Martín et al. [25] | 12 h and 4 days | ICSI | ↑ | ↓ | |
Scarselli et al. [26] | 1 h and 2–5 days | ICSI | ←→ | ||
Shen et al. [27] | 1–3 h and 3–7 days | IVF | ↑ | ↑ | ↓ |
Gosálvez et al. [28] | (1) 24 h and 4 days (2) 3 h and 4 days | ICSI | ↓ | ||
Jurema et al. [29] | ≤3, 3–10 and >10 days | IUI | ↑ | ||
Mayorga-Torres et al. [30] | 1 and 3–4 days | ←→ | |||
Jonge et al. [31] | 1, 3, 5 and 8 days | ←→ | |||
Kulkarni et al. [32] | 1–3 h and 2–7 days | ↓ | |||
Marshburn et al. [33] | <2, 3–5 and >5 days | IUI | ↑ | ||
Barbagallo et al. [34] | 1 h and 2–7 days | ICSI | ↑ | ↑ | |
Kably-Ambe et al. [35] | 0–1, 2–3, 4–5, 6–7, 8–9, 10–14 and 15–20 days | IUI | ↑ | ||
Gupta et al. [36] | 1, 2–5, 6–7 and ≥ 8 days | ICSI | ↑ | ||
Manna et al. [37] | 1 h and 2–7 days | ICSI | ↓ | ||
Azizi et al. [38] | 1, 2, 3, 4, 5 and 6–10 days | ICSI | ←→ | ||
Welliver et al. [39] | 1 and 3–5 days | ←→ | |||
Periyasamy et al. [40] | 2–4, 2–7, 5–7 and >7 days | ICSI or ICSI + IVF | ↑ | ↑ | |
Lee et al. [41] | 2–7 and 8 days | ICSI | ←→ |
4. Discussion
4.1. Strengths and Limitations
4.2. Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Author | Ejaculatory Abstinence | Pregnancy Rate | Live Birth Rate | DNA Fragmentation | DNA Fragmentation Assay | |||
---|---|---|---|---|---|---|---|---|
Time | Rate% | p-Value | Rate% | p-Value | Index%(±Range) | p-Value | ||
Dahan et al. [18] | 3 h | - | - | - | - | 23.7 (16.0) | p≤ 0.0001 | SCD |
3 days | 34.6 (19.4) | |||||||
Kabukçu et al. [19] | 1 day | 17.3 | p = 0.871 | - | - | 20.7 (11.01) | p = 0.187 | TUNEL |
3 days | 18.5 | 23.8 (12.64) | ||||||
Agarwal et al. [20] | <2 days | - | - | - | - | 9.9 (1.7) | p = 0.007 | TUNEL |
2–7 days | 12.8 (1.8) | |||||||
>7 days | 17.8 (2.3) | |||||||
Borges et al. [21] | ≤ 4 days | 40.0 | p = 0.016 | - | - | 16.8 (0.7) | p = 0.028 | SCD |
≥ 4 days | 10.0 | 19.2 (0.8) | ||||||
Borges et al. [21] | 1 day | 69.0 | p = 0.062 | - | - | 16.6 (2.7) | p > 0.05 | SCD |
2 days | 24.0 | 16.3 (1.6) | ||||||
3 days | 27.0 | 18.2 (1.3) | ||||||
4 days | 35.0 | 19.8 (1.6) | ||||||
Vahidi et al. [22] | 1 day | - | - | - | - | 17.4 (8.6) | p = 0.013 (2–7 vs. 3 days) p = 0.028 (3 vs. 1 day) | TUNEL |
3 days | 20.6 (10.3) | |||||||
2–7 days | 24.6 (1.4) | |||||||
Comar et al. [23] | 2 days | - | - | - | - | 14.5 (8.2) | p = 0.001 (<2 vs. >5 days) p = 0.002 (2–5 vs. >5 days) | TUNEL |
2–5 days | 15.3 (8.4) | |||||||
>5 days | 17.1 (9.0) | |||||||
Uppangala et al. [24] | 1 day | - | - | - | - | 11.8 (6.5) | p < 0.05 (1 vs. 5 days) | SCD |
3 days | 14.9 (9.9) | p < 0.001 (1 vs. 7 days) | ||||||
5 days | 19.8 (10.0) | p < 0.01 (3 vs. 7 days) | ||||||
7 days | 27.1 (9.6) | p < 0.05 (5 vs. 7 days) | ||||||
Sánchez-Martín et al. [25] | 12 h | 56.4 | p = 0.030 | - | - | - | p< 0.001 | SCD |
1 day | - | 19.6 (8.3) | ||||||
4 days | 43.3 | 27.0 (10.8) | ||||||
Scarselli et al. [26] | 1 h | 64.3 | p = 0.080 | 64.3 | p = 0.080 | - | - | |
2–5 days | 28.6 | 28.6 | ||||||
Shen et al. [27] | Fresh cycle | p = 0.238 | p = 0.072 | - | p < 0.05 | SCSA | ||
1–3 h | 53.8 | 47.4 | ||||||
3–7 days | 45.7 | 35.4 | ||||||
Frozen thawed cycle | p = 0.045 | p = 0.006 | ||||||
1–3 h | 70.8 | 65.2 | ||||||
3–7 days | 58.4 | 47.7 | ||||||
Gosálvez et al. [28] | Neat semen | - | - | - | - | p = 0.031 | SCD | |
1 day | 19.6 (8.4) | |||||||
4 days | 26.9 (11.0) | |||||||
Neat semen | - | - | - | - | p = 0.06 | |||
3 h | 20.8 (6.7) | |||||||
4 days | 22.2 (7.4) | |||||||
selected semen | - | - | - | - | p = 0.020 | |||
3 h | 10.8 (6.3) | |||||||
4 days | 17.0 (5.5) | |||||||
Jurema et al. [29] | ≤3 days | 14.0 | p< 0.05 | - | - | - | - | |
3–10 days | 10.0 | |||||||
≥10 days | 3.0 | |||||||
Mayorga-Torres et al. [30] | 3–4 days (first analysis) | - | - | - | - | 26.6 (3.0) | p > 0.050 (first analysis vs. all others) | SCSA |
1 day (collected day 2) | 22.1 (4.3) | |||||||
1 day (collected day 3) | 24.0 (3.4) | |||||||
1 day (collected day 6) | 27.1 (3.5) | |||||||
1 day (collected day 9) | 24.7 (2.8) | |||||||
1 day (collected day 11) | 25.8 (4.6) | |||||||
