Cognitive Dysfunction, an Increasingly Valued Long-Term Impairment in Acromegaly
Abstract
:1. Introduction
2. Historical Perspective
3. Cognitive Function Assessment
3.1. Cognitive Function Tests
3.2. Subjective Perception
3.3. Neurophysiological Approach
4. Cognitive Impairments in Acromegaly
5. Correlation Factors
5.1. Various Disease Statuses
5.2. Treatment Modalities
5.3. Patient’s Age
5.4. Other Comorbidities
6. Mechanism of Excess GH and IGF-1 in Cognitive Impairments
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reid, T.J.; Post, K.D.; Bruce, J.N.; Nabi Kanibir, M.; Reyes-Vidal, C.M.; Freda, P.U. Features at diagnosis of 324 patients with acromegaly did not change from 1981 to 2006: Acromegaly remains under-recognized and under-diagnosed. Clin. Endocrinol. 2010, 72, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Dal, J.; Feldt-Rasmussen, U.; Andersen, M.; Kristensen, L.; Laurberg, P.; Pedersen, L.; Dekkers, O.M.; Sørensen, H.T.; Jørgensen, J.O. Acromegaly incidence, prevalence, complications and long-term prognosis: A nationwide cohort study. Eur. J. Endocrinol. 2016, 175, 181–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Vliet, N.A.; van Heemst, D.; Almeida, O.P.; Åsvold, B.O.; Aubert, C.E.; Bae, J.B.; Barnes, L.E.; Bauer, D.C.; Blauw, G.J.; Brayne, C.; et al. Association of Thyroid Dysfunction With Cognitive Function: An Individual Participant Data Analysis. JAMA Intern. Med. 2021, 181, 1440–1450. [Google Scholar] [CrossRef] [PubMed]
- Lightman, S.L.; Birnie, M.T.; Conway-Campbell, B.L. Dynamics of ACTH and Cortisol Secretion and Implications for Disease. Endocr. Rev. 2020, 41, bnaa002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gava, G.; Orsili, I.; Alvisi, S.; Mancini, I.; Seracchioli, R.; Meriggiola, M.C. Cognition, Mood and Sleep in Menopausal Transition: The Role of Menopause Hormone Therapy. Medicina 2019, 55, 668. [Google Scholar] [CrossRef] [Green Version]
- Nyberg, F.; Hallberg, M. Growth hormone and cognitive function. Nat. Rev. Endocrinol. 2013, 9, 357–365. [Google Scholar] [CrossRef]
- Bleuler, M. Personality changes in pituitary disorders. Br. Med. J. 1951, 1, 580–581. [Google Scholar] [CrossRef] [Green Version]
- Grattan-Smith, P.J.; Morris, J.G.; Shores, E.A.; Batchelor, J.; Sparks, R.S. Neuropsychological abnormalities in patients with pituitary tumours. Acta Neurol. Scand. 1992, 86, 626–631. [Google Scholar] [CrossRef]
- Peace, K.A.; Orme, S.M.; Thompson, A.R.; Padayatty, S.; Ellis, A.W.; Belchetz, P.E. Cognitive dysfunction in patients treated for pituitary tumours. J. Clin. Exp. Neuropsychol. 1997, 19, 1–6. [Google Scholar] [CrossRef]
- Guinan, E.M.; Lowy, C.; Stanhope, N.; Lewis, P.D.; Kopelman, M.D. Cognitive effects of pituitary tumours and their treatments: Two case studies and an investigation of 90 patients. J. Neurol. Neurosurg. Psychiatry 1998, 65, 870–876. [Google Scholar] [CrossRef]
