Effect of Training Load on Post-Exercise Cardiac Biomarkers in Healthy Children and Adolescents: A Systematic Review of the Existing Literature
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
3. Results
3.1. Cardiac Troponin T
3.2. Cardiac Troponins I
3.3. N-Terminal Prohormone Brain Natriuretic Peptide
4. Discussion
4.1. Cardiac Troponins T and I
4.2. N-Terminal Prohormone Brain Natriuretic Peptide
4.3. Clinical Implications
4.4. Limitations
5. Conclusions
Funding
Conflicts of Interest
References
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Simoons, M.L.; Chaitman, B.R.; White, H.D. Third Universal Definition of Myocardial Infarction. Circulation 2012, 126, 2020–2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alquézar Arbé, A.; Santaló Bel, M.; Sionis, A. Clinical interpretation of high sensitivity troponin T. Med. Clín. 2015, 145, 258–263. [Google Scholar] [CrossRef]
- Sandoval, Y.; Smith, S.W.; Love, S.A.; Sexter, A.; Schulz, K.; Apple, F.S. Single High-Sensitivity Cardiac Troponin I to Rule Out Acute Myocardial Infarction. Am. J. Med. 2017, 130, 1076–1083.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, M.; Lip, G.Y. Novel Risk Markers and Risk Assessments for Cardiovascular Disease. Circ. Res. 2017, 120, 133–149. [Google Scholar] [CrossRef]
- Bayés-Genís, A. NTproBNP circulante, un nuevo biomarcador para el diagnóstico del paciente con disnea aguda. Rev. Esp. Cardiol. 2005, 58, 1142–1144. [Google Scholar] [CrossRef]
- Gaggin, H.K.; Januzzi, J.L., Jr. Biomarkers and diagnostics in heart failure. Biochim. Biophys. Acta 2013, 1832, 2442–2450. [Google Scholar] [CrossRef] [Green Version]
- Panagopoulou, V.; Deftereos, S.; Kossyvakis, C.; Raisakis, K.; Giannopoulos, G.; Bouras, G.; Pyrgakis, V.; Cleman, M.W. NTproBNP: An Important Biomarker in Cardiac Diseases. Curr. Top. Med. Chem. 2013, 13, 82–94. [Google Scholar] [CrossRef]
- Sandoval, Y.; Smith, S.W.; Apple, F.S. Present and Future of Cardiac Troponin in Clinical Practice: A Paradigm Shift to High-Sensitivity Assays. Am. J. Med. 2016, 129, 354–365. [Google Scholar] [CrossRef] [Green Version]
- Haider, D.G.; Klemenz, T.; Fiedler, G.M.; Nakas, C.; Exadaktylos, A.K.; Leichtle, A.B. High sensitive cardiac troponin T: Testing the test. Int. J. Cardiol. 2017, 228, 779–783. [Google Scholar] [CrossRef]
- Meigher, S.; Thode, H.C.; Peacock, W.F.; Bock, J.L.; Gruberg, L.; Singer, A.J. Causes of Elevated Cardiac Troponins in the Emergency Department and Their Associated Mortality. Acad. Emerg. Med. 2016, 23, 1267–1273. [Google Scholar] [CrossRef]
- Cirer-Sastre, R.; Legaz-Arrese, A.; Corbi, F.; George, K.; Nie, J.; Carranza-García, L.E.; Reverter-Masià, J. Cardiac Biomarker Release After Exercise in Healthy Children and Adolescents: A Systematic Review and Meta-Analysis. Pediatr. Exerc. Sci. 2019, 31, 28–36. [Google Scholar] [CrossRef]
- Gresslien, T.; Agewall, S. Troponin and exercise. Int. J. Cardiol. 2016, 221, 609–621. [Google Scholar] [CrossRef]
- Jarolim, P.; Morrow, D.A. Use of high sensitivity cardiac troponin assays as an adjunct to cardiac stress testing. Clin. Biochem. 2016, 49, 419–420. [Google Scholar] [CrossRef]
- Scharhag, J.; George, K.; Shave, R.; Urhausen, A.; Kindermann, W. Exercise-Associated Increases in Cardiac Biomarkers. Med. Sci. Sports Exerc. 2008, 40, 1408–1415. [Google Scholar] [CrossRef]
