Congestion in Heart Failure: From the Secret of a Mummy to Today’s Novel Diagnostic and Therapeutic Approaches: A Comprehensive Review
Abstract
:1. Introduction and Background
2. Heart Failure: Pathophysiology and Classification
2.1. Fluid Overload Significance
- Symptom Severity: Fluid retention is a primary contributor to the hallmark symptoms of heart failure, such as dyspnea (shortness of breath), edema (swelling), and weight gain. As fluid accumulates in the lungs and peripheral tissues, the heart begins to fail, followed by the kidneys. The kidneys respond by increasing the production of renin, leading to more aldosterone production, which is consequently followed by sodium and water retention [19]. In some patients, pulmonary congestion evolves rapidly because of a sudden increase in LV filling pressures. A precipitating factor is often recognized, like acute myocardial ischemia, or uncontrolled hypertension. In this instance, the edema is mainly present in the pulmonary airspaces (pulmonary edema), while the total amount of fluid in the cardiovascular system remains unchanged [20].
- Hemodynamic Disturbances: The accumulation of excess fluid in the body increases the blood volume and venous pressure, resulting in intravascular and interstitial fluid volume expansion and redistribution. This, in turn, leads to elevated preload and afterload, negatively affecting cardiac function. Increased preload can worsen the workload of the heart muscle, further compromising its pumping efficiency. It has been described using the concept of fluid redistribution, which suggests that multiple factors like myocardial ischemia, episodes of high blood pressure, failure to comply with the pharmaceutical regimen, worsening renal function, and increased neurohormonal-sympathetic activation could increase the venous tone and decrease the venous capacitance, which, in the setting of existing intravascular volume overload, could only redistribute fluid from a peripheral venous reservoir like the splanchnic venous bed to the central cardiopulmonary circulation [21]. This results in the production of transudate fluid in the pulmonary alveolar space and the development of worsening dyspnea and symptomatic clinical congestion. This acute translocation of as much as 1 L of fluid, which will not alter the net body weight, will cause pulmonary congestion and contribute to the overall discomfort experienced by HF patients [22].
- Reduced Cardiac Output: Initially, compensatory mechanisms attempt to maintain cardiac output to meet systemic demands. These include myocardial hypertrophy, hypercontractility, apoptosis, and the regeneration of myocardial cells. The increased wall stress will lead to eccentric remodeling that further aggravates the loading conditions of the heart [23]. Due to decreased cardiac output, the neuroendocrine system takes over releasing epinephrine, norepinephrine, endothelin-1 (ET-1), and vasopressin. The resulting vasoconstriction will lead to increased afterload, which, together with the increased levels of cyclic adenosine monophosphate (cAMP) and cytosolic calcium in myocytes, will further inhibit the myocardial muscle from relaxing. The oxygen demand in the myocardium increases, necessitating a further increase in cardiac output, leading to myocardial cell and apoptosis. The decreasing cardiac output will stimulate the renin–angiotensin–aldosterone system (RAAS), leading to increased salt and water retention, along with increased vasoconstriction. Moreover, RAAS releases Angiotensin II, which is shown to increase myocardial cellular hypertrophy and interstitial fibrosis. This maladaptive function of angiotensin II increases myocardial remodeling [24]. This reduction in cardiac output can lead to inadequate oxygen delivery to the body’s tissues, causing fatigue and exercise intolerance.
- Kidney Function: Fluid retention can also impact kidney function. Inflammation and ischemia-reperfusion injury will lead to endothelial injury and fluid overload, damaging the endothelial glycocalyx (EGL) and causing capillary leakage. This leakage will lead to interstitial edema and a reduction in the circulating intravascular volume since the volume of the interstitial compartment will be lost. This interstitial edema is the cause behind acute kidney injury (AKI), as well as progressive organ failure, due to the blockage of lymphatic drainage and the poor interaction between cells [25]. Finally, fluid overload causes atria distention and the stretching of vessel walls, causing the release of ANP and further damage to the EGL, aggravating the AKI [26]. This is a key contributor to the development of diuretic resistance, which is a common challenge in managing HF. Renal congestion increases renal tubular pressure, reducing the glomerular filtration rate (GFR) and diuresis.
- Electrolyte Imbalances: Fluid overload and diuretic therapy can lead to electrolyte imbalances, most commonly hyponatremia, hypokalemia, and hypomagnesemia [27]. The acid–base disturbances generally observed are metabolic alkalosis, either pure or combined with respiratory alkalosis [28]. Hyponatremia, which is the most common electrolyte abnormality observed in hospitalized subjects, is defined as a serum sodium concentration lower than 136 mmol/L [29]. Mild-to-moderate hyponatremia is generally present in 10% of HF patients [30]. In the OPTIME-CHF trial, 27% of patients had serum sodium concentrations between 132 and 135 mEq/L [31], while in the ESCAPE trial, persistent hyponatremia, defined as serum sodium below 134 mEq/L, was present in 18% of the hospitalized patients. Hypokalemia is commonly observed in CHF patients, and it is a strong independent predictor of mortality [32]. Hypokalemia has not been well defined in HF, and even in the literature, its range varies from 3.5 to 4.0 mEq/L (mmol/L) [33]. Hypokalemia is generally more evident in patients with advanced CHF receiving intensive diuretic therapy and those whose renin–angiotensin system is highly activated [34]. Low levels of serum K+ may be a marker of increased neurohormonal activity and disease progression [35]. Diuretics and adrenergic stimulation may cause hypokalemia, while neurohormonal blockade using ACE inhibitors, angiotensin receptor blockers, beta-blockers, and aldosterone antagonists may cause hyperkalemia. These drug effects require frequent control of K+ in these patients [36]. The prevalence of hypomagnesemia in CHF subjects ranges from 7% in well-compensated ambulatory patients to 52% in more advanced CHF patients who are under aggressive diuretic treatment [37]. Magnesium deficiency in animal models alters the mitochondrial structure with calcium accumulation, cell death, and multifocal myocardial necrosis [38]. There is confirmation that the effective correction of magnesium disturbances is favorable in CHF patients [39], mostly due to the reduction in potentially lethal arrhythmias. Diuretics (loop-acting diuretics in particular) produce most of the renal magnesium loss, especially in the volume-expanded setting of CHF [40].Few cases of hypocalcemia (total serum calcium concentration < 8.6 mg/dL or ionized calcium concentration < 1.1 mmol/L) in CHF have been reported and are often associated with hypomagnesemia [28]. Loop diuretics block the reabsorption of calcium in the loop of Henle and may play a role in the pathogenesis of hypocalcemia [41]. The correction of a calcium disorder could improve CHF [42]. These imbalances can cause cardiac arrhythmias and muscle weakness, complicating the clinical picture in HF.
- Mortality Risk: The severity of fluid retention is often linked to the prognosis of HF. Patients with more significant fluid overload tend to have a higher risk of mortality. Addressing fluid retention is, therefore, essential for improving patient outcomes.