1 day (collected day 13) | 23.9 (4.7) | |||||||
Jonge et al. [31] | 1 day | - | - | - | - | 20 | p > 0.05 (1 vs. 3 vs. 5 vs. 8 days) | SCSA |
3 days | ||||||||
5 days | (5.8–62.9) a | |||||||
8 days | ||||||||
Kulkarni et al. [32] | 1–3 h | - | - | - | - | 27.6 (10.1) | p < 0.050 | SCD |
2–7 days | 30.9 (11.2) | |||||||
Marshburn et al. [33] | <2 days | 11.3 | p < 0.020 (<2 vs. 3–5 days) | - | - | - | - | - |
3–5 days | 6.1 | p < 0.050 (<2 vs. 3–5 + >5 days) | ||||||
>5 days | 7.3 | p = 0.720 (3–5 vs. >5 days) | ||||||
Barbagallo et al. [34] | 1 h | 31.0 | p = 0.001 | 22.0 | p = 0.040 | - | - | - |
2–7 days | 20.0 | 18.0 | ||||||
Kably-Ambe et al. [35] | 0–1 days | 13.7 | - | - | - | - | - | - |
2–3 days | 12.9 | |||||||
4–5 days | 14.0 | |||||||
6–7 days | 15.1 | |||||||
8–9 days | 9.8 | |||||||
10–14 days | 8.6 | |||||||
15–20 days | 8.9 | |||||||
Gupta et al. [36] | 1 day | 30.0 | p = 0.009 (1 day vs. all others) | - | - | - | - | - |
2–5 days | 25.4 | |||||||
6–7 days | 15.0 | |||||||
>8 days | 18.1 | |||||||
Manna et al. [37] | Normospermic: | - | - | - | - | p < 0.010 | SCD | |
1 h | 13.6 (9.6) | |||||||
2–7 days | 14.8 (8.6) | |||||||
Seperated by swim up | - | - | - | - | p < 0.050 | |||
1 h | 11.2 (9.1) | |||||||
2–7 days | 12.7 (8.9) | |||||||
Oligoastenoteratozoo-spermic: | - | - | - | - | p < 0.010 | |||
1 h | 25.2 (16.0) | |||||||
2–7 days | 28.3 (16.8) | |||||||
Seperated by swim up | - | - | - | - | p < 0.001 | |||
1 h | 16.7 (8.4) | |||||||
2–7 days | 21.6 (10.6) | |||||||
Azizi et al. [38] | 1 day | 29.2 | p = 0.900 | - | - | - | - | - |
2 days | 25.2 | |||||||
days | 28.1 | |||||||
4 days | 26.9 | |||||||
5 days | 31.1 | |||||||
6–10 days | 27.8 | |||||||
Welliver et al. [39] | 3–5 days (first analysis) | - | - | - | - | 14.0 (7.2) | p = 0.480 | TUNEL |
1 day (collected day 3) | 14.7 (7.5) | |||||||
1 day (collected day 7) | 14.6 (8.8) | |||||||
1 day (collected day 14) | 15.2 (9.1) | |||||||
Periyasamy et al. [40] | 2–4 days | 45.4 | p = 0.004 (2–4 vs. >7 days) p = 0.008 (2–7 vs. >7 days) p = 0.048 (5–7 vs. >7 days) | 36.1 | p = 0.005 (2–4 vs. >7 days) p = 0.014 (2–7 vs. >7 days) p = 0.127 (5–7 vs. >7 days) | - | - | - |
2–7 days | 44.4 | 34.1 | ||||||
5–7 days | 42.5 | 30.7 | ||||||
>7 days | 32.7 | 24.1 | ||||||
Lee et al. [41] | Maternel age <38 | p = 0.763 | - | - | - | - | - | |
2–7 days | 43.2 | |||||||
8 days | 41.4 | |||||||
Maternel age >38 | p = 0.916 | |||||||
2–7 days | 22.0 | |||||||
8 days | 20.8 |
Appendix B
Author | 1. Question | 1. Selection | 1. Assessment | 1. Confounding | 1. Statistical Analysis | 2. Quality | Notes |
---|---|---|---|---|---|---|---|
Dahan et al. [18] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Yes | 1.14 = Yes | 2.1 = High | |
1.5 = 7% | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = Yes | 1.11 = Yes | 2.3 = Yes | |||||
Kabukçu et al. [19] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Yes | 1.14 = No | 2.1 = Acceptable | Went from high to acceptable quality, because of missing confidence intervals. |
1.5 = 10% | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = Yes | 1.11 = Yes | 2.3 = Yes | |||||
Agarwal et al. [20] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Yes | 1.14 = Yes | 2.1 = Low | n = 7, therefore low quality. |
1.5 = Not reported | 1.10 = Yes | 2.2 = No | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Borges et al. [21] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Yes | 1.14 = Yes | 2.1 = High | |
1.5 = 0% | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Vahidi et al. [22] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Yes | 1.14 = No | 2.1 = Acceptable | Went from high to acceptable quality, because of missing confidence intervals. |
1.5 = 0% | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Comar et al. [23] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Yes | 1.14 = Yes | 2.1 = High | |
1.5 = 0% | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Uppangala et al. [24] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Yes | 1.14 = No | 2.1 = Acceptable | Missing confidence intervals. |