- Bjørkavoll-Bergseth, M.; Erevik, C.B.; Kleiven, Ø.; Eijsvogels, T.M.H.; Skadberg, Ø.; Frøysa, V.; Wiktorski, T.; Auestad, B.; Edvardsen, T.; Aakre, K.M.; et al. Determinants of Interindividual Variation in Exercise-Induced Cardiac Troponin I Levels. J. Am. Heart Assoc. 2021, 10, e021710. [Google Scholar] [CrossRef]
- Clerico, A.; Aimo, A.; Cantinotti, M. High-sensitivity cardiac troponins in pediatric population. Clin. Chem. Lab. Med. 2021, 60, 18–32. [Google Scholar] [CrossRef]
- Cirer-Sastre, R.; Legaz-Arrese, A.; Corbi, F.; López-Laval, I.; George, K.; Reverter-Masia, J. Influence of maturational status in the exercise-induced release of cardiac troponin T in healthy young swimmers. J. Sci. Med. Sport 2021, 24, 116–121. [Google Scholar] [CrossRef]
- Kong, Z.; Nie, J.; Lin, H.; George, K.; Zhao, G.; Zhang, H.; Tong, T.K.; Shi, Q. Sex differences in release of cardiac troponin T after endurance exercise. Biomarkers 2016, 22, 345–350. [Google Scholar] [CrossRef]
- Legaz-Arrese, A.; Carranza-García, L.E.; Navarro-Orocio, R.; Valadez-Lira, A.; Mayolas-Pi, C.; Munguía-Izquierdo, D.; Reverter-Masía, J.; George, K. Cardiac Biomarker Release after Endurance Exercise in Male and Female Adults and Adolescents. J. Pediatr. 2017, 191, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Cantinotti, M.; Clerico, A.; Giordano, R.; Assanta, N.; Franchi, E.; Koestenberger, M.; Marchese, P.; Storti, S.; D’Ascenzi, F. Cardiac Troponin-T Release After Sport and Differences by Age, Sex, Training Type, Volume, and Intensity: A Critical Review. Clin. J. Sport Med. 2021, 32, e230–e242. [Google Scholar] [CrossRef]
- Carranza-García, L.E.; George, K.; Serrano-Ostáriz, E.; Casado-Arroyo, R.; Caballero-Navarro, A.L.; Legaz-Arrese, A. Cardiac Biomarker Response to Intermittent Exercise Bouts. Int. J. Sports Med. 2011, 32, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Eijsvogels, T.; George, K.; Shave, R.; Gaze, D.; Levine, B.D.; Hopman, M.T.; Thijssen, D.H. Effect of Prolonged Walking on Cardiac Troponin Levels. Am. J. Cardiol. 2010, 105, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Fortescue, E.B.; Shin, A.Y.; Greenes, D.S.; Mannix, R.C.; Agarwal, S.; Feldman, B.J.; Shah, M.I.; Rifai, N.; Landzberg, M.J.; Newburger, J.W.; et al. Cardiac Troponin Increases Among Runners in the Boston Marathon. Ann. Emerg. Med. 2007, 49, 137–143.e1. [Google Scholar] [CrossRef] [PubMed]
- Jassal, D.S.; Moffat, D.; Krahn, J.; Ahmadie, R.; Fang, T.; Eschun, G.; Sharma, S. Cardiac Injury Markers in Non-elite Marathon Runners. Int. J. Sports Med. 2009, 30, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Schena, F.; Dipalo, M.; Montagnana, M.; Salvagno, G.L.; Aloe, R.; Guidi, G.C. Troponin I measured with a high sensitivity immunoassay is significantly increased after a half marathon run. Scand. J. Clin. Lab. Investig. 2012, 72, 467–470. [Google Scholar] [CrossRef]
- Roca, E.; Nescolarde, L.; Lupón, J.; Barallat, J.; Januzzi, J.L.; Liu, P.; Pastor, M.C.; Bayes-Genis, A. The Dynamics of Cardiovascular Biomarkers in non-Elite Marathon Runners. J. Cardiovasc. Transl. Res. 2017, 10, 206–208. [Google Scholar] [CrossRef] [Green Version]