- Hospitalizations, readmissions, and Quality of Life (QoL): Effective management of fluid overload can significantly enhance a patient’s quality of life. The rehospitalization rate is a comprehensive measure of disease burden and progression. While the length of hospital stay has decreased over time in heart failure patients, readmission rates have essentially remained unchanged [43]. Congestion is the most frequent cause of readmission. Other factors associated with increased risk of readmission include higher age, comorbidities, premature discharge, and noncompliance. Hospitalization is easy to identify and easy to quantify. Early readmission is associated with worse long-term outcomes and significant increases in heart-failure-related health costs. With each readmission, QoL declines [44].
2.2. Congestion and Extracellular Fluid Overload (FO) Assessment
2.3. Pleural Effusion
2.4. Diuretic Agents
2.4.1. Loop Diuretics (LD)
- Mechanism of Action: Loop diuretics act on the thick ascending limb of the loop of Henle in the nephron of the kidney. They inhibit the reabsorption of sodium and chloride ions, leading to increased diuresis.
- Indications: Loop diuretics are potent and are often used in the treatment of acute and severe conditions of fluid overload, such as acute heart failure, pulmonary edema, and edema associated with renal dysfunction.
- Common Medications: Examples of loop diuretics include furosemide, torsemide, and bumetanide.
2.4.2. Thiazide Diuretics (THZ)
- Mechanism of Action: Thiazide diuretics act on the distal convoluted tubules of the nephron. They inhibit sodium and chloride reabsorption, leading to increased urine production.
- Indications: Thiazide diuretics are typically used in the management of hypertension and mild to moderate edema. They are also sometimes used in the treatment of certain kidney stone conditions, such as calcium oxalate stones.
- Common Medications: Examples of thiazide diuretics include hydrochlorothiazide, chlorthalidone, and indapamide.
2.4.3. Potassium-Sparing Diuretics (MRA)
- Mechanism of Action: Potassium-sparing diuretics act on the distal tubules and collect ducts of the nephron. They promote diuresis while minimizing potassium excretion. Some potassium-sparing diuretics work by blocking the action of aldosterone, a hormone that typically promotes sodium and water retention while increasing potassium excretion.
- Indications: Potassium-sparing diuretics are often used in combination with other diuretics to help counteract the potassium loss associated with loop and thiazide diuretics. They are also used in conditions where retaining potassium is important, such as hypokalemia.
- Common Medications: Examples of potassium-sparing diuretics include spironolactone, eplerenone, and amiloride.
2.4.4. Carbonic Anhydrase Inhibitors (CAIs)
- Mechanisms of Action: Carbonic anhydrase inhibitors primarily target carbonic anhydrase isoenzyme II, which is found in the kidneys, eyes, and other tissues. The inhibition of carbonic anhydrase leads to several physiological effects:
- o
- Diuresis: In the kidneys, carbonic anhydrase inhibitors reduce bicarbonate reabsorption, leading to increased bicarbonate and water excretion, making them useful in conditions like edema and metabolic alkalosis.
- o
- Reduction of Intraocular Pressure: In the eyes, CAIs decrease the production of aqueous humor, making them a cornerstone in the treatment of glaucoma.
2.4.5. Therapeutic Applications
- Edema: Systemic CAIs, like acetazolamide and methazolamide, are employed to manage edema in congestive heart failure, nephrotic syndrome, and high-altitude sickness.
- Metabolic Alkalosis: CAIs can be used to correct metabolic alkalosis by increasing renal bicarbonate excretion.
2.4.6. Side Effects and Considerations
- Electrolyte Imbalances: CAIs can lead to hypokalemia and metabolic acidosis due to excessive bicarbonate excretion.
- Renal Stones: Prolonged use of CAIs may increase the risk of developing kidney stones, particularly in patients prone to stone formation.
- Sulfonamide Allergies: Some CAIs, such as acetazolamide, contain a sulfonamide moiety, which can lead to allergic reactions in individuals with sulfonamide allergies.
2.5. Anatomy of the Nephron and the Loop of Henle
2.6. Sodium-Potassium-Chloride Cotransporter (NKCC2)
2.7. Mechanism of Loop Diuretics
- Inhibition of NKCC2: Loop diuretics competitively inhibit the NKCC2 transporter. They do this by binding to the chloride-binding site of the cotransporter. As a result, the transporter’s ability to reabsorb sodium, potassium, and chloride ions is significantly impaired.
- Reduced Sodium Reabsorption: By inhibiting NKCC2, loop diuretics disrupt the normal process of sodium, potassium, and chloride reabsorption. This reduction in sodium reabsorption leads to a decrease in the osmotic gradient within the nephron, thus preventing the passive reabsorption of water that normally follows sodium reabsorption.
- Increased Urine Output: The disrupted reabsorption of sodium and other ions results in a higher concentration of these ions in the tubular fluid. This increased osmotic load in the nephron prevents the reabsorption of water, promoting diuresis.
2.8. Pharmacokinetics and Dose-Response
2.8.1. Bioavailability
- Furosemide, when administered orally, exhibits limited and highly variable bioavailability [73]. When kidney function is preserved, intravenous furosemide doses are almost twice as potent on a per-milligram basis as oral doses. In acute decompensated heart failure, a higher peak level may be required, and an intravenous dose may be more effective.
- Torsemide’s bioavailability can reach or exceed > 90% in patients with renal insufficiency, liver cirrhosis, and heart failure [74]. Torsemide’s bioavailability remains unchanged with food intake compared to the other two loop diuretics [75]. Torsemide’s peak serum concentration is similar to the other two substances but has the longest half-life of approximately 3.5 h vs. 1 h for furosemide and 2 h for bumetanide [76]. Passive venous congestion in HF patients can lead to gut edema, which can cause great variability in the diuretic effect, mainly of furosemide [77] due to malabsorption.
2.8.2. Onset and Duration of Action
- The onset of action is rapid, typically within 30 min of administration.
- The duration of action is relatively short, usually around 4 to 6 h, necessitating multiple daily dosing.
2.8.3. Dose–Response Curve
- Loop diuretics exhibit a steep dose–response curve, especially at lower doses.
- Lower doses of loop diuretics can cause a significant increase in diuresis, leading to pronounced sodium and water excretion.
- As the dose increases, the diuretic effect reaches a plateau, and further increases in dose may not significantly enhance diuresis but may increase the risk of adverse effects.
