What Is New in Metabolic Dysfunction-Associated Steatotic Liver Disease in Lean Individuals: From Bench to Bedside
Abstract
:1. Introduction
2. Definition of MASLD in Lean Individuals
3. Epidemiology
4. Pathogenesis of MASLD in Lean Individual
4.1. Polygenic Effect of Single-Nucleotide Polymorphisms on Lean Patients with MASLD
4.2. Metabolic Risk Profiles in Lean Individuals with MASLD
4.3. Cardiovascular Risk Factors in Lean Individuals with MASLD
4.4. Lifestyles, Smoking, Physical Activity, and Sarcopenia
4.5. Gut Microbiome
5. Natural History of MASLD in Lean Individuals
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Majumdar, A.; Tsochatzis, E.A. Changing trends of liver transplantation and mortality from non-alcoholic fatty liver disease. Metabolism 2020, 111, 154291. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Danpanichkul, P.; Ng, C.H.; Muthiah, M.D.; Duangsonk, K.; Yong, J.N.; Tan, D.J.H.; Lim, W.H.; Wong, Z.Y.; Syn, N.; Tsusumi, T.; et al. The silent burden of non-alcoholic fatty liver disease in the elderly: A global burden of disease analysis. Aliment. Pharmacol. Ther. 2023, 58, 1062–1074. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Stepanova, M.; Ong, J.; Trimble, G.; AlQahtani, S.; Younossi, I.; Ahmed, A.; Racila, A.; Henry, L. Nonalcoholic Steatohepatitis Is the Most Rapidly Increasing Indication for Liver Transplantation in the United States. Clin. Gastroenterol. Hepatol. 2021, 19, 580–589.e5. [Google Scholar] [CrossRef] [PubMed]
- Danpanichkul, P.; Kongarin, S.; Permpatdechakul, S.; Polpichai, N.; Duangsonk, K.; Manosroi, W.; Chaiyakunapruk, N.; Mousa, O.Y.; Kim, D.; Chen, V.L.; et al. The Surreptitious Burden of Nonalcoholic Fatty Liver Disease in the Elderly in the Asia-Pacific Region: An Insight from the Global Burden of Disease Study 2019. J. Clin. Med. 2023, 12, 6456. [Google Scholar] [CrossRef] [PubMed]
- Solomon, A.; Negrea, M.O.; Cipaian, C.R.; Boicean, A.; Mihaila, R.; Rezi, C.; Cristinescu, B.A.; Berghea-Neamtu, C.S.; Popa, M.L.; Teodoru, M.; et al. Interactions between Metabolic Syndrome, MASLD, and Arterial Stiffening: A Single-Center Cross-Sectional Study. Healthcare 2023, 11, 2696. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Y.; Dhaliwal, J.; Mouzaki, M. Lean non-alcoholic fatty liver disease. Clin. Nutr. 2019, 38, 975–981. [Google Scholar] [CrossRef] [PubMed]
- De, A.; Bhagat, N.; Mehta, M.; Taneja, S.; Duseja, A. Metabolic dysfunction-associated steatotic liver disease (MASLD) definition is better than MAFLD criteria for lean patients with NAFLD. J. Hepatol. 2023, 79. [Google Scholar] [CrossRef]
- Francque, S.; Wong, V.W. NAFLD in lean individuals: Not a benign disease. Gut 2022, 71, 234–236. [Google Scholar] [CrossRef]
- Duseja, A.; De, A.; Wong, V. Special Population: Lean Nonalcoholic Fatty Liver Disease. Clin. Liver Dis. 2023, 27, 451–469. [Google Scholar] [CrossRef]
- Eslam, M.; Chen, F.; George, J. NAFLD in Lean Asians. Clin. Liver Dis. 2020, 16, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Seto, W.K.; Yuen, M.F. Nonalcoholic fatty liver disease in Asia: Emerging perspectives. J. Gastroenterol. 2017, 52, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Zou, B.; Yeo, Y.H.; Li, J.; Huang, D.Q.; Wu, Y.; Yang, H.; Liu, C.; Kam, L.Y.; Tan, X.X.E.; et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2020, 5, 739–752. [Google Scholar] [CrossRef]