- Bonapart, I.E.; van Domburg, R.; ten Have, S.M.; de Herder, W.W.; Erdman, R.A.; Janssen, J.A.; van der Lely, A.J. The ‘bio-assay’ quality of life might be a better marker of disease activity in acromegalic patients than serum total IGF-I concentrations. Eur. J. Endocrinol. 2005, 152, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Lök, N.; Bademli, K.; Selçuk-Tosun, A. The effect of reminiscence therapy on cognitive functions, depression, and quality of life in Alzheimer patients: Randomized controlled trial. Int. J. Geriatr. Psychiatry 2019, 34, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zazula, R.; Mohebbi, M.; Dodd, S.; Dean, O.M.; Berk, M.; Vargas, H.O.; Nunes, S.O.V. Cognitive Profile and Relationship with Quality of Life and Psychosocial Functioning in Mood Disorders. Arch. Clin. Neuropsychol. 2022, 37, 376–389. [Google Scholar] [CrossRef] [PubMed]
- Kamusheva, M.; Vandeva, S.; Mitov, K.; Parvanova, A.; Pesheva, M.; Ganov, N.; Rusenova, Y.; Marinov, L.; Getova, V.; Elenkova, A.; et al. Adherence to Acromegaly Treatment and Analysis of the Related Factors—A Real-World Study in Bulgaria. Pharmaceutics 2023, 15, 438. [Google Scholar] [CrossRef] [PubMed]
- Tanriverdi, F.; Yapislar, H.; Karaca, Z.; Unluhizarci, K.; Suer, C.; Kelestimur, F. Evaluation of cognitive performance by using P300 auditory event related potentials (ERPs) in patients with growth hormone (GH) deficiency and acromegaly. Growth Horm. IGF Res. 2009, 19, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Leon-Carrion, J.; Martin-Rodriguez, J.F.; Madrazo-Atutxa, A.; Soto-Moreno, A.; Venegas-Moreno, E.; Torres-Vela, E.; Benito-López, P.; Gálvez, M.A.; Tinahones, F.J.; Leal-Cerro, A. Evidence of cognitive and neurophysiological impairment in patients with untreated naive acromegaly. J. Clin. Endocrinol. Metab. 2010, 95, 4367–4379. [Google Scholar] [CrossRef] [Green Version]
- Martín-Rodríguez, J.F.; Madrazo-Atutxa, A.; Venegas-Moreno, E.; Benito-López, P.; Gálvez, M.; Cano, D.A.; Tinahones, F.J.; Torres-Vela, E.; Soto-Moreno, A.; Leal-Cerro, A. Neurocognitive function in acromegaly after surgical resection of GH-secreting adenoma versus naïve acromegaly. PLoS ONE 2013, 8, e60041. [Google Scholar] [CrossRef] [Green Version]
- Alibas, H.; Uluc, K.; Kahraman Koytak, P.; Uygur, M.M.; Tuncer, N.; Tanridag, T.; Gogas Yavuz, D. Evaluation of depressive mood and cognitive functions in patients with acromegaly under somatostatin analogue therapy. J. Endocrinol. Investig. 2017, 40, 1365–1372. [Google Scholar] [CrossRef]
- Pivonello, R.; Auriemma, R.S.; Delli Veneri, A.; Dassie, F.; Lorusso, R.; Ragonese, M.; Liotta, M.; Sala, E.; Zarino, B.; Lai, E.; et al. Global psychological assessment with the evaluation of life and sleep quality and sexual and cognitive function in a large number of patients with acromegaly: A cross-sectional study. Eur. J. Endocrinol. 2022, 187, 823–845. [Google Scholar] [CrossRef]
- Tiemensma, J.; Biermasz, N.R.; van der Mast, R.C.; Wassenaar, M.J.; Middelkoop, H.A.; Pereira, A.M.; Romijn, J.A. Increased psychopathology and maladaptive personality traits, but normal cognitive functioning, in patients after long-term cure of acromegaly. J. Clin. Endocrinol. Metab. 2010, 95, E392–E402. [Google Scholar] [CrossRef] [Green Version]
- Psaras, T.; Milian, M.; Hattermann, V.; Will, B.E.; Tatagiba, M.; Honegger, J. Predictive factors for neurocognitive function and Quality of Life after surgical treatment for Cushing’s disease and acromegaly. J. Endocrinol. Invest. 2011, 34, e168–e177. [Google Scholar] [CrossRef]