1.5 = Not reported | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Sánchez-Martín et al. [25] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = No | 1.14 = No | 2.1 = Low | Both insufficient confounding assessment and missing confidence intervals. |
1.5 = Not reported | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Scarselli et al. [26] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Yes | 1.14 = No | 2.1 = Acceptable | Went from high to acceptable quality, because of missing confidence intervals. |
1.5 = 0% | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Shen et al. [27] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Yes | 1.14 = No | 2.1 = Acceptable | Went from high to acceptable quality, because of missing confidence intervals. |
1.5 = Not reported | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Gosálvez et al. [28] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Can’t say | 1.14 = No | 2.1 = Acceptable | Went from high to acceptable quality, because of missing confidence intervals. |
1.5 = Not reported | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3= Yes | |||||
Jurema et al. [29] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Can’t say | 1.14 = No | 2.1 = Acceptable | Retrospective design. |
1.5 = NA retrospective | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Mayorga-Torres et al. [30] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Yes | 1.14 = No | 2.1 = Low | n = 6, therefore low quality. |
1.5 = 0% | 1.10 = Yes | 2.2 = No | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Jonge et al. [31] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Yes | 1.14 = No | 2.1 = Low | n = 11, therefore low quality. |
1.5 = 30% | 1.10 = Yes | 2.2 = No | |||||
1.6 = Yes | 1.11 = Can’t say | 2.3 = Yes | |||||
Kulkarni et al. [32] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Yes | 1.14 = No | 2.1 = Acceptable | |
1.5 = not reported | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Marshburn et al. [33] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Can’t say | 1.14 = No | 2.1 = Acceptable | Retrospective design. |
1.5 = NA retrospective | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Barbagallo et al. [34] | 1.1 = Ýes | 1.2 = Can’t say | 1.7 = Yes | 1.13 = Yes | 1.14 = No | 2.1 = Acceptable | |
1.5 = Not reported | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Kably-Ambe et al. [35] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Can’t say | 1.14 = No | 2.1 = Acceptable | Retrospective design. |
1.5 = NA retrospective | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Gupta et al. [36] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Yes | 1.14 = Yes | 2.1 = Acceptable | High quality study but cannot rate higher than acceptable because of retrospective study design. |
1.5 = NA retrospective | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Manna et al. [37] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Yes | 1.14 = No | 2.1 = Acceptable | Went from high to acceptable quality, because of missing confidence intervals. |
1.5 = 1.5% | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Azizi et al. [38] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Yes | 1.14 = Yes | 2.1 = Acceptable | High quality study but cannot rate higher than acceptable because of retrospective study design. |
1.5 = NA retrospective | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Welliver et al. [39] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Can’t say | 1.14 = No | 2.1 = Acceptable | |
1.5 = 5% | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = Can’t say | 1.11 = Yes | 2.3 = Yes | |||||
Periyasamy et al. [40] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Yes | 1.14 = Yes | 2.1 = Acceptable | High quality study but cannot rate higher than acceptable because of retrospective study design. |
1.5 = NA retrospective | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes | |||||