- Young, S.; Tariq, R.; Provenza, J.; Satapathy, S.K.; Faisal, K.; Choudhry, A.; Friedman, S.L.; Singal, A.K. Prevalence and Profile of Nonalcoholic Fatty Liver Disease in Lean Adults: Systematic Review and Meta-Analysis. Hepatol. Commun. 2020, 4, 953–972. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.; Ng, C.H.; Phang, P.H.; Chan, K.E.; Chin, Y.H.; Fu, C.E.; Zeng, R.W.; Xiao, J.; Tan, D.J.H.; Quek, J.; et al. Comparative Burden of Metabolic Dysfunction in Lean NAFLD vs Non-lean NAFLD—A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2023, 21, 1750–1760.e12. [Google Scholar] [CrossRef] [PubMed]
- Maier, S.; Wieland, A.; Cree-Green, M.; Nadeau, K.; Sullivan, S.; Lanaspa, M.A.; Johnson, R.J.; Jensen, T. Lean NAFLD: An underrecognized and challenging disorder in medicine. Rev. Endocr. Metab. Disord. 2021, 22, 351–366. [Google Scholar] [CrossRef]
- Eslam, M.; El-Serag, H.B.; Francque, S.; Sarin, S.K.; Wei, L.; Bugianesi, E.; George, J. Metabolic (dysfunction)-associated fatty liver disease in individuals of normal weight. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 638–651. [Google Scholar] [CrossRef]
- Idalsoaga, F.; Kulkarni, A.V.; Mousa, O.Y.; Arrese, M.; Arab, J.P. Non-alcoholic Fatty Liver Disease and Alcohol-Related Liver Disease: Two Intertwined Entities. Front. Med. 2020, 7, 448. [Google Scholar] [CrossRef]
- Zheng, M.; Huang, D.Q.; Konkwo, C.; Agrawal, S.; Khera, A.V.; Loomba, R.; Vilarinho, S.; Ajmera, V. Genomic analysis of lean individuals with NAFLD identifies monogenic disorders in a prospective cohort study. JHEP Rep. 2023, 5, 100692. [Google Scholar] [CrossRef]
- Youssefian, L.; Vahidnezhad, H.; Saeidian, A.H.; Pajouhanfar, S.; Sotoudeh, S.; Mansouri, P.; Amirkashani, D.; Zeinali, S.; Levine, M.A.; Peris, K.; et al. Inherited non-alcoholic fatty liver disease and dyslipidemia due to monoallelic ABHD5 mutations. J. Hepatol. 2019, 71, 366–370. [Google Scholar] [CrossRef]
- Adant, I.; Declercq, M.; Bird, M.; Bauters, M.; Boeckx, N.; Devriendt, K.; Cassiman, D.; Witters, P. Two cases of non-alcoholic fatty liver disease caused by biallelic ABHD5 mutations. J. Hepatol. 2020, 72, 1030–1032. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Esmaili, S.; Rogers, G.B.; Bugianesi, E.; Petta, S.; Marchesini, G.; Bayoumi, A.; Metwally, M.; Azardaryany, M.K.; Coulter, S.; et al. Lean NAFLD: A Distinct Entity Shaped by Differential Metabolic Adaptation. Hepatology 2020, 71, 1213–1227. [Google Scholar] [CrossRef] [PubMed]
- Feldman, A.; Eder, S.K.; Felder, T.K.; Kedenko, L.; Paulweber, B.; Stadlmayr, A.; Huber-Schonauer, U.; Niederseer, D.; Stickel, F.; Auer, S.; et al. Clinical and Metabolic Characterization of Lean Caucasian Subjects with Non-alcoholic Fatty Liver. Am. J. Gastroenterol. 2017, 112, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Leung, J.C.; Loong, T.C.; Wei, J.L.; Wong, G.L.; Chan, A.W.; Choi, P.C.; Shu, S.S.; Chim, A.M.; Chan, H.L.; Wong, V.W. Histological severity and clinical outcomes of nonalcoholic fatty liver disease in nonobese patients. Hepatology 2017, 65, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Fracanzani, A.L.; Petta, S.; Lombardi, R.; Pisano, G.; Russello, M.; Consonni, D.; Di Marco, V.; Camma, C.; Mensi, L.; Dongiovanni, P.; et al. Liver and Cardiovascular Damage in Patients With Lean Nonalcoholic Fatty Liver Disease, and Association With Visceral Obesity. Clin. Gastroenterol. Hepatol. 2017, 15, 1604–1611.e1. [Google Scholar] [CrossRef] [PubMed]