- Hatipoglu, E.; Yuruyen, M.; Keskin, E.; Yavuzer, H.; Niyazoglu, M.; Doventas, A.; Erdincler, D.S.; Beger, T.; Kadioglu, P.; Gundogdu, S. Acromegaly and aging: A comparative cross-sectional study. Growth Horm. IGF Res. 2015, 25, 47–52. [Google Scholar] [CrossRef]
- García-Casares, N.; Fernández-Andújar, M.; González-Molero, I.; Maraver-Selfa, S.; Gutiérrez-Bedmar, M.; Ramos-Rodriguez, J.R.; Alfaro-Rubio, F.; Roé-Vellvé, N.; Garcia-Garcia, I.; García-Arnés, J.A. Cognitive Functioning and Cortical Brain Thickness in Acromegaly Patients: A Pilot study. Arch. Clin. Neuropsychol. 2021, 36, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Yedinak, C.G.; Fleseriu, M. Self-perception of cognitive function among patients with active acromegaly, controlled acromegaly, and non-functional pituitary adenoma: A pilot study. Endocrine 2014, 46, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulou, C.; Leistner, S.M.; Ising, M.; Schneider, H.J.; Schopohl, J.; Rutz, S.; Kosilek, R.; Frohner, R.; Stalla, G.K.; Sievers, C. Body Image Perception in Acromegaly Is Not Associated with Objective Acromegalic Changes but Depends on Depressive Symptoms. Neuroendocrinology 2017, 105, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Sonino, N.; Scarpa, E.; Paoletta, A.; Fallo, F.; Boscaro, M. Slow-release lanreotide treatment in acromegaly: Effects on quality of life. Psychother. Psychosom. 1999, 68, 165–167. [Google Scholar] [CrossRef]
- Sievers, C.; Sämann, P.G.; Pfister, H.; Dimopoulou, C.; Czisch, M.; Roemmler, J.; Schopohl, J.; Stalla, G.K.; Zihl, J. Cognitive function in acromegaly: Description and brain volumetric correlates. Pituitary 2012, 15, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Brummelman, P.; Koerts, J.; Dullaart, R.P.; van den Berg, G.; Tucha, O.; Wolffenbuttel, B.H.; van Beek, A.P. Effects of previous growth hormone excess and current medical treatment for acromegaly on cognition. Eur. J. Clin. Investig. 2012, 42, 1317–1324. [Google Scholar] [CrossRef] [Green Version]
- Crespo, I.; Santos, A.; Valassi, E.; Pires, P.; Webb, S.M.; Resmini, E. Impaired decision making and delayed memory are related with anxiety and depressive symptoms in acromegaly. Endocrine 2015, 50, 756–763. [Google Scholar] [CrossRef]
- Lecumberri, B.; Estrada, J.; García-Uría, J.; Millán, I.; Pallardo, L.F.; Caballero, L.; Lucas, T. Neurocognitive long-term impact of two-field conventional radiotherapy in adult patients with operated pituitary adenomas. Pituitary 2015, 18, 782–795. [Google Scholar] [CrossRef]
- Shan, S.; Fang, L.; Huang, J.; Chan, R.C.K.; Jia, G.; Wan, W. Evidence of dysexecutive syndrome in patients with acromegaly. Pituitary 2017, 20, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Wennberg, A.; Lorusso, R.; Dassie, F.; Benavides-Varela, S.; Parolin, M.; De Carlo, E.; Fallo, F.; Mioni, R.; Vettor, R.; Semenza, C.; et al. Sleep disorders and cognitive dysfunction in acromegaly. Endocrine 2019, 66, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Solomon, E.; Brănișteanu, D.; Dumbravă, A.; Solomon, R.G.; Kiss, L.; Glod, M.; Preda, C. Executive functioning and quality of life in acromegaly. Psychol. Res. Behav. Manag. 