Lee et al. [41] | 1.1 = Yes | 1.2 = Yes | 1.7 = Yes | 1.13 = Yes | 1.14 = No | 2.1 = Acceptable | Retrospective design. |
1.5 = NA retrospective | 1.10 = Yes | 2.2 = Yes | |||||
1.6 = NA | 1.11 = Yes | 2.3 = Yes |
References
- Schmidt, L. Infertility and Assisted Reproduction in Denmark. Epidemiology and Psychosocial Consequences. Dan. Med. Bull. 2006, 53, 390–417. [Google Scholar]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th ed.; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Jensen, T.K.; Swan, S.H.; Skakkebæk, N.E.; Rasmussen, S.; Jørgensen, N. Caffeine Intake and Semen Quality in a Population of 2,554 Young Danish Men. Am. J. Epidemiol. 2010, 171, 883–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlin, A.; Garolla, A.; Ghezzi, M.; Selice, R.; Palego, P.; Caretta, N.; di Mambro, A.; Valente, U.; de Rocco Ponce, M.; Dipresa, S.; et al. Sperm Count and Hypogonadism as Markers of General Male Health. Eur. Urol. Focus 2021, 7, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Carlsen, E.; Holm Petersen, J.; Andersson, A.-M.; Skakkebaek, N.E. Effects of Ejaculatory Frequency and Season on Variations in Semen Quality. Fertil. Steril. 2004, 82, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Fedder, J. Nonsperm Cells in Human Semen: With Special Reference to Seminal Leukocytes and Their Possible Influence on Fertility. Arch. Androl. 1996, 36, 41–65. [Google Scholar] [CrossRef]
- Gervasi, M.G.; Visconti, P.E. Molecular Changes and Signaling Events Occurring in Spermatozoa during Epididymal Maturation. Andrology 2017, 5, 204–218. [Google Scholar] [CrossRef] [Green Version]
- Bibov, M.Y.; Kuzmin, A.V.; Alexandrova, A.A.; Chistyakov, V.A.; Dobaeva, N.M.; Kundupyan, O.L. Role of the Reactive Oxygen Species Induced DNA Damage in Human Spermatozoa Dysfunction. AME Med. J. 2018, 3, 19. [Google Scholar] [CrossRef]
- Zini, A.; Boman, J.M.; Belzile, E.; Ciampi, A. Sperm DNA Damage Is Associated with an Increased Risk of Pregnancy Loss after IVF and ICSI: Systematic Review and Meta-Analysis. Hum. Reprod. 2008, 23, 2663–2668. [Google Scholar] [CrossRef] [Green Version]
- Osman, A.; Alsomait, H.; Seshadri, S.; El-Toukhy, T.; Khalaf, Y. The Effect of Sperm DNA Fragmentation on Live Birth Rate after IVF or ICSI: A Systematic Review and Meta-Analysis. Reprod. Biomed. Online 2015, 30, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Gil-Guzman, E.; Ollero, M.; Lopez, M.C.; Sharma, R.K.; Alvarez, J.G.; Thomas, A.J.; Agarwal, A. Differential Production of Reactive Oxygen Species by Subsets of Human Spermatozoa at Different Stages of Maturation. Hum. Reprod. 2001, 16, 1922–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayad, B.M.; Van der Horst, G.; Du Plessis, S.S. Revisiting the Relationship between the Ejaculatory Abstinence Period and Semen Characteristics. Int. J. Fertil. Steril. 2018, 11, 238–246. [Google Scholar] [CrossRef]
- Sokol, P.; Drakopoulos, P.; Polyzos, N.P. The Effect of Ejaculatory Abstinence Interval on Sperm Parameters and Clinical Outcome of Art. A Systematic Review of the Literature. J. Clin. Med. 2021, 10, 3213. [Google Scholar] [CrossRef]
- Li, J.; Shi, Q.; Li, X.; Guo, J.; Zhang, L.; Quan, Y.; Ma, M.; Yang, Y. The Effect of Male Sexual Abstinence Periods on the Clinical Outcomes of Fresh Embryo Transfer Cycles Following Assisted Reproductive Technology: A Meta-Analysis. Am. J. Men’s Health 2020, 14, 1557988320933758. [Google Scholar] [CrossRef] [PubMed]
- Barratt, C.L.R.; Björndahl, L.; Menkveld, R.; Mortimer, D. ESHRE Special Interest Group for Andrology Basic Semen Analysis Course: A Continued Focus on Accuracy, Quality, Efficiency and Clinical Relevance. Hum. Reprod. 2011, 26, 3207–3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Healthcare Interventions: Explanation and Elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scottish Intercollegiate Guidelines Network (SIGN) a Guideline Developer’s Handbook; SIGN 50; SIGN: Edinburgh, UK, 2019; ISBN 9781909103733.