- Kawanaka, M.; Nishino, K.; Kawada, M.; Ishii, K.; Tanikawa, T.; Katsumata, R.; Urata, N.; Nakamura, J.; Suehiro, M.; Haruma, K.; et al. Lean nonalcoholic fatty liver disease: Age-dependent differences in pathology, prognosis, and liver-related events. Hepatol. Res. 2023, 53, 829–843. [Google Scholar] [CrossRef] [PubMed]
- Younes, R.; Govaere, O.; Petta, S.; Miele, L.; Tiniakos, D.; Burt, A.; David, E.; Vecchio, F.M.; Maggioni, M.; Cabibi, D.; et al. Caucasian lean subjects with non-alcoholic fatty liver disease share long-term prognosis of non-lean: Time for reappraisal of BMI-driven approach? Gut 2022, 71, 382–390. [Google Scholar] [CrossRef]
- Sun, Z.; Pan, X.; Tian, A.; Surakka, I.; Wang, T.; Jiao, X.; He, S.; Song, J.; Tian, X.; Tong, D.; et al. Genetic variants in HFE are associated with non-alcoholic fatty liver disease in lean individuals. JHEP Rep. 2023, 5, 100744. [Google Scholar] [CrossRef]
- Wijarnpreecha, K.; Li, F.; Lundin, S.K.; Suresh, D.; Song, M.W.; Tao, C.; Chen, V.L.; Lok, A.S.F. Higher mortality among lean patients with non-alcoholic fatty liver disease despite fewer metabolic comorbidities. Aliment. Pharmacol. Ther. 2023, 57, 1014–1027. [Google Scholar] [CrossRef]
- Wu, N.; Li, J.; Zhang, J.; Yuan, F.; Yu, N.; Zhang, F.; Li, D.; Wang, J.; Zhang, L.; Shi, Y.; et al. Waist circumference mediates the association between rs1260326 in GCKR gene and the odds of lean NAFLD. Sci. Rep. 2023, 13, 6488. [Google Scholar] [CrossRef]
- Wu, N.; Zhai, X.; Yuan, F.; Li, J.; Li, D.; Wang, J.; Zhang, L.; Shi, Y.; Ji, G.; He, G.; et al. Genetic variation in TBC1 domain family member 1 gene associates with the risk of lean NAFLD via high-density lipoprotein. Front. Genet. 2022, 13, 1026725. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, N.; Yang, Y.; Zhai, X.; Yuan, F.; Zhang, F.; Yu, N.; Li, D.; Wang, R.; Wang, J.; et al. Unique genetic variants of lean nonalcoholic fatty liver disease: A retrospective cohort study. BMC Endocr. Disord. 2023, 23, 11. [Google Scholar] [CrossRef] [PubMed]
- Gruner Nielsen, D.; Andersen, K.; Sogaard Nielsen, A.; Juhl, C.; Mellentin, A. Consistency between self-reported alcohol consumption and biological markers among patients with alcohol use disorder—A systematic review. Neurosci. Biobehav. Rev. 2021, 124, 370–385. [Google Scholar] [CrossRef] [PubMed]
- Riazi, K.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.A. Race and Ethnicity in Non-Alcoholic Fatty Liver Disease (NAFLD): A Narrative Review. Nutrients 2022, 14, 4556. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.L.; Du, X.; Chen, Y.; Kuppa, A.; Handelman, S.K.; Vohnoutka, R.B.; Peyser, P.A.; Palmer, N.D.; Bielak, L.F.; Halligan, B.; et al. Genome-wide association study of serum liver enzymes implicates diverse metabolic and liver pathology. Nat. Commun. 2021, 12, 816. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Du, X.; Kuppa, A.; Feitosa, M.F.; Bielak, L.F.; O’Connell, J.R.; Musani, S.K.; Guo, X.; Kahali, B.; Chen, V.L.; et al. Genome-wide association meta-analysis identifies 17 loci associated with nonalcoholic fatty liver disease. Nat. Genet. 2023, 55, 1640–1650. [Google Scholar] [CrossRef] [PubMed]