3. Diuretics in Heart Failure: Historical Perspective
3.1. Challenges in Diuretic Therapy
3.2. Diuretic Resistance (DR)
3.3. Treatment Strategies to Tackle DR
3.3.1. Loop Diuretics
3.3.2. Mineralocortiocoid
3.3.3. Carbonic Anhydrase Inhibitor
3.3.4. SGLT2 Inhibitors
3.3.5. Miscellaneous Approaches (Oral Vasopressin-2 Receptor Antagonist, Hypertonic Solutions, Dopamine)
4. Ultrafiltration Strategy (UF)
5. Guidelines
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crespo-Leiro, M.G.; Anker, S.D.; Maggioni, A.P.; Coats, A.J.; Filippatos, G.; Ruschitzka, F.; Ferrari, R.; Piepoli, M.F.; Jimenez, J.F.D.; Metra, M.; et al. European Society of Cardiology Heart Failure Long-Term Registry (ESC-HF-LT): 1-year follow-up outcomes and differences across regions. Eur. J. Heart Fail. 2016, 18, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.F.; Greiner, M.A.; Fonarow, G.C.; Hammill, B.G.; Heidenreich, P.A.; Yancy, C.W.; Peterson, E.D.; Curtis, L.H. Relationship Between Early Physician Follow-up and 30-Day Readmission Among Medicare Beneficiaries Hospitalized for Heart Failure. JAMA 2010, 303, 1716–1722. [Google Scholar] [CrossRef] [PubMed]
- Setoguchi, S.; Stevenson, L.W.; Schneeweiss, S. Repeated hospitalizations predict mortality in the community population with heart failure. Am. Heart J. 2007, 154, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Verbrugge, F.H.; Dupont, M.; Steels, P.; Grieten, L.; Swennen, Q.; Tang, W.W.; Mullens, W. The kidney in congestive heart failure: ‘are natriuresis, sodium, and diuretics really the good, the bad and the ugly?’. Eur. J. Heart Fail. 2014, 16, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Braam, B.; Cupples, W.A.; Joles, J.A.; Gaillard, C. Systemic arterial and venous determinants of renal hemodynamics in congestive heart failure. Heart Fail. Rev. 2012, 17, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Colombo, P.C.; Onat, D.; Harxhi, A.; Demmer, R.T.; Hayashi, Y.; Jelic, S.; LeJemtel, T.H.; Bucciarelli, L.; Kebschull, M.; Papapanou, P.; et al. Peripheral venous congestion causes inflammation, neurohormonal, and endothelial cell activation. Eur. Heart J. 2014, 35, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Metra, M.; Davison, B.; Bettari, L.; Sun, H.; Edwards, C.; Lazzarini, V.; Piovanelli, B.; Carubelli, V.; Bugatti, S.; Lombardi, C.; et al. Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ. Heart Fail. 2012, 5, 54–62. [Google Scholar] [CrossRef]
- Rosano, G.M.; Moura, B.; Metra, M.; Böhm, M.; Bauersachs, J.; Ben Gal, T.; Adamopoulos, S.; Abdelhamid, M.; Bistola, V.; Čelutkienė, J.; et al. Patient profiling in heart failure for tailoring medical therapy. A consensus document of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2021, 23, 872–881. [Google Scholar] [CrossRef]
- Ziaeian, B.; Fonarow, G.C. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 2016, 13, 368–378. [Google Scholar] [CrossRef]
- Van Aelst, L.N.; Arrigo, M.; Placido, R.; Akiyama, E.; Girerd, N.; Zannad, F.; Manivet, P.; Rossignol, P.; Badoz, M.; Sadoune, M.; et al. Acutely decompensated heart failure with preserved and reduced ejection fraction present with comparable haemodynamic congestion. Eur. J. Heart Fail. 2018, 20, 738–747. [Google Scholar] [CrossRef]
- Huang, S.; Vignon, P.; Mekontso-Dessap, A.; Tran, S.; Prat, G.; Chew, M.; Balik, M.; Sanfilippo, F.; Banauch, G.; Clau-Terre, F.; et al. Echocardiography findings in COVID-19 patients admitted to intensive care units: A multi-national observational study (the ECHO-COVID study). Intensiv. Care Med. 2022, 48, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Zong, R.; Wu, F.; Lin, H. Research Progress on the Mechanism of Right Heart-Related Pulmonary Edema. Evid.-Based Complement. Altern. Med. 2022, 2022, 8947780. [Google Scholar] [CrossRef] [PubMed]
- Mebazaa, A.; Pang, P.S.; Tavares, M.; Collins, S.P.; Storrow, A.B.; Laribi, S.; Andre, S.; Courtney, D.M.; Hasa, J.; Spinar, J.; et al. The impact of early standard therapy on dyspnoea in patients with acute heart failure: The URGENT-dyspnoea study. Eur. Heart J. 2010, 31, 832–841. [Google Scholar] [CrossRef] [PubMed]
- Gheorghiade, M.; Zannad, F.; Sopko, G.; Klein, L.; Piña, I.L.; Konstam, M.A.; Massie, B.M.; Roland, E.; Targum, S.; Collins, S.P.; et al. Acute Heart Failure Syndromes. Circulation 2005, 112, 3958–3968. [Google Scholar] [CrossRef]
- Gheorghiade, M.; Filippatos, G.; De Luca, L.; Burnett, J. Congestion in Acute Heart Failure Syndromes: An Essential Target of Evaluation and Treatment. Am. J. Med. 2006, 119, S3–S10. [Google Scholar] [CrossRef]
- Birukov, K.G. Cyclic Stretch, Reactive Oxygen Species, and Vascular Remodeling. Antioxid. Redox Signal. 2009, 11, 1651–1667. [Google Scholar] [CrossRef]
- Lind, L.; Ingelsson, M.; Sundstrom, J.; Ärnlöv, J. Impact of risk factors for major cardiovascular diseases: A comparison of life-time observational and Mendelian randomisation findings. Open Heart 2021, 8, e001735. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726, Erratum in Eur Heart J. 2021, 42, 4901. [Google Scholar] [CrossRef]
- Skinner, S.L.; Mccubbin, J.W.; Page, I.H. Renal Baroreceptor Control of Acute Renin Release in Normotensive, Nephrogenic and Neurogenic Hypertensive Dogs. Circ. Res. 1964, 15, 522–531. [Google Scholar] [CrossRef]
- Clark, A.L.; Cleland, J.G.F. Causes and treatment of oedema in patients with heart failure. Nat. Rev. Cardiol. 2013, 10, 156–170. [Google Scholar] [CrossRef]
- Fallick, C.; Sobotka, P.A.; Dunlap, M.E. Sympathetically Mediated Changes in Capacitance. Circ. Heart Fail. 2011, 4, 669–675. [Google Scholar] [CrossRef]
- Miller, W.L. Fluid Volume Overload and Congestion in Heart Failure. Circ. Heart Fail. 2016, 9, e002922. [Google Scholar] [CrossRef] [PubMed]
- Kemp, C.D.; Conte, J.V. The pathophysiology of heart failure. Cardiovasc. Pathol. 2012, 21, 365–371. [Google Scholar] [CrossRef] [PubMed]