- Vidotto, C.; Tschan, H.; Atamaniuk, J.; Pokan, R.; Bachl, N.; Müller, M.M. Responses of N-Terminal Pro-Brain Natriuretic Peptide (NT-proBNP) and Cardiac Troponin I (cTnI) to Competitive Endurance Exercise in Recreational Athletes. Int. J. Sport. Med. 2005, 26, 645–650. [Google Scholar] [CrossRef]
- Hewing, B.; Schattke, S.; Spethmann, S.; Sanad, W.; Schroeckh, S.; Schimke, I.; Halleck, F.; Peters, H.; Brechtel, L.; Lock, J.; et al. Cardiac and renal function in a large cohort of amateur marathon runners. Cardiovasc. Ultrasound 2015, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hubble, K.M.; Fatovich, D.M.; Grasko, J.M.; Vasikaran, S.D. Cardiac troponin increases among marathon runners in the Perth Marathon: The Troponin in Marathons (TRIM) study. Med. J. Aust. 2009, 190, 91–93. [Google Scholar] [CrossRef]
- Neubauer, O.; König, D.; Kern, N.; Nics, L.; Wagner, K.-H. No Indications of Persistent Oxidative Stress in Response to an Ironman Triathlon. Med. Sci. Sports Exerc. 2008, 40, 2119–2128. [Google Scholar] [CrossRef] [Green Version]
- Legaz-Arrese, A.; López-Laval, I.; George, K.; Puente-Lanzarote, J.J.; Moliner-Urdiales, D.; Ayala-Tajuelo, V.J.; Mayolas-Pi, C.; Reverter-Masia, J. Individual variability in cardiac biomarker release after 30 min of high-intensity rowing in elite and amateur athletes. Appl. Physiol. Nutr. Metab. 2015, 40, 951–958. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Ostáriz, E.; Terreros-Blanco, J.L.; Arrese, A.L.; George, K.; Shave, R.; Bocos-Terraz, P.; Izquierdo-Álvarez, S.; Bancalero, J.L.; Echavarri, J.M.; Quílez, J.; et al. The impact of exercise duration and intensity on the release of cardiac biomarkers. Scand. J. Med. Sci. Sports 2011, 21, 244–249. [Google Scholar] [CrossRef]
- Urhausen, A.; Scharhag, J.; Herrmann, M.; Kindermann, W. Clinical significance of increased cardiac troponins T and I in participants of ultra-endurance events. Am. J. Cardiol. 2004, 94, 696–698. [Google Scholar] [CrossRef]
- Eijsvogels, T.M.H.; Fernandez, A.B.; Thompson, P.D. Are There Deleterious Cardiac Effects of Acute and Chronic Endurance Exercise? Physiol. Rev. 2016, 96, 99–125. [Google Scholar] [CrossRef] [Green Version]
- Eijsvogels, T.M.; Hoogerwerf, M.D.; Oudegeest-Sander, M.H.; Hopman, M.T.; Thijssen, D.H. The impact of exercise intensity on cardiac troponin I release. Int. J. Cardiol. 2014, 171, e3–e4. [Google Scholar] [CrossRef]
- Fu, F.; Nie, J.; Tong, T. Serum Cardiac Troponin T in Adolescent Runners: Effects of Exercise Intensity and Duration. Int. J. Sport. Med. 2009, 30, 168–172. [Google Scholar] [CrossRef]
- Scharhag, J.; Herrmann, M.; Urhausen, A.; Haschke, M.; Herrmann, W.; Kindermann, W. Independent elevations of N-terminal pro–brain natriuretic peptide and cardiac troponins in endurance athletes after prolonged strenuous exercise. Am. Heart J. 2005, 150, 1128–1134. [Google Scholar] [CrossRef]
- Voets, P.J.G.M.; Maas, R.P.P.W.M. Serum cardiac troponin I analysis to determine the excessiveness of exercise intensity: A novel equation. J. Theor. Biol. 2016, 392, 48–52. [Google Scholar] [CrossRef]
- Yeo, T.J.; Ling, L.H.; Lam, C.S.P.; Chong, J.P.C.; Liew, O.W.; Teo, Z.L.; Gong, L.; Richards, A.M.; Chan, M.Y. Cardiac and renal biomarkers in recreational runners following a 21 km treadmill run. Clin. Cardiol. 2020, 43, 1443–1449. [Google Scholar] [CrossRef]