- Ajmera, V.; Wang, N.; Xu, H.; Liu, C.T.; Long, M.T. Longitudinal association between overweight years, polygenic risk and NAFLD, significant fibrosis and cirrhosis. Aliment. Pharmacol. Ther. 2023, 57, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- De Vincentis, A.; Tavaglione, F.; Jamialahmadi, O.; Picardi, A.; Antonelli Incalzi, R.; Valenti, L.; Romeo, S.; Vespasiani-Gentilucci, U. A Polygenic Risk Score to Refine Risk Stratification and Prediction for Severe Liver Disease by Clinical Fibrosis Scores. Clin. Gastroenterol. Hepatol. 2022, 20, 658–673. [Google Scholar] [CrossRef]
- Semmler, G.; Wernly, S.; Bachmayer, S.; Wernly, B.; Schwenoha, L.; Huber-Schonauer, U.; Stickel, F.; Niederseer, D.; Aigner, E.; Datz, C. Nonalcoholic Fatty Liver Disease in Lean Subjects: Associations With Metabolic Dysregulation and Cardiovascular Risk-A Single-Center Cross-Sectional Study. Clin. Transl. Gastroenterol. 2021, 12, e00326. [Google Scholar] [CrossRef]
- Aneni, E.C.; Bittencourt, M.S.; Teng, C.; Cainzos-Achirica, M.; Osondu, C.U.; Soliman, A.; Al-Mallah, M.; Buddoff, M.; Parise, E.R.; Santos, R.D.; et al. The risk of cardiometabolic disorders in lean non-alcoholic fatty liver disease: A longitudinal study. Am. J. Prev. Cardiol. 2020, 4, 100097. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Huang, Q.; Ma, S.; Chen, L.; Wu, Q.; Wu, L.; Ma, H.; Li, X.; Li, Q.; Aleteng, Q.; et al. Presence of sarcopenia identifies a special group of lean NAFLD in middle-aged and older people. Hepatol. Int. 2023, 17, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; He, Z.; Si, Q.; Hu, X.; Yang, L.; Gu, X.; Du, L.; Wang, L.; Pan, L.; Li, Y.; et al. The Association of Sarcopenia and Visceral Obesity with Lean Nonalcoholic Fatty Liver Disease in Chinese Patients with Type 2 Diabetes Mellitus. J. Diabetes Res. 2022, 2022, 2229139. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Lu, Y.; Li, J.; Hu, S.; Chen, S.; Wang, Y.; Yuan, X.; Liu, H.; Wang, X.; Wu, S.; et al. Outcomes of subjects who are lean, overweight or obese with nonalcoholic fatty liver disease: A cohort study in China. Hepatol. Commun. 2022, 6, 3393–3405. [Google Scholar] [CrossRef] [PubMed]
- Nabi, O.; Lapidus, N.; Boursier, J.; de Ledinghen, V.; Petit, J.M.; Kab, S.; Renuy, A.; Zins, M.; Lacombe, K.; Serfaty, L. Lean individuals with NAFLD have more severe liver disease and poorer clinical outcomes (NASH-CO Study). Hepatology 2023, 78, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, A.; Rath, I.; Varadarajan, A.; Ramakrishna, G.; Bihari, C.; Maiwall, R. Non-alcoholic fatty liver disease (NAFLD) in lean individuals—Single centre large cohort clinicopathologic and immunophenotypic study. Pathol. Res. Pract. 2022, 238, 154112. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Han, E.; Lee, J.S.; Lee, H.W.; Kim, B.K.; Kim, M.K.; Kim, H.S.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; et al. Cardiovascular Risk Is Elevated in Lean Subjects with Nonalcoholic Fatty Liver Disease. Gut Liver 2022, 16, 290–299. [Google Scholar] [CrossRef]