2019, 12, 39–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunzler, L.S.; Naves, L.A.; Casulari, L.A. The Effect of Cognitive-Behavioral Therapy on Acromegalics After a 9-Month Follow-Up. Front. Endocrinol. 2019, 10, 380. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, I.; Chiloiro, S.; Vallillo, M.; Bondanelli, M.; Volpato, S.; Giampietro, A.; Bianchi, A.; De Marinis, L.; Zatelli, M.C.; Ambrosio, M.R. Multidimensional geriatric evaluation in acromegaly: A comparative cross-sectional study. BMC Geriatr. 2021, 21, 598. [Google Scholar] [CrossRef]
- Yuan, T.; Ying, J.; Li, C.; Jin, L.; Kang, J.; Shi, Y.; Gui, S.; Liu, C.; Wang, R.; Zuo, Z.; et al. In Vivo Characterization of Cortical and White Matter Microstructural Pathology in Growth Hormone-Secreting Pituitary Adenoma. Front. Oncol. 2021, 11, 641359. [Google Scholar] [CrossRef]
- Castinetti, F.; Caron, P.; Raingeard, I.; Amodru, V.; Albarel, F.; Morange, I.; Chanson, P.; Calvo, J.; Graillon, T.; Baumstarck, K.; et al. Lack of delayed neurocognitive side effects of Gamma Knife radiosurgery in acromegaly: The Later-Ac study. Eur. J. Endocrinol. 2021, 186, 37–44. [Google Scholar] [CrossRef]
- Hatipoglu, E.; Hacioglu, Y.; Polat, Y.; Arslan, H.F.; Oner, S.; Ekmekci, O.B.; Niyazoglu, M. Do neurosteroids have impact on depression and cognitive functions in cases with acromegaly? Growth Horm. IGF Res. 2022, 66, 101496. [Google Scholar] [CrossRef]
- Xie, Z.; Zhuang, Y.; Zhang, Z.; Liu, J. Presence of cerebral microbleeds is associated with cognitive decline in acromegaly. Front. Oncol. 2022, 12, 948971. [Google Scholar] [CrossRef]
- Kan, E.K.; Atmaca, A.; Sarisoy, G.; Ecemis, G.C.; Gokosmanoglu, F. Personality traits in acromegalic patients: Comparison with patients with non-functioning adenomas and healthy controls. Growth Horm. IGF Res. 2022, 62, 101439. [Google Scholar] [CrossRef]
- Ruchala, M.; Stangierska, I.; Gurgul, E.; Stangierski, A.; Fajfer, J.; Sowinski, J. The effect of octreotide treatment on somatic and psychological symptoms of acromegaly. Neuroendocrinol. Lett. 2010, 31, 265–269. [Google Scholar] [PubMed]
- Tiemensma, J.; Kaptein, A.A.; Pereira, A.M.; Smit, J.W.; Romijn, J.A.; Biermasz, N.R. Affected illness perceptions and the association with impaired quality of life in patients with long-term remission of acromegaly. J. Clin. Endocrinol. Metab. 2011, 96, 3550–3558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, M.J.; Hansell, N.K.; Geffen, G.M.; Geffen, L.B.; Smith, G.A.; Martin, N.G. Genetic influence on the variance in P3 amplitude and latency. Behav. Genet. 2001, 31, 555–565. [Google Scholar] [CrossRef]
- Golgeli, A.; Tanriverdi, F.; Suer, C.; Gokce, C.; Ozesmi, C.; Bayram, F.; Kelestimur, F. Utility of P300 auditory event related potential latency in detecting cognitive dysfunction in growth hormone (GH) deficient patients with Sheehan’s syndrome and effects of GH replacement therapy. Eur. J. Endocrinol. 2004, 150, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gironell, A.; García-Sánchez, C.; Estévez-González, A.; Boltes, A.; Kulisevsky, J. Usefulness of p300 in subjective memory complaints: A prospective study. J. Clin. Neurophysiol. 2005, 22, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Frodl, T.; Meisenzahl, E.M.; Müller, D.; Leinsinger, G.; Juckel, G.; Hahn, K.; Möller, H.J.; Hegerl, U. The effect of the skull on event-related P300. Clin. Neurophysiol. 2001, 112, 1773–1776. [Google Scholar] [CrossRef] [PubMed]