- Dahan, M.H.; Mills, G.; Khoudja, R.; Gagnon, A.; Tan, G.; Tan, S.L. Three Hour Abstinence as a Treatment for High Sperm DNA Fragmentation: A Prospective Cohort Study. J. Assist. Reprod. Genet. 2020, 38, 227–233. [Google Scholar] [CrossRef]
- Kabukçu, C.; Çil, N.; Çabuş, Ü.; Alataş, E. Effect of Ejaculatory Abstinence Period on Sperm DNA Fragmentation and Pregnancy Outcome of Intrauterine Insemination Cycles: A Prospective Randomized Study. Arch. Gynecol. Obstet. 2020, 303, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Gupta, S.; du Plessis, S.; Sharma, R.; Esteves, S.C.; Cirenza, C.; Eliwa, J.; Al-Najjar, W.; Kumaresan, D.; Haroun, N.; et al. Abstinence Time and Its Impact on Basic and Advanced Semen Parameters. Urology 2016, 94, 102–110. [Google Scholar] [CrossRef]
- Borges, E.; Braga, D.P.A.F.; Zanetti, B.F.; Iaconelli, A.; Setti, A.S. Revisiting the Impact of Ejaculatory Abstinence on Semen Quality and Intracytoplasmic Sperm Injection Outcomes. Andrology 2018, 7, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Vahidi, S.; Narimani, N.; Ghanizadeh, T.; Yazdinejad, F.; Emami, M.; Mehravaran, K.; Saffari, H.; khaleghiMehr, F.; Marvast, L.D. Short Abstinence May Have Paradoxical Effects On Sperms With Different Level Of DNA Integrity: A Prospective Study. Urol. J. 2021, 18, 682–687. [Google Scholar] [CrossRef]
- Comar, V.A.; Petersen, C.G.; Mauri, A.L.; Mattila, M.; Vagnini, L.D.; Renzi, A.; Petersen, B.; Nicoletti, A.; Dieamant, F.; Oliveira, J.B.A.; et al. Influence of the Abstinence Period on Human Sperm Quality: Analysis of 2,458 Semen Samples. J. Bras. Reprod. Assist. 2017, 21, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Uppangala, S.; Mathai, S.E.; Salian, S.R.; Kumar, D.; Singh, V.J.; D’Souza, F.; Kalthur, G.; Kamath, A.; Adiga, S.K. Sperm Chromatin Immaturity Observed in Short Abstinence Ejaculates Affects DNA Integrity and Longevity in Vitro. PLoS ONE 2016, 11, e0152942. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Martín, P.; Sánchez-Martín, F.; González-Martínez, M.; Gosálvez, J. Increased Pregnancy after Reduced Male Abstinence. Syst. Biol. Reprod. Med. 2013, 59, 256–260. [Google Scholar] [CrossRef]
- Scarselli, F.; Cursio, E.; Muzzì, S.; Casciani, V.; Ruberti, A.; Gatti, S.; Greco, P.; Varricchio, M.T.; Minasi, M.G.; Greco, E. How 1 h of Abstinence Improves Sperm Quality and Increases Embryo Euploidy Rate after PGT-A: A Study on 106 Sibling Biopsied Blastocysts. J. Assist. Reprod. Genet. 2019, 36, 1591–1597. [Google Scholar] [CrossRef]
- Shen, Z.Q.; Shi, B.; Wang, T.R.; Jiao, J.; Shang, X.J.; Wu, Q.J.; Zhou, Y.M.; Cao, T.F.; Du, Q.; Wang, X.X.; et al. Characterization of the Sperm Proteome and Reproductive Outcomes with in Vitro Fertilization after a Reduction in Male Ejaculatory Abstinence Period. Mol. Cell. Proteom. 2019, 18, S109–S117. [Google Scholar] [CrossRef] [Green Version]
- Gosálvez, J.; González-Martínez, M.; López-Fernández, C.; Fernández, J.L.; Sánchez-Martín, P. Shorter Abstinence Decreases Sperm Deoxyribonucleic Acid Fragmentation in Ejaculate. Fertil. Steril. 2011, 96, 1083–1086. [Google Scholar] [CrossRef] [PubMed]
- Jurema, M.W.; Vieira, A.D.; Bankowski, B.; Petrella, C.; Zhao, Y.; Wallach, E.; Zacur, H. Effect of Ejaculatory Abstinence Period on the Pregnancy Rate after Intrauterine Insemination. Fertil. Steril. 2005, 84, 678–681. [Google Scholar] [CrossRef] [PubMed]
- Mayorga-Torres, B.J.M.; Camargo, M.; Agarwal, A.; du Plessis, S.S.; Cadavid, Á.P.; Cardona Maya, W.D. Influence of Ejaculation Frequency on Seminal Parameters. Reprod. Biol. Endocrinol. 2015, 13, 47. [Google Scholar] [CrossRef]
- de Jonge, C.; LaFromboise, M.; Bosmans, E.; Ombelet, W.; Cox, A.; Nijs, M. Influence of the Abstinence Period on Human Sperm Quality. Fertil. Steril. 2004, 82, 57–65. [Google Scholar] [CrossRef]