- Hagstrom, H.; Nasr, P.; Ekstedt, M.; Hammar, U.; Stal, P.; Hultcrantz, R.; Kechagias, S. Risk for development of severe liver disease in lean patients with nonalcoholic fatty liver disease: A long-term follow-up study. Hepatol. Commun. 2018, 2, 48–57. [Google Scholar] [CrossRef]
- Lu, C.W.; Yang, K.C.; Chi, Y.C.; Wu, T.Y.; Chiang, C.H.; Chang, H.H.; Huang, K.C.; Yang, W.S. Adiponectin-leptin ratio for the early detection of lean non-alcoholic fatty liver disease independent of insulin resistance. Ann. Med. 2023, 55, 634–642. [Google Scholar] [CrossRef]
- Chahal, D.; Sharma, D.; Keshavarzi, S.; Arisar, F.A.Q.; Patel, K.; Xu, W.; Bhat, M. Distinctive clinical and genetic features of lean vs overweight fatty liver disease using the UK Biobank. Hepatol. Int. 2022, 16, 325–336. [Google Scholar] [CrossRef]
- Weinberg, E.M.; Trinh, H.N.; Firpi, R.J.; Bhamidimarri, K.R.; Klein, S.; Durlam, J.; Watkins, S.; Reddy, K.R.; Weiss, M.; Zink, R.C.; et al. Lean Americans With Nonalcoholic Fatty Liver Disease Have Lower Rates of Cirrhosis and Comorbid Diseases. Clin. Gastroenterol. Hepatol. 2021, 19, 996–1008.e6. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A.C.D.; Bugianesi, E.; George, J.; Day, C.P.; Liaquat, H.B.; Charatcharoenwitthaya, P.; Mills, P.R.; Dam-Larsen, S.; Bjornsson, E.S.; Haflidadottir, S.; et al. 379 Characteristics and Long-Term Prognosis of Lean Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2014, 146, S-909. [Google Scholar] [CrossRef]
- Freeman, A.M.; Acevedo, L.A.; Pennings, N. Insulin Resistance. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Borai, A.; Livingstone, C.; Abdelaal, F.; Bawazeer, A.; Keti, V.; Ferns, G. The relationship between glycosylated haemoglobin (HbA1c) and measures of insulin resistance across a range of glucose tolerance. Scand J. Clin. Lab. Investig. 2011, 71, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Almomani, A.; Kumar, P.; Onwuzo, S.; Boustany, A.; Krishtopaytis, E.; Hitawala, A.; Alshaikh, D.; Albakri, A.; Hussein, L.; Hussein, E.; et al. Epidemiology and prevalence of lean nonalcoholic fatty liver disease and associated cirrhosis, hepatocellular carcinoma, and cardiovascular outcomes in the United States: A population-based study and review of literature. J. Gastroenterol. Hepatol. 2023, 38, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.T.; Gidener, T.; Mara, K.C.; Larson, J.J.; Therneau, T.M.; Allen, A.M. Natural History of Nonalcoholic Fatty Liver Disease With Normal Body Mass Index: A Population-Based Study. Clin. Gastroenterol. Hepatol. 2022, 20, 1374–1381.e6. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Ahmed, A.; Despres, J.P.; Jha, V.; Halford, J.C.G.; Wei Chieh, J.T.; Harris, D.C.H.; Nangaku, M.; Colagiuri, S.; Targher, G.; et al. Incorporating fatty liver disease in multidisciplinary care and novel clinical trial designs for patients with metabolic diseases. Lancet Gastroenterol. Hepatol. 2021, 6, 743–753. [Google Scholar] [CrossRef]
- Long, M.T.; Noureddin, M.; Lim, J.K. AGA Clinical Practice Update: Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Lean Individuals: Expert Review. Gastroenterology 2022, 163, 764–774.e1. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 29, 101133. [Google Scholar] [CrossRef]