- The Consensus Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N. Engl. J. Med. 1987, 316, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Salahuddin, N.; Sammani, M.; Hamdan, A.; Joseph, M.; Al-Nemary, Y.; Alquaiz, R.; Dahli, R.; Maghrabi, K. Fluid overload is an independent risk factor for acute kidney injury in critically Ill patients: Results of a cohort study. BMC Nephrol. 2017, 18, 45. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.P.; Salunke, B.G. Fluid Overload and Acute Kidney Injury. Indian J. Crit. Care Med. 2020, 24 (Suppl. S3), S94–S97. [Google Scholar] [CrossRef]
- Urso, C.; Brucculeri, S.; Caimi, G. Acid–base and electrolyte abnormalities in heart failure: Pathophysiology and implications. Heart Fail. Rev. 2015, 20, 493–503. [Google Scholar] [CrossRef]
- Elisaf, M.S.; Siamopoulos, K.C. Acid–base and electrolyte abnormalities in patients with congestive heart failure. Exp. Clin. Cardiol. 1997, 2, 140–144. [Google Scholar]
- Adrogué, H.J.; Madias, N.E. Hyponatremia. N. Engl. J. Med. 2000, 342, 1581–1589. [Google Scholar] [CrossRef]
- Filippatos, T.D. Hyponatremia in patients with heart failure. World J. Cardiol. 2013, 5, 317–328. [Google Scholar] [CrossRef]
- Klein, L.; O’connor, C.M.; Leimberger, J.D.; Gattis-Stough, W.; Piña, I.L.; Felker, G.M.; Adams, K.F.; Califf, R.M.; Gheorghiade, M.; OPTIME-CHF Investigators. Lower serum sodium is associated with increased short-term mortality in hospitalized patients with worsening heart failure: Heart failure: Results from the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF) study. Circulation 2005, 111, 2454–2460. [Google Scholar] [CrossRef]
- Cleland, J.G.; Dargie, H.J.; Robertson, I.; Robertson, J.I.; East, B.W. Total body electrolyte composition in patients with heart failure: A comparison with normal subjects and patients with untreated hypertension. Br. Heart J. 1987, 58, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, J.E.; Struthers, A.D. What is the optimal serum potassium level in cardiovascular patients? J. Am. Coll. Cardiol. 2004, 43, 155–161. [Google Scholar] [CrossRef]
- Packer, M. Potential role of potassium as a determinant of morbidity and mortality in patients with systemic hypertension and congestive heart failure. Am. J. Cardiol. 1990, 65, E45–E51. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.H. Aldosterone and Heart Failure: The Rest of the Story. Heart Fail. Rev. 2005, 10, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Bielecka-Dabrowa, A.; Mikhailidis, D.P.; Jones, L.; Rysz, J.; Aronow, W.S.; Banach, M. The meaning of hypokalemia in heart failure. Int. J. Cardiol. 2012, 158, 12–17. [Google Scholar] [CrossRef]
- Ralston, M.A.; Murnane, M.R.; Unverferth, D.v.; Leier, C.v. Serum and tissue magnesium concentrations in patients with heart failure and serious ventricular arrhythmias. Ann. Intern. Med. 1990, 113, 841–846. [Google Scholar] [CrossRef]
- Seelig, M.S.; Haddy, F.J. Magnesium and the arteries. I. Effects of magnesium on arteries and on the retention of sodium, potassium, and calcium, in Magnesium in Health and Disease. In Proceedings of the Second International Symposium on Magnesium, American College of Nutrition, Society for Development of Research in Magnesium, Montreal, Canada, 30 May–1 June 1976; Cantin, M., Seelig, M.S., Eds.; SP Medical & Scientific Books: Jamaica, NY, USA, 1980; pp. 605–638. [Google Scholar]
- Douban, S.; Brodsky, M.A.; Whang, D.D.; Whang, R. Significance of magnesium in congestive heart failure. Am. Heart J. 1996, 132, 664–671. [Google Scholar] [CrossRef]
- Wester, P.O. Electrolyte balance in heart failure and the role for magnesium ions. Am. J. Cardiol. 1992, 70, 44–49. [Google Scholar] [CrossRef]
- Bourdeau, J.; Buss, S.; Vurek, G.G. 1982, Undefined. (n.d.). Inhibition of Calcium Absorption in the Cortical Thick Ascending Limb of Henle’s Loop by Furosemide. Available online: https://jpet.aspetjournals.org/content/221/3/815.short (accessed on 31 October 2023).
- Rimailho, A.; Bouchard, P.; Schaison, G.; Richard, C.; Auzópy, P. Improvement of hypocalcemic cardiomyopathy by correction of serum calcium level. Am. Heart J. 1985, 109 Pt 1, 611–613. [Google Scholar] [CrossRef]
- Gheorghiade, M.; Vaduganathan, M.; Fonarow, G.C.; Bonow, R.O. Rehospitalization for heart failure: Problems and perspectives. J. Am. Coll. Cardiol. 2013, 61, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Mills, R.M. The Heart Failure Frequent Flyer: An Urban Legend. Clin. Cardiol. 2009, 32, 67–68. [Google Scholar] [CrossRef] [PubMed]
- Koratala, A.; Kazory, A. Natriuretic Peptides as Biomarkers for Congestive States: The Cardiorenal Divergence. Dis. Markers 2017, 2017, 1454986. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.; Sobotka, P.A. Redefining the therapeutic objective in decompensated heart failure: Hemoconcentration as a surrogate for plasma refill rate. J. Card. Fail. 2006, 12, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Inomata, T.; Yazaki, M.; Iida, Y.; Kaida, T.; Ikeda, Y.; Nabeta, T.; Ishii, S.; Maekawa, E.; Yanagisawa, T.; et al. Hemodilution after Initial Treatment in Patients with Acute Decompensated Heart Failure. Int. Heart J. 2018, 59, 573–579. [Google Scholar] [CrossRef]
- van der Meer, P.; Postmus, D.; Ponikowski, P.; Cleland, J.G.; O’Connor, C.M.; Cotter, G.; Metra, M.; Davison, B.A.; Givertz, M.M.; Mansoor, G.A.; et al. The predictive value of short-term changes in hemoglobin concentration in patients presenting with acute decompensated heart failure. J. Am. Coll. Cardiol. 2013, 61, 1973–1981. [Google Scholar] [CrossRef]
- Sharma, R.; Francis, D.P.; Pitt, B.; Poole-Wilson, P.A.; Coats, A.J.; Anker, S.D. Haemoglobin predicts survival in patients with chronic heart failure: A substudy of the ELITE II trial. Eur. Heart J. 2004, 25, 1021–1028. [Google Scholar] [CrossRef]
- Denault, A.Y.; Langevin, S.; Lessard, M.R.; Courval, J.F.; Desjardins, G. Transthoracic echocardiographic evaluation of the heart and great vessels. Évaluation échocardiographique transthoracique du cœur et des grands vais-seaux. Can. J. Anaesth. 2018, 65, 449–472. [Google Scholar] [CrossRef]
- Konstam, M.A.; Kiernan, M.S.; Bernstein, D.; Bozkurt, B.; Jacob, M.; Kapur, N.K.; Kociol, R.D.; Lewis, E.F.; Mehra, M.R.; Pagani, F.D.; et al. Evaluation and Management of Right-Sided Heart Failure: A Scientific Statement From the American Heart Association. Circulation 2018, 137, e578–e622. [Google Scholar] [CrossRef]