- Kulkarni, V.; Kaingade, P.; Kulkarni, N.; Bhalerao, T.; Nikam, A. Assessment of Semen Parameters in Consecutive Ejaculates with Short Abstinence Period in Oligospermic Males. J. Bras. Reprod. Assist. 2022, 26, 310–314. [Google Scholar] [CrossRef]
- Marshburn, P.B.; Alanis, M.; Matthews, M.L.; Usadi, R.; Papadakis, M.H.; Kullstam, S.; Hurst, B.S. A Short Period of Ejaculatory Abstinence before Intrauterine Insemination Is Associated with Higher Pregnancy Rates. Fertil. Steril. 2010, 93, 286–288. [Google Scholar] [CrossRef]
- Barbagallo, F.; Calogero, A.E.; Condorelli, R.A.; Farrag, A.; Jannini, E.A.; la Vignera, S.; Manna, C. Does a Very Short Length of Abstinence Improve Assisted Reproductive Technique Outcomes in Infertile Patients with Severe Oligo-Asthenozoospermia? J. Clin. Med. 2021, 10, 4399. [Google Scholar] [CrossRef]
- Kably-Ambe, A.; Carballo, E.; Leonor, M.; Karla, D.-M.; Soriano-Ortega, P.; Roque-Sánchez, A.M.; Ambe, A.K. Effect of Sexual Abstinence on Pregnancy Rates after an Intrauterine Insemination Correspondencia. Gineol. Obstet. Mex. 2015, 83, 104–109. [Google Scholar]
- Gupta, S.; Singh, V.J.; Fauzdar, A.; Prasad, K.; Srivastava, A.; Sharma, K. Short Ejaculatory Abstinence in Normozoospermic Men Is Associated with Higher Clinical Pregnancy Rates in Sub-Fertile Couples Undergoing Intra-Cytoplasmic Sperm Injection in Assisted Reproductive Technology: A Retrospective Analysis of 1691 Cycles. J. Hum. Reprod. Sci. 2021, 14, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Manna, C.; Barbagallo, F.; Manzo, R.; Rahman, A.; Francomano, D.; Calogero, A.E. Sperm Parameters before and after Swim-up of a Second Ejaculate after a Short Period of Abstinence. J. Clin. Med. 2020, 9, 1029. [Google Scholar] [CrossRef] [Green Version]
- Azizi, E.; Naji, M.; Salehpour, S.; Saharkhiz, N.; Karimi, M.; Borumandnia, N.; Mofarahe, Z.S. Impact of Ejaculatory Abstinence Period and Semen Characteristic on the Reproductive Outcomes after Intracytoplasmic Sperm Injection. J. Bras. Reprod. Assist. 2021, 26, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Welliver, C.; Benson, A.D.; Frederick, L.; Leader, B.; Tirado, E.; Feustel, P.; Kontio, J.; McAsey, M.; Köhler, T.S. Analysis of Semen Parameters during 2 Weeks of Daily Ejaculation: A First in Humans Study. Transl. Androl. Urol. 2016, 5, 749–755. [Google Scholar] [CrossRef] [Green Version]
- Periyasamy, A.J.; Mahasampath, G.; Karthikeyan, M.; Mangalaraj, A.M.; Kunjummen, A.T.; Kamath, M.S. Does Duration of Abstinence Affect the Live-Birth Rate after Assisted Reproductive Technology? A Retrospective Analysis of 1030 Cycles. Fertil. Steril. 2017, 108, 988–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.W.; Cha, J.H.; Shin, S.H.; Cha, H.J.; Kim, J.H.; Park, C.K.; Pak, K.A.; Yoon, J.S.; Park, S.Y. Effect of the Sexual Abstinence Period Recommended by the World Health Organization on Clinical Outcomes of Fresh Embryo Transfer Cycles with Normal Ovarian Response after Intracytoplasmic Sperm Injection. Andrologia 2018, 50, e12964. [Google Scholar] [CrossRef]
- Shi, X.; Chan, C.P.S.; Waters, T.; Chi, L.; Chan, D.Y.L.; Li, T.C. Lifestyle and Demographic Factors Associated with Human Semen Quality and Sperm Function. Syst. Biol. Reprod. Med. 2018, 64, 358–367. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Harlev, A.; Agarwal, A.; Esteves, S.C. Cigarette Smoking and Semen Quality: A New Meta-Analysis Examining the Effect of the 2010 World Health Organization Laboratory Methods for the Examination of Human Semen. Eur. Urol. 2016, 70, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Hanson, B.M.; Aston, K.I.; Jenkins, T.G.; Carrell, D.T.; Hotaling, J.M. The Impact of Ejaculatory Abstinence on Semen Analysis Parameters: A Systematic Review. J. Assist. Reprod. Genet. 2018, 35, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, F.; Cannarella, R.; Crafa, A.; Manna, C.; la Vignera, S.; Condorelli, R.A.; Calogero, A.E. The Impact of a Very Short Abstinence Period on Conventional Sperm Parameters and Sperm DNA Fragmentation: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 7303. [Google Scholar] [CrossRef] [PubMed]