- Blair, C. Educating executive function. Wiley Interdiscip. Rev. Cogn. Sci. 2017, 8, e1403. [Google Scholar] [CrossRef] [Green Version]
- Müssig, K.; Besemer, B.; Saur, R.; Klingberg, S.; Häring, H.U.; Gallwitz, B.; Leyhe, T. Deteriorated executive functions in patients with successful surgery for pituitary adenomas compared with other chronically ill patients. J. Int. Neuropsychol. Soc. 2011, 17, 369–375. [Google Scholar] [CrossRef]
- Herman, R.; Goričar, K.; Janež, A.; Jensterle, M. Clinical Applicability of Patient- and Clinician-Reported Outcome Tools in the Management of Patients With Acromegaly. Endocr. Pract. 2022, 28, 678–683. [Google Scholar] [CrossRef]
- Wang, X.; Tong, X.; Zou, Y.; Tian, X.; Mao, Z.; Sun, Z. The impact on cognitive functions of patients with pituitary adenoma before and after surgery. Neurol. Sci. 2017, 38, 1315–1321. [Google Scholar] [CrossRef]
- Scânteie, C.L.; Leucuţa, D.C.; Ghervan, C.M.V. Quality of Life in Patients with Acromegaly—A Romanian Single Center Cross-Sectional Study. Acta Endocrinol. 2021, 17, 42–50. [Google Scholar] [CrossRef]
- Chen, Y.C.; Xia, W.; Qian, C.; Ding, J.; Ju, S.; Teng, G.J. Thalamic resting-state functional connectivity: Disruption in patients with type 2 diabetes. Metab. Brain Dis. 2015, 30, 1227–1236. [Google Scholar] [CrossRef]
- Ciresi, A.; Amato, M.C.; Pizzolanti, G.; Giordano Galluzzo, C. Visceral adiposity index is associated with insulin sensitivity and adipocytokine levels in newly diagnosed acromegalic patients. J. Clin. Endocrinol. Metab. 2012, 97, 2907–2915. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulou, O.; Bex, M.; Kamenicky, P.; Mvoula, A.B.; Chanson, P.; Maiter, D. Prevalence and risk factors of impaired glucose tolerance and diabetes mellitus at diagnosis of acromegaly: A study in 148 patients. Pituitary 2014, 17, 81–89. [Google Scholar] [CrossRef]
- Petrossians, P.; Daly, A.F.; Natchev, E.; Maione, L.; Blijdorp, K.; Sahnoun-Fathallah, M.; Auriemma, R.; Diallo, A.M.; Hulting, A.L.; Ferone, D.; et al. Acromegaly at diagnosis in 3173 patients from the Liège Acromegaly Survey (LAS) Database. Endocr. Relat. Cancer 2017, 24, 505–518. [Google Scholar] [CrossRef]
- Maione, L.; Brue, T.; Beckers, A.; Delemer, B.; Petrossians, P.; Borson-Chazot, F.; Chabre, O.; François, P.; Bertherat, J.; Cortet-Rudelli, C.; et al. Changes in the management and comorbidities of acromegaly over three decades: The French Acromegaly Registry. Eur. J. Endocrinol. 2017, 176, 645–655. [Google Scholar] [CrossRef] [Green Version]
- Prezioso, G.; Giannini, C.; Chiarelli, F. Effect of Thyroid Hormones on Neurons and Neurodevelopment. Horm. Res. Paediatr. 2018, 90, 73–81. [Google Scholar] [CrossRef]
- Keil, M.F.; Kang, J.Y.; Liu, A.; Wiggs, E.A.; Merke, D.; Stratakis, C.A. Younger age and early puberty are associated with cognitive function decline in children with Cushing disease. Clin. Endocrinol. 2022, 96, 569–577. [Google Scholar] [CrossRef]