- Tesema, G.; George, M. Associations between cardiac troponin I and cardiovascular parameters after 12-week endurance training in young moderately trained amateur athletes. BMJ Open Sport Exerc. Med. 2021, 7, e001065. [Google Scholar] [CrossRef]
- Pompa, A.G.; Arora, G.; Harris, T.H. Effect of treadmill exercise stress testing on troponin levels in children and adolescents. Cardiol. Young 2022, 33, 380–382. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.; Baker, J.; Henriquez, F.; Shi, Q.; Zhang, H.; Kong, Z.; Nie, J. A Combined Approach for Health Assessment in Adolescent Endurance Runners. Healthcare 2021, 9, 163. [Google Scholar] [CrossRef] [PubMed]
- Cirer-Sastre, R.; Legaz-Arrese, A.; Corbi, F.; López-Laval, I.; Puente-Lanzarote, J.; Hernández-González, V.; Reverter-Masià, J. Effect of Training Load on Post-Exercise Cardiac Troponin T Elevations in Young Soccer Players. Int. J. Environ. Res. Public Health 2019, 16, 4853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peretti, A.; Mauri, L.; Masarin, A.; Annoni, G.; Corato, A.; Maloberti, A.; Giannattasio, C.; Vignati, G. Cardiac Biomarkers Release in Preadolescent Athletes After an High Intensity Exercise. High Blood Press. Cardiovasc. Prev. 2017, 25, 89–96. [Google Scholar] [CrossRef]
- Ma, G.; Liu, Y.; Liu, K. Influence of Repeated Bouts of Table Tennis Training on Cardiac Biomarkers in Children. Pediatr. Cardiol. 2014, 35, 711–718. [Google Scholar] [CrossRef]
- Traiperm, N.; Gatterer, H.; Wille, M.; Burtscher, M. Cardiac troponins in young marathon runners. Am. J. Cardiol. 2012, 110, 594–598. [Google Scholar] [CrossRef]
- Nie, J.; George, K.P.; Tong, T.K.; Gaze, D.; Tian, Y.; Lin, H.; Shi, Q. The Influence of a Half-Marathon Race Upon Cardiac Troponin T Release in Adolescent Runners. Curr. Med. Chem. 2011, 18, 3452–3456. [Google Scholar] [CrossRef]
- Nie, J.; George, K.P.; Tong, T.K.; Tian, Y.; Shi, Q. Effect of Repeated Endurance Runs on Cardiac Biomarkers and Function in Adolescents. Med. Sci. Sport. Exerc. 2011, 43, 2081–2088. [Google Scholar] [CrossRef]
- Nie, J.; Tong, T.K.; George, K.; Fu, F.H.; Lin, H.; Shi, Q. Resting and post-exercise serum biomarkers of cardiac and skeletal muscle damage in adolescent runners. Scand. J. Med. Sci. Sport. 2010, 21, 625–629. [Google Scholar] [CrossRef]
- Nie, J.; Tong, T.; Shi, Q.; Lin, H.; Zhao, J.; Tian, Y. Serum Cardiac Troponin Response in Adolescents Playing Basketball. Int. J. Sport. Med. 2008, 29, 449–452. [Google Scholar] [CrossRef]
- Tian, Y.; Nie, J.; Tong, T.K.; Cao, J.; Gao, Q.; Man, J.; Shi, Q.; Liu, W. Changes in serum cardiac troponins following a 21-km run in junior male runners. J. Sport. Med. Phys. Fit. 2006, 46, 481–488. [Google Scholar]
- Chuang, C.C.; Lee, S.Y.; Wang, K.T. Impact of exercise on athlete’s cardiac muscle evaluated by Troponin T test. Gaoxiong Yi Xue Ke Xue Za Zhi Kaohsiung J. Med. Sci. 1995, 11, 150–156. [Google Scholar]
- Cirer-Sastre, R.; Corbi, F.; López-Laval, I.; Carranza-García, L.E.; Reverter-Masià, J. Exercise-Induced Release of Cardiac Troponins in Adolescent vs. Adult Swimmers. Int. J. Environ. Res. Public Health 2021, 18, 1285. [Google Scholar] [CrossRef] [PubMed]