Author Year Country | Study Design | Participants/ Cycles | Subjects | Abstinence Period | Outcome Measurements |
---|---|---|---|---|---|
Dahan et al. [18] 2020 Canada | Prospective | 112/- | Infertility patients, male factor | 3 h and 3 days | DNA fragmentation Semen parameters (volume, motility, concentration, morphology and total sperm count) |
Kabukçu et al. [19] 2020 Turkey | Randomized controlled trial | 106/- | Infertility patients | 1 and 3 days | Pregnancy rate and miscarriage rate DNA fragmentation Semen parameters (viscosity, volume, motility, morphology and count) |
Agarwal et al. [20] 2016 USA | Prospective | 7/- | Volunteers, normozoospermic | <2, 2–7 and 9–11 days 1, 2, 5, 7, 9, and 11 days | DNA fragmentation and reactive oxygen species Semen parameters (viscosity, vitality, volume, pH, concentration, morphology, sperm count) |
Borges et al. [21] 2018 Brazil | Prospective | 818/483 | Infertility patients, only male factor | <4 and >4 days 1, 2, 3 and 4 days | Pregnancy rate, miscarriage rate, fertilization rate, implantation rate and embryo rate DNA fragmentation Semen parameters (volume, concentration, motility, morphology, sperm count) |
Vahidi et al. [22] 2021 Iran | Prospective | 64/- | Infertility patients, with increased DFI | 24 h, 3 and 2–7 days. | DNA fragmentation and DNA protamination Semen parameters (volume, concentration, motility, morphology) |
Comar et al. [23] 2017 Brazil | Prospective | 2458/- | Infertility patients | <2, 2–5 and >5 days | DNA fragmentation, DNA protamination and mitochondrial membrane potential Semen parameters (pH, volume, concentration, motility, normal sperm forms, leukocytes, vitality, apoptosis) |
Uppangala et al. [24] 2016 India | Prospective | 19/- | Healthy Volunteers | 1, 3, 5 and 7 days | DNA fragmentation, sperm chromatin maturity and hypermethylation levelSemen parameters (volume, concentration, motility, morphology, vitality, viability) |
Sánchez-Martín et al. [25] 2013 Spain | Prospective | 190/- | Infertility patients, non-severe male factor | 12 h and 4 days | DNA fragmentation Semen parameters (volume, concentration, motility) |
Scarselli et al. [26] 2019 Italy | Prospective | 22/265 | Infertility patients, OAT | 1 h and 2–5 days | Pregnancy rate, fertilization rate, implantation rate and blastocyst rate Semen parameters (volume, concentration, motility, morphology) |
Shen et al. [27] 2019 China | Prospective | 528/- | Infertility patients | 1–3 h and 3–7 days | Pregnancy rate, live birth rate, miscarriage rate and implantation rate DNA fragmentation, acrosome reaction, antioxidant capacity, mitochondrial membrane potential, DNA stainability, nucleoprotein transition and reactive oxygen species Semen parameters (volume, count, concentration, motility, vitality, morphology) |
Gosálvez et al. [28] 2011 Spain | Prospective | 33/- | (1) Infertility patients with female factor (2) Donors | (1) 24 h and 4 days (2) 3 h and 4 days | DNA fragmentation |
Jurema et al. [29] 2005 USA | Retrospective | 417/929 | Infertility patients, unexplained or oligomenorrhea | ≤3, 3–10 and >10 days | Pregnancy rate Semen parameters (concentration, motility, morphology, total motile sperm) |
Mayorga-Torres et al. [30] 2015 Colombia | Prospective | 6/- | Volunteers, normozoospermic | 1 and 3–4 days | DNA fragmentation, mitochondrial membrane potential, membrane integrity, Reactive oxygen species Semen parameters (volume, concentration, motility, morphology, count, vitality) |