- Wasinski, F.; Klein, M.O.; Bittencourt, J.C.; Metzger, M.; Donato, J., Jr. Distribution of growth hormone-responsive cells in the brain of rats and mice. Brain Res. 2021, 1751, 147189. [Google Scholar] [CrossRef]
- Murata, Y.; Colonnese, M.T. GABAergic interneurons excite neonatal hippocampus in vivo. Sci. Adv. 2020, 6, eaba1430. [Google Scholar] [CrossRef]
- Webb, E.A.; O’Reilly, M.A.; Clayden, J.D.; Seunarine, K.K.; Chong, W.K.; Dale, N.; Salt, A.; Clark, C.A.; Dattani, M.T. Effect of growth hormone deficiency on brain structure, motor function and cognition. Brain 2012, 135, 216–227. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Xia, Y.; Liu, N.; Li, L.; Zou, P.; Zhu, P.; Shan, X.; Lui, S.; Lu, Y.; Yan, Z. Growth hormone deficiency interferes with dynamic brain networks in short children. Psychoneuroendocrinology 2022, 142, 105786. [Google Scholar] [CrossRef]
- Freda, P.U.; Reyes, C.M.; Conwell, I.M.; Sundeen, R.E.; Wardlaw, S.L. Serum ghrelin levels in acromegaly: Effects of surgical and long-acting octreotide therapy. J. Clin. Endocrinol. Metab. 2003, 88, 2037–2044. [Google Scholar] [CrossRef] [Green Version]
- Kawamata, T.; Inui, A.; Hosoda, H.; Kangawa, K.; Hori, T. Perioperative plasma active and total ghrelin levels are reduced in acromegaly when compared with in nonfunctioning pituitary tumours even after normalization of serum GH. Clin. Endocrinol. 2007, 67, 140–144. [Google Scholar] [CrossRef]
- Reyes-Vidal, C.; Fernandez, J.C.; Bruce, J.N.; Crisman, C.; Conwell, I.M.; Kostadinov, J.; Geer, E.B.; Post, K.D.; Freda, P.U. Prospective study of surgical treatment of acromegaly: Effects on ghrelin, weight, adiposity, and markers of CV risk. J. Clin. Endocrinol. Metab. 2014, 99, 4124–4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kern, A.; Mavrikaki, M.; Ullrich, C.; Albarran-Zeckler, R.; Brantley, A.F.; Smith, R.G. Hippocampal Dopamine/DRD1 Signaling Dependent on the Ghrelin Receptor. Cell 2015, 163, 1176–1190. [Google Scholar] [CrossRef] [Green Version]
- Dhurandhar, E.J.; Allison, D.B.; van Groen, T.; Kadish, I. Hunger in the absence of caloric restriction improves cognition and attenuates Alzheimer’s disease pathology in a mouse model. PLoS ONE 2013, 8, e60437. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.O.; Shin, S.J.; Park, J.Y.; Ku, B.K.; Song, J.S.; Kim, J.J.; Jeon, S.G.; Lee, S.M.; Moon, M. MK-0677, a Ghrelin Agonist, Alleviates Amyloid Beta-Related Pathology in 5XFAD Mice, an Animal Model of Alzheimer’s Disease. Int. J. Mol. Sci. 2018, 19, 1800. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Cao, C.P.; Li, C.R.; Wang, W.; Zhang, D.; Han, L.L.; Zhang, X.Q.; Kim, A.; Kim, S.; Liu, G.L. Ghrelin modulates insulin sensitivity and tau phosphorylation in high glucose-induced hippocampal neurons. Biol. Pharm. Bull. 2010, 33, 1165–1169. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Moon, N.R.; Kim, D.S.; Kim, S.H.; Park, S. Central acylated ghrelin improves memory function and hippocampal AMPK activation and partly reverses the impairment of energy and glucose metabolism in rats infused with β-amyloid. Peptides 2015, 71, 84–93. [Google Scholar] [CrossRef]
- Yuan, T.; Ying, J.; Jin, L.; Li, C.; Gui, S.; Li, Z.; Wang, R.; Zuo, Z.; Zhang, Y. The role of serum growth hormone and insulin-like growth factor-1 in adult humans brain morphology. Aging 2020, 12, 1377–1396. [Google Scholar] [CrossRef]