- Huang, S.; Vieillard-Baron, A.; Evrard, B.; Prat, G.; Chew, M.S.; Balik, M.; Clau-Terré, F.; De Backer, D.; Dessap, A.M.; Orde, S.; et al. Echocardiography phenotypes of right ventricular involvement in COVID-19 ARDS patients and ICU mortality: Post-hoc (exploratory) analysis of repeated data from the ECHO-COVID study. Intensiv. Care Med. 2023, 49, 946–956. [Google Scholar] [CrossRef]
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report from the American Society of Echocardiography: Endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713. [Google Scholar] [CrossRef] [PubMed]
- Sanfilippo, F.; La Via, L.; Dezio, V.; Santonocito, C.; Amelio, P.; Genoese, G.; Astuto, M.; Noto, A. Assessment of the inferior vena cava collapsibility from subcostal and trans-hepatic imaging using both M-mode or artificial intelligence: A prospective study on healthy volunteers. Intensiv. Care Med. Exp. 2023, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Greenway, C.V.; Lautt, W.W. Distensibility of hepatic venous resistance sites and consequences on portal pressure. Am. J. Physiol. Circ. Physiol. 1988, 254, H452–H458. [Google Scholar] [CrossRef] [PubMed]
- Beaubien-Souligny, W.; Rhéaume, M.; Blondin, M.-C.; El-Barnachawy, S.; Fortier, A.; Éthier, J.; Legault, L.; Denault, A.Y. A Simplified Approach to Extravascular Lung Water Assessment Using Point-of-Care Ultrasound in Patients with End-Stage Chronic Renal Failure Undergoing Hemodialysis. Blood Purif. 2018, 45, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.N.; Singh, N.G.; Nagaraja, P.; Manjunatha, N. Portal venous pulsatility fraction, a novel transesophageal echocardiographic marker for right ventricular dysfunction in cardiac surgical patients. Ann. Card. Anaesth. 2020, 23, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Eljaiek, R.; Cavayas, Y.; Rodrigue, E.; Desjardins, G.; Lamarche, Y.; Toupin, F.; Denault, A.; Beaubien-Souligny, W. High postoperative portal venous flow pulsatility indicates right ventricular dysfunction and predicts complications in cardiac surgery patients. Br. J. Anaesth. 2019, 122, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.P.; Lindsell, C.J.; Storrow, A.B.; Abraham, W.T.; ADHERE Scientific Advisory Committee, Investigators and Study Group. Prevalence of negative chest radiography results in the emergency department patient with decompensated heart failure. Ann. Emerg. Med. 2006, 47, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Volpicelli, G. Lung Sonography. J. Ultrasound Med. 2013, 32, 165–171. [Google Scholar] [CrossRef]
- Volpicelli, G.; Elbarbary, M.; Blaivas, M.; Lichtenstein, D.A.; Mathis, G.; Kirkpatrick, A.W.; Melniker, L.; Gargani, L.; Noble, V.E.; Via, G.; et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012, 38, 577–591. [Google Scholar] [CrossRef]
- Gargani, L.; Frassi, F.; Soldati, G.; Tesorio, P.; Gheorghiade, M.; Picano, E. Ultrasound lung comets for the differential diagnosis of acute cardiogenic dyspnoea: A comparison with natriuretic peptides. Eur. J. Heart Fail. 2008, 10, 70–77. [Google Scholar] [CrossRef]
- Rivas-Lasarte, M.; Alvarez-Garcia, J.; Fernández-Martínez, J.; Maestro, A.; López-López, L.; Solé-González, E.; Pirla, M.J.; Mesado, N.; Mirabet, S.; Fluvià, P.; et al. Lung ultrasound-guided treatment in ambulatory patients with heart failure: A randomized controlled clinical trial (LUS-HF study). Eur. J. Heart Fail. 2019, 21, 1605–1613. [Google Scholar] [CrossRef] [PubMed]
- Araiza-Garaygordobil, D.; Gopar-Nieto, R.; Martinez-Amezcua, P.; Cabello-López, A.; Alanis-Estrada, G.; Luna-Herbert, A.; González-Pacheco, H.; Paredes-Paucar, C.P.; Sierra-Lara, M.D.; Briseño-De la Cruz, J.L.; et al. A randomized controlled trial of lung ultrasound-guided therapy in heart failure (CLUSTER-HF study). Am. Heart J. 2020, 227, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, C.; Torino, C.; Mallamaci, F.; Sarafidis, P.; Papagianni, A.; Ekart, R. A randomized multicenter trial on a lung ultrasound-guided treatment strategy in patients on chronic hemodialysis with high cardiovascular risk. Kidney Int. 2021, 100, 1325–1333. [Google Scholar] [CrossRef]
- Platz, E.; Merz, A.A.; Jhund, P.S.; Vazir, A.; Campbell, R.; McMurray, J.J. Dynamic changes and prognostic value of pulmonary congestion by lung ultrasound in acute and chronic heart failure: A systematic review. Eur. J. Heart Fail. 2017, 19, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H. Pericardial and pleural effusions in decompensated chronic heart failure. Am. Hear. J. 2000, 139, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Woodring, J.H. Distribution of pleural effusion in congestive heart failure: What is atypical? South Med. J. 2005, 98, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Light, R.W.; Macgregor, M.I.; Luchsinger, P.C.; Ball, W.C. Pleural effusions: The diagnostic separation of transudates and exudates. Ann. Intern. Med. 1972, 77, 507–513. [Google Scholar] [CrossRef]
- Bielsa, S.; Porcel, J.M.; Castellote, J.; Mas, E.; Esquerda, A.; Light, R.W. Solving the Light’s criteria misclassification rate of cardiac and hepatic transudates. Respirology 2012, 17, 721–726. [Google Scholar] [CrossRef]
- Yorgancıoğlu, A.; Alpaydın, A.O.; Yaman, N.; Taneli, F.; Bayturan, O.; Coşkun, A.S.; Celik, P. Serum and pleural fluid N-Terminal-Pro-B-Type natriuretic peptide concentrations in the differential diagnosis of pleural effusions. Tuberk. Toraks 2011, 59, 1–7. [Google Scholar] [CrossRef]
- Lazarevic, A.; Dobric, M.; Goronja, B.; Trninic, D.; Krivokuca, S.; Jovanic, J.; Picano, E. Lung ultrasound-guided therapeutic thoracentesis in refractory congestive heart failure. Acta Cardiol. 2019, 75, 398–405. [Google Scholar] [CrossRef]