- Cirer-Sastre, R.; Legaz-Arrese, A.; Corbi, F.; López-Laval, I.; Puente-Lanzarote, J.J.; Hernández-González, V.; Reverter-Masia, J. Cardiac Troponin T Release after Football 7 in Healthy Children and Adults. Int. J. Environ. Res. Public Health 2020, 17, 956. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Nie, J.; Huang, C.; George, K.P. The kinetics of highly sensitive cardiac troponin T release after prolonged treadmill exercise in adolescent and adult athletes. J. Appl. Physiol. 2012, 113, 418–425. [Google Scholar] [CrossRef]
- Özgünen, K.; Günaştı, Ö.; Özdemir, Ç.; Korkmaz Eryılmaz, S.; Gezgin, E.; Boyraz, C.; Kılcı, A.; Adaş, Ü.; Kurdak, S.S. The relationship between cardiac damage biomarkers and heart rate variability following 60 min of running. Clin. Auton. Res. Off. J. Clin. Auton. Res. Soc. 2022, 32, 249–260. [Google Scholar] [CrossRef]
- Cirer-Sastre, R.; Jiménez-Gaytán, R.; Carranza-García, L.E.; George, K.; Apple, F.S.; Navarro-Orocio, R.; López-García, R.; Reverter-Masía, J.; Mayolas-Pi, C.; Morales-Corral, P.G.; et al. A comparison of modelled serum cTnT and cTnI kinetics after 60 min swimming. Biomarkers 2022, 27, 619–624. [Google Scholar] [CrossRef]
- Kosowski, M.; Młynarska, K.; Chmura, J.; Kustrzycka-Kratochwil, D.; Sukiennik-Kujawa, M.; Todd, J.A.; Jankowska, E.A.; Banasiak, W.; Reczuch, K.; Ponikowski, P. Cardiovascular stress biomarker assessment of middle-aged non-athlete marathon runners. Eur. J. Prev. Cardiol. 2018, 26, 318–327. [Google Scholar] [CrossRef]
- Klinkenberg, L.J.; Luyten, P.; van der Linden, N.; Urgel, K.; Snijders, D.P.; Knackstedt, C.; Dennert, R.; Kietselaer, B.L.; Mingels, A.M.; Cardinaels, E.P.; et al. Cardiac Troponin T and I Release After a 30-km Run. Am. J. Cardiol. 2016, 118, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Shave, R.; George, K.P.; Atkinson, G.; Hart, E.; Middleton, N.; Whyte, G.; Gaze, D.; Collinson, P.O. Exercise-Induced Cardiac Troponin T Release. Med. Sci. Sport. Exerc. 2007, 39, 2099–2106. [Google Scholar] [CrossRef]
- Lippi, G.; Schena, F.; Montagnana, M.; Salvagno, G.L.; Guidi, G.C. Influence of acute physical exercise on emerging muscular biomarkers. Clin. Chem. Lab. Med. 2008, 46, 1313–1318. [Google Scholar] [CrossRef]
- Katz, R.K.; Marshall, D.B.; Romanowski, S.B.; Stewart, N.F. Katz et al. Reply. Soc. Work 1985, 30, 286–287. [Google Scholar] [CrossRef]
- Socrates, T.; Arenja, N.; Mueller, C. B-Type Natriuretic Peptide in Children. J. Am. Coll. Cardiol. 2009, 54, 1476–1477. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Ostáriz, E.; Legaz-Arrese, A.; Terreros-Blanco, J.L.; López-Ramón, M.; Cremades-Arroyos, D.; Álvarez-Izquierdo, S.; Boscos-Terraz, P. Cardiac Biomarkers and Exercise Duration and Intensity During a Cycle-Touring Event. Clin. J. Sport Med. 2009, 19, 293–299. [Google Scholar] [CrossRef]
- Legaz-Arrese, A.; López-Laval, I.; George, K.P.; Puente-Lanzarote, J.J.; Pi, C.M.; Serrano-Ostáriz, E.; Revilla-Martí, P.; Moliner-Urdiales, D.; Reverter-Masia, J. Impact of an endurance training program on exercise-induced cardiac biomarker release. Am. J. Physiol. Circ. Physiol. 2015, 308, H913–H920. [Google Scholar] [CrossRef] [Green Version]