Reference | Year of Publication | N | Treatment Beyond Surgery 1 | Tests | Effective Results 2 |
---|---|---|---|---|---|
Sonino et al. [26] | 1999 | 10 | Lanreotide | SSQ, SLPP | + |
Tanriverdi et al. [15] | 2009 | 18 | − | P300 ERP | + |
Leon-Carrion et al. [16] | 2010 | 16 | − | TMT-A, TMT-B, LMW-R, BDI-II, AcroQoL | + |
Tiemensma et al. [20] | 2010 | 68 | SRL, PEG | MMSE, WMS | + |
Psaras et al. [21] | 2011 | 37 | − | AcroQoL, WAIS-R, TMT-A, SF-36, SCL-90-R | + |
Sievers et al. [27] | 2012 | 55 | Radiotherapy | TAP, WMS, VLMT, SPM, RWT | 33.3% |
Brummelman et al. [28] | 2012 | 50 | SRL, PEG | 15 Words Test, Ruff Figural Fluency Test | + |
Martín-Rodríguez et al. [17] | 2013 | 102 | − | LMW-R, DST, TMT-B, SCWT | + |
Yedinak et al. [24] | 2014 | 27 | SRL | FACT-Cog | + |
Hatipoglu et al. [22] | 2015 | 30 | SRL | MMSE, AcroQoL, GDS | + |
Crespo et al. [29] | 2015 | 31 | SRL, Radiotherapy | IGT, RAVLT, BDI-II | + |
Lecumberri et al. [30] | 2015 | 124 | Radiotherapy | MMSE, BVRT, WCST, BT | + |
Alibas et al. [18] | 2017 | 42 | SRL, Radiotherapy | OVMS, WAIS-R, TMT-A, TMT-B, SCWT, BDI | + |
Shan et al. [31] | 2017 | 42 | − | Stroop Test, Verbal Fluency Test, HSCT, SART | + |
Dimopoulou et al. [25] | 2017 | 81 | − | Testing in the domains of attention, memory, and executive functions | + |
Wennberg et al. [32] | 2019 | 67 | SRL, PEG | SSRT, CBTT, ROCF, TMT-A, TMT-B | 6–10% |
Solomon et al. [33] | 2019 | 19 | − | AcroQoL, TMT-A, TMT-B, Stroop Test | + |
Kunzler et al. [34] | 2019 | 23 | SRL | SF-36, BDI | + |
García-Casares et al. [23] | 2021 | 23 | − | MMSE, CWST, WAIS-III, WMS-III, BDI-II, TMT-A, AcroQoL | - |
Gagliardi et al. [35] | 2021 | 42 | SRL, PEG, DA | SF-36, AcroQoL | + |
Yuan et al. [36] | 2021 | 29 | − | MoCA, BDI, DSST, SAS | + |
Castinetti et al. [37] | 2021 | 64 | Radiotherapy | Grober and Buschke Test, STMT; PASAT | − |
Hatipoglu et al. [38] | 2022 | 33 | SRL, Radiotherapy | BDI, DST, DBT, MBT, WAIS-R, BNTSF | − |
Pivonello et al. [19] | 2022 | 223 | SRL, PEG, CAB | BDI-II, STAI, CBTT, TMT-A, TMT-B | 10% |
Xie et al. [39] | 2022 | 55 | − | MoCA | + |
Kan et al. [40] | 2022 | 58 | Radiotherapy | BDI, Rosenberg Self-esteem Scale | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Xiang, Z.; Zhang, Z.; Yang, Y.; Shu, K.; Lei, T. Cognitive Dysfunction, an Increasingly Valued Long-Term Impairment in Acromegaly. J. Clin. Med. 2023, 12, 2283. https://doi.org/10.3390/jcm12062283
Chen J, Xiang Z, Zhang Z, Yang Y, Shu K, Lei T. Cognitive Dysfunction, an Increasingly Valued Long-Term Impairment in Acromegaly. Journal of Clinical Medicine. 2023; 12(6):2283. https://doi.org/10.3390/jcm12062283
Chicago/Turabian StyleChen, Juan, Zhigao Xiang, Zhuo Zhang, Yan Yang, Kai Shu, and Ting Lei. 2023. "Cognitive Dysfunction, an Increasingly Valued Long-Term Impairment in Acromegaly" Journal of Clinical Medicine 12, no. 6: 2283. https://doi.org/10.3390/jcm12062283
APA StyleChen, J., Xiang, Z., Zhang, Z., Yang, Y., Shu, K., & Lei, T. (2023). Cognitive Dysfunction, an Increasingly Valued Long-Term Impairment in Acromegaly. Journal of Clinical Medicine, 12(6), 2283. https://doi.org/10.3390/jcm12062283