- Shankar, S.S.; Brater, D.C. Loop diuretics: From the Na-K-2Cl transporter to clinical use. Am. J. Physiol. Physiol. 2003, 284, F11–F21. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, S.S.; Khatta, M.; Wentworth, D.; Roffman, D.; Fisher, M.L.; Kramer, W.G. The effects of diuresis on the pharmacokinetics of the loop diuretics furosemide and torsemide in patients with heart failure. Am. J. Med. 1998, 104, 533–538. [Google Scholar] [CrossRef] [PubMed]
- McCrindle, J.L.; Wa, T.C.L.K.; Barron, W.; Prescott, L.F. Effect of food on the absorption of frusemide and bumetanide in man. Br. J. Clin. Pharmacol. 1996, 42, 743–746. [Google Scholar] [CrossRef] [PubMed]
- Vargo, D.L.; Kramer, W.G.; Black, P.K.; Smith, W.B.; Serpas, T.; Brater, D.C. Bioavailability, pharmacokinetics, and pharmacodynamics of torsemide and furosemide in patients with congestive heart failure. Clin. Pharmacol. Ther. 1995, 57, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Vasko, M.R.; Brown-Cartwright, D.; Knochel, J.P.; Nixon, J.V.; Brater, D.C. Furosemide absorption altered in decompensated congestive heart failure. Ann. Intern. Med. 1985, 102, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, R.; Balla, C.; Fucili, A. Heart failure: An historical perspective. Eur. Heart J. Suppl. 2016, 18, G3–G10. [Google Scholar] [CrossRef]
- Bianucci, R.; Loynes, R.D.; Sutherland, M.L.; Lallo, R.; Kay, G.L.; Froesch, P.; Pallen, M.J.; Charlier, P.; Nerlich, A.G. Forensic Analysis Reveals Acute Decompensation of Chronic Heart Failure in a 3500-Year-Old Egyptian Dignitary. J. Forensic Sci. 2016, 61, 1378–1381. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.M. The “modern” view of heart failure: How did we get here? Circ. Heart Fail. 2008, 1, 63–71. [Google Scholar] [CrossRef]
- Ernest Henry Starling. The Linacre Lecture on the Law of the Heart Given at Cambridge, 1915. Nature 1918, 101, 43. [Google Scholar] [CrossRef]
- Anand, I.S.; Ferrari, R.; Kalra, G.S.; Wahi, P.L.; Poole-Wilson, P.A.; Harris, P.C. Pathogenesis of edema in constrictive pericarditis. Studies of body water and sodium, renal function, hemodynamics, and plasma hormones before and after pericardiectomy. Circulation 1991, 83, 1880–1887. [Google Scholar] [CrossRef]
- Rangaswami, J.; Bhalla, V.; Blair, J.E.; Chang, T.I.; Costa, S.; Lentine, K.L.; Lerma, E.V.; Mezue, K.; Molitch, M.; Mullens, W.; et al. Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies: A Scientific Statement from the American Heart Association. Circulation 2019, 139, E840–E878. [Google Scholar] [CrossRef] [PubMed]
- Jentzer, J.C.; Bihorac, A.; Brusca, S.B.; Del Rio-Pertuz, G.; Kashani, K.; Kazory, A.; Kellum, J.A.; Mao, M.; Moriyama, B.; Morrow, D.A.; et al. Contemporary Management of Severe Acute Kidney Injury and Refractory Cardiorenal Syndrome: JACC Council Perspectives. J. Am. Coll. Cardiol. 2020, 76, 1084–1101, Erratum in J. Am. Coll. Cardiol. 2021, 77, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Felker, G.M.; Ellison, D.H.; Mullens, W.; Cox, Z.L.; Testani, J.M. Diuretic Therapy for Patients With Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 1178–1195. [Google Scholar] [CrossRef] [PubMed]
- Ter Maaten, J.M.; Valente, M.A.E.; Damman, K.; Hillege, H.L.; Navis, G.; Voors, A.A. Diuretic response in acute heart failure—Pathophysiology, evaluation, and therapy. Nat. Rev. Cardiol. 2015, 12, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Neuberg, G.W.; Miller, A.B.; O’Connor, C.M.; Belkin, R.N.; Carson, P.E.; Cropp, A.B.; Frid, D.J.; Nye, R.G.; Pressler, M.L.; Wertheimer, J.H.; et al. Diuretic resistance predicts mortality in patients with advanced heart failure. Am. Heart J. 2002, 144, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, C.S.; Mitch, W.E.; Kelly, R.A.; Skorecki, K.; Meyer, T.W.; Friedman, P.A.; Souney, P.F. Response of the kidney to furosemide. I. Effects of salt intake and renal compensation. J. Lab. Clin. Med. 1983, 102, 450–458. [Google Scholar]
- Testani, J.M.; Brisco, M.A.; Turner, J.M.; Spatz, E.S.; Bellumkonda, L.; Parikh, C.R.; Tang, W.W. Loop diuretic efficiency: A metric of diuretic responsiveness with prognostic importance in acute decompen-sated heart failure. Circ. Heart Fail. 2014, 7, 261–270. [Google Scholar] [CrossRef]
- Gheorghiade, M.; Filippatos, G. Reassessing treatment of acute heart failure syndromes: The ADHERE Registry. Eur. Heart J. Suppl. 2005, 7 (Suppl. B), B13–B19. [Google Scholar] [CrossRef]
- Felker, G.M.; Lee, K.L.; Bull, D.A.; Redfield, M.M.; Stevenson, L.W.; Goldsmith, S.R.; LeWinter, M.M.; Deswal, A.; Rouleau, J.L.; Ofili, E.O.; et al. Diuretic Strategies in Patients with Acute Decompensated Heart Failure. N. Engl. J. Med. 2011, 364, 797–805. [Google Scholar] [CrossRef]
- Testani, J.M.; Brisco, M.A.; Kociol, R.D.; Jacoby, D.; Bellumkonda, L.; Parikh, C.R.; Coca, S.G.; Tang, W.W. Substantial Discrepancy Between Fluid and Weight Loss During Acute Decompensated Heart Failure Treatment. Am. J. Med. 2015, 128, 776–783.e4. [Google Scholar] [CrossRef]
- Testani, J.M.; Hanberg, J.S.; Cheng, S.; Rao, V.; Onyebeke, C.; Laur, O.; Kula, A.; Chen, M.; Wilson, F.P.; Darlington, A.; et al. Rapid and Highly Accurate Prediction of Poor Loop Diuretic Natriuretic Response in Patients With Heart Failure. Circ. Heart Fail. 2016, 9, e002370. [Google Scholar] [CrossRef] [PubMed]
- Jentzer, J.C.; DeWald, T.A.; Hernandez, A.F. Combination of loop diuretics with thiazide-type diuretics in heart failure. J. Am. Coll. Cardiol. 2010, 56, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Sinha, A.D. Thiazide diuretics in advanced chronic kidney disease. J. Am. Soc. Hypertens. 2012, 6, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Brisco, M.A.; Zile, M.R.; Hanberg, J.S.; Wilson, F.P.; Parikh, C.R.; Coca, S.G.; Tang, W.W.; Testani, J.M. Relevance of Changes in Serum Creatinine During a Heart Failure Trial of Decongestive Strategies: Insights from the DOSE Trial. J. Card. Fail. 2016, 22, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Hanberg, J.S.; Tang, W.W.; Wilson, F.P.; Coca, S.G.; Ahmad, T.; Brisco, M.A.; Testani, J.M. An exploratory analysis of the competing effects of aggressive decongestion and high-dose loop diuretic therapy in the DOSE trial. Int. J. Cardiol. 2017, 241, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Matsue, Y.; Damman, K.; Voors, A.A.; Kagiyama, N.; Yamaguchi, T.; Kuroda, S.; Okumura, T.; Kida, K.; Mizuno, A.; Oishi, S.; et al. Time-to-Furosemide Treatment and Mortality in Patients Hospitalized with Acute Heart Failure. J. Am. Coll. Cardiol. 2017, 69, 3042–3051. [Google Scholar] [CrossRef]