Jonge et al. [31] 2004 Belgium | Prospective | 11/- | Infertility patients | 1, 3, 5 and 8 days | DNA fragmentation and DNA stainability Semen parameters (volume, pH, concentration, motility, morphology, viability) |
Kulkarni et al. [32] 2022 India | Prospective | 67/- | Infertility patients | 1–3 h and 2–7 days | DNA fragmentation Semen parameters (volume, count, concentration, motility) |
Marshburn et al. [33] 2010 USA | Retrospective | 372/866 | Infertility patients, normospermia andoligozoospermia | <2, 3–5 and >5 days | Pregnancy rate Semen parameters (volume, concentration, total motile sperm, numbers of dead sperm) |
Barbagallo et al. [34] 2021 Italy | Prospective | 313/- | Infertility patients, normozoospermic and OA | 1 h and 2–7 days | Pregnancy rate, live birth rate, miscarriage rate, fertilization rate, implantation rate, embryo quality, type of birth and birth weight Semen parameters (concentration, motility, morphology) |
Kably-Ambe et al. [35] 2015 Mexico | Retrospective | 3123/3123 | Infertility patients | 0–1, 2–3, 4–5, 6–7, 8–9, 10–14 and 15–20 days | Pregnancy rate and recovery rate Semen parameters (volume, concentration, progressive motility, morphology) |
Gupta et al. [36] 2021 India | Prospective Retrospective analysis | -/1691 | Infertility patients, normozoospermic | 1, 2–5, 6–7 and ≥8 days | Pregnancy rate, miscarriage rate, fertilization rate, implantation rate, positive β-hCG rate, embryo sacs and ectopic pregnancy Semen parameters (volume, concentration, motility, morphology) |
Manna et al. [37] 2020 Italy | Prospective | 65/- | Infertility patients, normozoospermic and OAT | 1 h and 2–7 days | DNA fragmentation Semen parameters (volume, concentration, motility, morphology) |
Azizi et al. [38] 2021 Iran | Retrospective | 1003/1003 | Infertility patients, male and female factor | 1, 2, 3, 4, 5 and 6–10 days | Pregnancy rate, fertilization rate and cleavage-stage embryo rate Semen parameters (volume, count, concentration, motility, morphology) |
Welliver et al. [39] 2016 USA | Prospective | 20/- | Normozoospermic | 1 and 3–5 days | DNA fragmentation Semen parameters (volume, concentration, motility, pH, total motile count, morphology) |
Periyasamy et al. [40] 2017 India | Retrospective | -/1030 | Infertility patients, male and female factor | 2–7 and >7 days.2–4 and 5–7 days * | Pregnancy rate, live birth rate, miscarriage rate, fertilization rate, implantation rate and cleavage-stage grade embryo rate |
Lee et al. [41] 2018 Korea | Retrospective | -/449 | Infertility patients, male and female factor | 2–7 and 8 days | Pregnancy rate, miscarriage rate and implantation rate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sørensen, F.; Melsen, L.M.; Fedder, J.; Soltanizadeh, S. The Influence of Male Ejaculatory Abstinence Time on Pregnancy Rate, Live Birth Rate and DNA Fragmentation: A Systematic Review. J. Clin. Med. 2023, 12, 2219. https://doi.org/10.3390/jcm12062219
Sørensen F, Melsen LM, Fedder J, Soltanizadeh S. The Influence of Male Ejaculatory Abstinence Time on Pregnancy Rate, Live Birth Rate and DNA Fragmentation: A Systematic Review. Journal of Clinical Medicine. 2023; 12(6):2219. https://doi.org/10.3390/jcm12062219
Chicago/Turabian StyleSørensen, Freja, Linda Magnusson Melsen, Jens Fedder, and Sinor Soltanizadeh. 2023. "The Influence of Male Ejaculatory Abstinence Time on Pregnancy Rate, Live Birth Rate and DNA Fragmentation: A Systematic Review" Journal of Clinical Medicine 12, no. 6: 2219. https://doi.org/10.3390/jcm12062219
APA StyleSørensen, F., Melsen, L. M., Fedder, J., & Soltanizadeh, S. (2023). The Influence of Male Ejaculatory Abstinence Time on Pregnancy Rate, Live Birth Rate and DNA Fragmentation: A Systematic Review. Journal of Clinical Medicine, 12(6), 2219. https://doi.org/10.3390/jcm12062219