- Nie, J.; George, K.; Duan, F.; Tong, T.K.; Tian, Y. Histological evidence for reversible cardiomyocyte changes and serum cardiac troponin T elevation after exercise in rats. Physiol. Rep. 2016, 4, e13083. [Google Scholar] [CrossRef]
- Sanchis-Gomar, F.; Joyner, M.J.; Lucia, A. Letter by Sanchis-Gomar et al Regarding Article, Cardiac Remodeling in Response to 1 Year of Intensive Endurance Training. Circulation 2015, 132, e146. [Google Scholar] [CrossRef]
- Herrmann, M.; Scharhag, J.; Miclea, M.; Urhausen, A.; Herrmann, W.; Kindermann, W. Post-Race Kinetics of Cardiac Troponin T and I and N-Terminal Pro-Brain Natriuretic Peptide in Marathon Runners. Clin. Chem. 2003, 49, 831–834. [Google Scholar] [CrossRef] [Green Version]
- Shave, R.; George, K.; Gaze, D. The influence of exercise upon cardiac biomarkers: A practical guide for clinicians and scientists. Curr. Med. Chem. 2007, 14, 1427–1436. [Google Scholar] [CrossRef]
- López-Laval, I.; Legaz-Arrese, A.; George, K.; Serveto-Galindo, O.; González-Rave, J.M.; Reverter-Masia, J.; Munguía-Izquierdo, D. Cardiac troponin I release after a basketball match in elite, amateur and junior players. Clin. Chem. Lab. Med. 2016, 54, 333–338. [Google Scholar] [CrossRef] [Green Version]
Author | Type of Exercise | Population | Parameters Tested | Conclusions |
---|---|---|---|---|
Pompa et al., 2022 [41] | Treadmill exercise test | 13 children | ECG, cTnT prior to exercise and 4 h after | Troponin T levels did not increase as a result of exercise; if they were found elevated, this meant that there is an underlying heart disease |
Tong et al., 2021 [42] | 7–21 km treadmill run | 12 male adolescents | ECG (and other tests non related to the cardiac function) | Running did not cause any ECG abnormalities |
Cirer-Sastre et al., 2021 [17] | 30 min, high-intensity swimming | 70 male children 7–18 yo | cTnT (before, immediately after, and 3 h after exercise) | Baseline cTnT levels are directly related to the Tanner stage However, this elevation does not depend on maturational status |
Cirer-Sastre et al., 2019 [43] | Soccer | 20 children (11.9 ± 2 yo) | hs-cTnT (before and 3 h after exercise) | As time (since the beginning of the exercise) passes, the proportion of children who exceed the troponin threshold levels for MI increases |
Peretti et al., 2018 [44] | Cycling | 21 male preadolescent athletes (age 9.2 ± 1.7 yrs) | hs-cTnT, ΝΤ-proBNP, CK-MB, CK, ECG-Holter, heart rate | Some athletes showed an elevation in their troponin, CK, and NT-proBNP levels. Those with elevated troponin were less trained than those with normal values. CK levels elevation is positively related to the duration of exercise |
Kong et al., 2017 [18] | 6–21 km run (6–7 times/week) | 19 male children (16.1 ± 1.2 yo) 19 girls (15.9 ± 1.4) | cTnT (pre-exercise and 4 h post-exercise), echocardiogram | Males had greater troponin levels than females Estrogen probably has a protective role against troponin elevation Athletes’ normal troponin ranges should not be the same as the general pediatric population |
Ma et al., 2014 [45] | Table tennis (2 h/day, 5 times a week) | 28 male children (7.21 ± 1.11 yo) | cTnT and cTnI and CK-MB (before exercise, immediately after, 4 h, 24 h, and 48 h postexercise) echocardiogram | The levels of all enzymes were elevated immediately after exercise. Troponin levels returned to baseline 48 h after exercise. In some individuals, these levels exceeded the cut-off for MI, while in others, CK-MB levels did not return to normal 24 h after exercise |