- Heart Failure Society of America; Lindenfeld, J.; Albert, N.M.; Boehmer, J.P.; Collins, S.P.; Ezekowitz, J.A.; Givertz, M.M.; Katz, S.D.; Klapholz, M.; Moser, D.K.; et al. HFSA 2010 Comprehensive Heart Failure Practice Guideline. J. Card. Fail. 2010, 16, e1–e194. [Google Scholar] [CrossRef]
- Miles, J.A.; Hanumanthu, B.K.; Patel, K.; Chen, M.; Siegel, R.M.; Kokkinidis, D.G. Torsemide versus furosemide and intermediate-term outcomes in patients with heart failure: An updated meta-analysis. J. Cardiovasc. Med. 2019, 20, 379–388. [Google Scholar] [CrossRef]
- Mentz, R.J.; Anstrom, K.J.; Eisenstein, E.L.; Sapp, S.; Greene, S.J.; Morgan, S.; Testani, J.M.; Harrington, A.H.; Sachdev, V.; Ketema, F.; et al. Effect of Torsemide vs Furosemide After Discharge on All-Cause Mortality in Patients Hospitalized With Heart Failure: The TRANSFORM-HF Randomized Clinical Trial. JAMA 2023, 329, 214–223. [Google Scholar] [CrossRef]
- Cosín, J.; Díez, J.; TORIC investigators. Torasemide in chronic heart failure: Results of the TORIC study. Eur. J. Heart Fail. 2002, 4, 507–513, Erratum in Eur. J. Heart Fail 2002, 4, 667. [Google Scholar] [CrossRef]
- Eng, M.; Bansal, S. Use of natriuretic-doses of spironolactone for treatment of loop diuretic resistant acute decompensated heart failure. Int. J. Cardiol. 2014, 170, e68–e69. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; Anstrom, K.J.; Felker, G.M.; Givertz, M.M.; Kalogeropoulos, A.P.; Konstam, M.A.; Mann, D.L.; Margulies, K.B.; McNulty, S.E.; Mentz, R.J.; et al. Efficacy and Safety of Spironolactone in Acute Heart Failure: The ATHENA-HF Randomized Clinical Trial. JAMA Cardiol. 2017, 2, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Verbrugge, F.H.; Dupont, M.; Bertrand, P.B.; Nijst, P.; Penders, J.; Dens, J.; Verhaert, D.; Vandervoort, P.; Tang, W.H.W.; Mullens, W. Determinants and impact of the natriuretic response to diuretic therapy in heart failure with reduced ejection fraction and volume overload. Acta Cardiol. 2015, 70, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Knauf, H.; Mutschler, E. Sequential Nephron Blockade Breaks Resistance to Diuretics in Edematous States. J. Cardiovasc. Pharmacol. 1997, 29, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Mullens, W.; Dauw, J.; Martens, P.; Verbrugge, F.H.; Nijst, P.; Meekers, E.; Tartaglia, K.; Chenot, F.; Moubayed, S.; Dierckx, R.; et al. Acetazolamide in Acute Decompensated Heart Failure with Volume Overload. N. Engl. J. Med. 2022, 387, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Boorsma, E.M.; Beusekamp, J.C.; ter Maaten, J.M.; Figarska, S.M.; Danser, A.J.; van Veldhuisen, D.J.; van der Meer, P.; Heerspink, H.J.; Damman, K.; Voors, A.A. Effects of empagliflozin on renal sodium and glucose handling in patients with acute heart failure. Eur. J. Heart Fail. 2020, 23, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Sattar, N.; Januzzi, J.; Verma, S.; Lund, L.H.; Fitchett, D.; Zeller, C.; George, J.T.; Brueckmann, M.; Ofstad, A.P.; et al. Empagliflozin Is Associated With a Lower Risk of Post-Acute Heart Failure Rehospitalization and Mortality. Circulation 2019, 139, 1458–1460. [Google Scholar] [CrossRef]
- Voors, A.A.; Angermann, C.E.; Teerlink, J.R.; Collins, S.P.; Kosiborod, M.; Biegus, J.; Ferreira, J.P.; Nassif, M.E.; Psotka, M.A.; Tromp, J.; et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: A multinational randomized trial. Nat. Med. 2022, 28, 568–574. [Google Scholar] [CrossRef]
- Damman, K.; Beusekamp, J.C.; Boorsma, E.M.; Swart, H.P.; Smilde, T.D.; Elvan, A.; van Eck, J.M.; Heerspink, H.J.; Voors, A.A. Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). Eur. J. Heart Fail. 2020, 22, 713–722. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Szarek, M.; Steg, P.G.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Voors, A.A.; Metra, M.; et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N. Engl. J. Med. 2021, 384, 117–128. [Google Scholar] [CrossRef]
- McMurray, J.J.; Adamopoulos, S.; Anker, S.D.; Auricchio, A.; Böhm, M.; Dickstein, K.; Falk, V.; Filippatos, G.; Fonseca, C.; Gomez-Sanchez, M.A.; et al. ESC Committee for Practice Guidelines. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2012, 33, 1787–1847. [Google Scholar] [CrossRef] [PubMed]
- Gheorghiade, M.; Gattis, W.A.; O’Connor, C.M.; Adams, J.K.F.; Elkayam, U.; Barbagelata, A.; Ghali, J.K.; Benza, R.L.; McGrew, F.A.; Klapholz, M.; et al. Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: A randomized controlled trial. JAMA 2004, 291, 1963–1971. [Google Scholar] [CrossRef] [PubMed]
- Pang, P.S.; Konstam, M.A.; Krasa, H.B.; Swedberg, K.; Zannad, F.; Blair, J.E.; Zimmer, C.; Teerlink, J.R.; Maggioni, A.P.; Burnett, J.C.; et al. Effects of tolvaptan on dyspnoea relief from the EVEREST trials. Eur. Heart J. 2009, 30, 2233–2240. [Google Scholar] [CrossRef] [PubMed]
- Felker, G.M.; Mentz, R.J.; Cole, R.T.; Adams, K.F.; Egnaczyk, G.F.; Fiuzat, M.; Patel, C.B.; Echols, M.; Khouri, M.G.; Tauras, J.M.; et al. Efficacy and Safety of Tolvaptan in Patients Hospitalized with Acute Heart Failure. J. Am. Coll. Cardiol. 2017, 69, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Licata, G.; Di Pasquale, P.; Parrinello, G.; Cardinale, A.; Scandurra, A.; Follone, G.; Argano, C.; Tuttolomondo, A.; Paterna, S. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as bolus in refractory congestive heart failure: Long-term effects. Am. Heart J. 2003, 145, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Ungar, A.; Fumagalli, S.; Marini, M.; Di Serio, C.; Tarantini, F.; Boncinelli, L.; Baldereschi, G.; Valoti, P.; La Cava, G.; Olianti, C.; et al. Renal, but not systemic, hemodynamic effects of dopamine are influenced by the severity of congestive heart failure. Crit. Care Med. 2004, 32, 1125–1129. [Google Scholar] [CrossRef]