Traiperm et al., 2012 [46] | Marathon (42 km run) | 40 adolescents (20 females) 13–17 years old | cTnT and cTnI (before, immediately after and 24 h post-exercise) | Most of the participants noted an elevation in all biomarker levels, but these were normal 24 h post-exercise. Cardiac biomarkers elevation is a result of exercise, but an underlying cardiac disease cannot be completely ruled out |
Nie et al., 2011 [47] | 21 km run | 63 adolescent runners 16.4 ± 1.5 yo 10 females | cTnT (pre-exercise and 24 h postexercise) ECG, echocardiogram | Cardiac biomarkers elevation was inversely related to age and training level |
Nie et al., 2011 [48] | 2 bouts of prolonged exercise run | 12 male adolescent runners 14.5 ± 1.5 yo | cTnT and NT-pro-BNP (before, immediately after, and 255 min after each bout), echocardiogram | LV ejection fraction decreased after the 1st bout of run (but remained within normal range). The E:A ratio was found to have a higher reduction after the 1st bout than after the 2nd. Systolic blood pressure and LV meridional wall stress increased significantly after each round |
Nie et al., 2011 [49] | 21 km run | 12 male adolescents 16.2 ± 0.6 yo | cTnT, cTnI, CK-MB, CK, LDH (all at rest, 2, 4, and 24 h after exercise), echocardiogram, ECG | The levels of all biomarkers were elevated. Some of the participants had values above the cut-off for MI. Nevertheless, their rapid return to normal range indicates that the damage is transient and not pathological |
Fu et al., 2009 [36] | Treadmill exercise | 13 adolescent runners 14.8 ± 1.6 yo | cTnT (immediately after and 5 h after exercise), ECG, echocardiogram | The greater elevation of troponin levels was found 5 h after the exercise |
Nie et al., 2007 [50] | Basketball | 10 male adolescent players 15.0 ± 0.7 yo | cTnT and cTnI (immediately before, and at 2, 4, and 24 h post-exercise), ECG, echocardiogram | Within 24 h of exercise, troponin levels return to normal range, indicating that elevation in troponin levels is not due to pathology, but due to transient exercise-induced changes in the heart |
Tian et al., 2006 [51] | 21 km run (treadmill) | 10 trained male adolescents 16.2 ± 0.6 yo | cTnI and cTnT (immediately before and 2, 4, and 24 h after exercise), VO2, running speed | Serum cTnT and cTnI in some individuals (4 h after the run) were above the cut-off for MI, but returned towards pre-exercise levels within 24 h. The elevation in troponin levels is inversely related to the training level (those with increased troponin levels were of lower training status), VO2 and running speed, and positively related to their personal best half- and marathon races |
Chuang et al., 1995 [52] | Running group A: 5 km/day group B: 7 km/day | 24 children 16–17 yo | RR, BP, PR, body surface skin temperature (at rest and after exercise), cTnT CK, CK-MB, LDH | After one week, the CK levels in both groups were higher after exercise; in group A, they decreased to the normal values and stayed the same throughout the fifth week, while in group B, they decreased to the normal value after training for three weeks, and there were significant differences between the values before exercising and those for the fourth and fifth weeks of training. Although the levels of CK-MB, LDH, and Troponin-T increased after training, all were within the normal range, and no significant difference was observed before or after five weeks of training |
Author | Type of Exercise | Population | Parameters Tested | Conclusions |
---|---|---|---|---|
Cirer-Sastre et al., 2021 [53] | Swimming | 32 trained males (18 adolescents, 14 ± 3 yo and 14 adults, 35 ± 9 yo) | ECG, cTnT (before, immediately, and 3 h after exercise) | cTnT levels increase in all athletes, but they found to be unrelated to the exercise intensity. In the pediatric population, the rise is greater and occurs later (peak values are the same for both populations) |
Cirer-Sastre et al., 2020 [54] | Football 7 match | 24 adolescents (10.7 ± 1.6 yo) | hs-cTnT (before, and 3 h after exercise), ECG | Children’s resting levels of cTnT were lower than those of adults. 3 h after the game, both groups had increased cTnT. Nevertheless, the absolute post-match concentration and the rise were equal among groups. At baseline, none of the participants went over the URL. However, at 3 h after activity, 66.67% of adults and 70.83% of children surpassed the threshold for MI |
Legaz-Arres et al., 2017 [19] | Swimming | 50 Adolescent swimmers, 12–18 yo and 16 adults, 22–46 years old | ECG, hs-cTnT and NT-proBNP (before, immediately after and at 1, 3, 6, 12, and 24 h post-exercise) | Males have higher baseline troponin T levels and greater increases in them (in contrast to NT-proBNP which is not sex-dependent) |
Tian et al., 2012 [55] | 90-min treadmill exercise | 13 male adolescents (14.1 ± 1.1 years old) and 13 male adults (24.0 ± 3.6 years old) | hs-cTnT and NT-pro-BNP (pre-exercise, immediately after, and 1, 2, 3, 4, 5 6, and 24 h post-exercise), echocardiogram (pre-exercise, immediately after and 6 h post-exercise) | Troponin levels were elevated in all participants. Peak levels in Tanner 2 stage was higher compared to those in Tanner 3 (but not statistically significant). Markers of systolic function were reduced, cardiac output and heart rate were both increased. Athletes’ normal biomarker ranges should be different from the general population |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papamichail, A.; Androulakis, E.; Xanthopoulos, A.; Briasoulis, A. Effect of Training Load on Post-Exercise Cardiac Biomarkers in Healthy Children and Adolescents: A Systematic Review of the Existing Literature. J. Clin. Med. 2023, 12, 2419. https://doi.org/10.3390/jcm12062419
Papamichail A, Androulakis E, Xanthopoulos A, Briasoulis A. Effect of Training Load on Post-Exercise Cardiac Biomarkers in Healthy Children and Adolescents: A Systematic Review of the Existing Literature. Journal of Clinical Medicine. 2023; 12(6):2419. https://doi.org/10.3390/jcm12062419
Chicago/Turabian StylePapamichail, Adamantia, Emmanuel Androulakis, Andrew Xanthopoulos, and Alexandros Briasoulis. 2023. "Effect of Training Load on Post-Exercise Cardiac Biomarkers in Healthy Children and Adolescents: A Systematic Review of the Existing Literature" Journal of Clinical Medicine 12, no. 6: 2419. https://doi.org/10.3390/jcm12062419