- Chen, H.H.; Anstrom, K.J.; Givertz, M.M.; Stevenson, L.W.; Semigran, M.J.; Goldsmith, S.R.; Bart, B.A.; Bull, D.A.; Stehlik, J.; LeWinter, M.M.; et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction. JAMA 2013, 310, 2533–2543. [Google Scholar] [CrossRef]
- Wan, S.-H.; Stevens, S.R.; Borlaug, B.A.; Anstrom, K.J.; Deswal, A.; Felker, G.M.; Givertz, M.M.; Bart, B.A.; Tang, W.W.; Redfield, M.M.; et al. Differential response to low-dose dopamine or low-dose nesiritide in acute heart failure with reduced or preserved ejection fraction. Circ. Heart Fail. 2016, 9, e002593. [Google Scholar] [CrossRef]
- Costanzo, M.R.; Ronco, C.; Abraham, W.T.; Agostoni, P.; Barasch, J.; Fonarow, G.C.; Gottlieb, S.S.; Jaski, B.E.; Kazory, A.; Levin, A.P.; et al. Extracorporeal Ultrafiltration for Fluid Overload in Heart Failure: Current Status and Prospects for Further Research. J. Am. Coll. Cardiol. 2017, 69, 2428–2445. [Google Scholar] [CrossRef]
- Costanzo, M.R.; Guglin, M.E.; Saltzberg, M.T.; Jessup, M.L.; Bart, B.A.; Teerlink, J.R.; Jaski, B.E.; Fang, J.C.; Feller, E.D.; Haas, G.J.; et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J. Am. Coll. Cardiol. 2007, 49, 675–683, Erratum in J. Am. Coll. Cardiol. 2007, 49, 1136. [Google Scholar] [CrossRef]
- Grodin, J.L.; Carter, S.; Bart, B.A.; Goldsmith, S.R.; Drazner, M.H.; Tang, W.H.W. Direct comparison of ultrafiltration to pharmacological decongestion in heart failure: A per-protocol analysis of CARRESS-HF. Eur. J. Heart Fail. 2018, 20, 1148–1156. [Google Scholar] [CrossRef]
- Costanzo, M.R.; Negoianu, D.; Fonarow, G.C.; Jaski, B.E.; Bart, B.A.; Heywood, J.T.; Nabut, J.L.; Schollmeyer, M.P. Rationale and design of the Aquapheresis Versus Intravenous Diuretics and Hospitalization for Heart Failure (AVOID-HF) trial. Am. Heart J. 2015, 170, 471–482. [Google Scholar] [CrossRef]
- Marenzi, G.; Muratori, M.; Cosentino, E.R.; Rinaldi, E.R.; Donghi, V.; Milazzo, V.; Ferramosca, E.; Borghi, C.; Santoro, A.; Agostoni, P. Continuous ultrafiltration for congestive heart failure: The CUORE trial. J. Card. Fail. 2014, 20, 9–17, Erratum in J. Card Fail. 2014, 20, 378. [Google Scholar] [CrossRef]
Types of Heart Failure | Criteria |
---|---|
Heart Failure with reduced ejection fraction (HFrEF) | Symptoms ± Signs |
LVEF ≤ 40% | |
Heart Failure with mildly reduced ejection fraction (HFmrEF) | Symptoms ± Signs |
LVEF 40–49% | |
Heart Failure with preserved ejection fraction (HFpEF) | Symptoms ± Signs |
LVEF ≥ 50% |
Class I | No limitation of physical activity. Ordinary physical activity does not cause undue breathlessness, fatigue, or palpitations. |
Class II | Slight limitation of physical activity. Comfortable at rest, but ordinary physical activity results in undue breathlessness, fatigue, or palpitations |
Class II | Marked limitation of physical activity. Comfortable at rest, but less than ordinary activity results undue breathlessness, fatigue, or palpitations. |
Class IV | Unable to carry on any physical activity without discomfort. Symptoms at rest can be present. If any physical activity is undertaken, discomfort is increased. |
Light’s criteria |
An effusion with any of the following characteristics is classified as an exudate |
pleural: serum ratio > 0.5 pleural: serum LDH ratio > 0.6 pleural LDH > 2/3 of the upper limit of normal for the serum |
An effusion with none of these characteristics is classified as a transudate. |
Diuretics Classification | Drugs Name | Site of Action | Mechanism of Action | Effects on Electrolytes |
---|---|---|---|---|
Loop diuretics | Furosemide Torasemide Bumetanide | Thick ascending limp of the loop of Henle | Inhibition of NaCl and the Na-K-2Cl cotransporter | ↓ K+, Na+ in blood ↑ Bicarbonate excretion in urine and cause metabolic acidosis |
Thiazide diuretics Thiazide-like diuretic | Hydrochlorothiazide Chlorthalidone Amiloride Clorapamide Indapamide | Distal tubule Additional proximal tubular action | Inhibition of NaCl cotransport Vasodilator | ↓ K+, Na+, Mg2+ ↑ Ca+2 and uric acid blood level ↓ Cl− |
Carbonic anhydrase inhibitors | Acetazolamide Dorazolamide Methazolamide Dichlorphenamide | Proximal convoluted tubule | Inhibition of carbonic anhydrase | ↓ K+, Na+ in blood ↑ NAHCO3− excretion in urine and cause metabolic acidosis |
Diuretics | Extrarenal Effects | Common or Important Side Effects |
---|---|---|
LD | ↑ Venous capacitance ↑ Systemic vascular resistance ↓ Cardiac preload if chronically used | Ototoxicity Lipid abnormalities Rashes Hyperuricaemia Hyperglycaemia Dehydration |
THZ | ↑ Venous capacitance May be dose related | ↑ LDL and triglycerides (may be transient) Hyperuricaemia Impotence Pancreatitis Rashes |
MRA | Antiandrogenic | Hyperkalaemia |
CAI | Raised level CO2 in brain and lowering of pH, leading to seizure threshold. Lowering intraocular tension Decreased gastric HCl and pancreatic NAHCO3− secretion | Neuropathy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alevroudis, I.; Kotoulas, S.-C.; Tzikas, S.; Vassilikos, V. Congestion in Heart Failure: From the Secret of a Mummy to Today’s Novel Diagnostic and Therapeutic Approaches: A Comprehensive Review. J. Clin. Med. 2024, 13, 12. https://doi.org/10.3390/jcm13010012
Alevroudis I, Kotoulas S-C, Tzikas S, Vassilikos V. Congestion in Heart Failure: From the Secret of a Mummy to Today’s Novel Diagnostic and Therapeutic Approaches: A Comprehensive Review. Journal of Clinical Medicine. 2024; 13(1):12. https://doi.org/10.3390/jcm13010012
Chicago/Turabian StyleAlevroudis, Ioannis, Serafeim-Chrysovalantis Kotoulas, Stergios Tzikas, and Vassilios Vassilikos. 2024. "Congestion in Heart Failure: From the Secret of a Mummy to Today’s Novel Diagnostic and Therapeutic Approaches: A Comprehensive Review" Journal of Clinical Medicine 13, no. 1: 12. https://doi.org/10.3390/jcm13010012
APA StyleAlevroudis, I., Kotoulas, S. -C., Tzikas, S., & Vassilikos, V. (2024). Congestion in Heart Failure: From the Secret of a Mummy to Today’s Novel Diagnostic and Therapeutic Approaches: A Comprehensive Review. Journal of Clinical Medicine, 13(1), 12. https://doi.org/10.3390/jcm13010012