- Song, S.J.; Lai, J.C.; Wong, G.L.; Wong, V.W.; Yip, T.C. Can we use old NAFLD data under the new MASLD definition? J. Hepatol. 2023, 79. [Google Scholar] [CrossRef]
- Geh, D.; Manas, D.M.; Reeves, H.L. Hepatocellular carcinoma in non-alcoholic fatty liver disease-a review of an emerging challenge facing clinicians. Hepatobiliary Surg. Nutr. 2021, 10, 59–75. [Google Scholar] [CrossRef] [PubMed]
- Steffl, M.; Bohannon, R.W.; Sontakova, L.; Tufano, J.J.; Shiells, K.; Holmerova, I. Relationship between sarcopenia and physical activity in older people: A systematic review and meta-analysis. Clin. Interv. Aging 2017, 12, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Meier, N.F.; Lee, D.C. Physical activity and sarcopenia in older adults. Aging Clin. Exp. Res. 2020, 32, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Premkumar, M.; Anand, A.C. Lean Fatty Liver Disease: Through Thick and Thin. J. Clin. Exp. Hepatol. 2021, 11, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.M.; Doss, H.M.; Kim, K.S. Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases. Int. J. Mol. Sci. 2020, 21, 1219. [Google Scholar] [CrossRef]
- Abella, V.; Scotece, M.; Conde, J.; Pino, J.; Gonzalez-Gay, M.A.; Gomez-Reino, J.J.; Mera, A.; Lago, F.; Gomez, R.; Gualillo, O. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat. Rev. Rheumatol. 2017, 13, 100–109. [Google Scholar] [CrossRef]
- Fruhbeck, G.; Catalan, V.; Rodriguez, A.; Ramirez, B.; Becerril, S.; Salvador, J.; Colina, I.; Gomez-Ambrosi, J. Adiponectin-leptin Ratio is a Functional Biomarker of Adipose Tissue Inflammation. Nutrients 2019, 11, 454. [Google Scholar] [CrossRef]
- Duarte, S.M.B.; Stefano, J.T.; Miele, L.; Ponziani, F.R.; Souza-Basqueira, M.; Okada, L.; de Barros Costa, F.G.; Toda, K.; Mazo, D.F.C.; Sabino, E.C.; et al. Gut microbiome composition in lean patients with NASH is associated with liver damage independent of caloric intake: A prospective pilot study. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 369–384. [Google Scholar] [CrossRef]
- Xue, L.; Deng, Z.; Luo, W.; He, X.; Chen, Y. Effect of Fecal Microbiota Transplantation on Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Front. Cell Infect. Microbiol. 2022, 12, 759306. [Google Scholar] [CrossRef]
- Park, H.; Yoon, E.L.; Cho, S.; Jun, D.W.; Nah, E.H. Diabetes is the strongest risk factor of hepatic fibrosis in lean patients with non-alcoholic fatty liver disease. Gut 2022, 71, 1035–1036. [Google Scholar] [CrossRef]
- Vilarinho, S.; Ajmera, V.; Zheng, M.; Loomba, R. Emerging Role of Genomic Analysis in Clinical Evaluation of Lean Individuals With NAFLD. Hepatology 2021, 74, 2241–2250. [Google Scholar] [CrossRef]
- Wong, V.W.; Wong, G.L.; Chan, R.S.; Shu, S.S.; Cheung, B.H.; Li, L.S.; Chim, A.M.; Chan, C.K.; Leung, J.K.; Chu, W.C.; et al. Beneficial effects of lifestyle intervention in non-obese patients with non-alcoholic fatty liver disease. J. Hepatol. 2018, 69, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Julien, J.; Ayer, T.; Tapper, E.B.; Barbosa, C.; Dowd, W.N.; Chhatwal, J. Effect of increased alcohol consumption during COVID-19 pandemic on alcohol-associated liver disease: A modeling study. Hepatology 2022, 75, 1480–1490. [Google Scholar] [CrossRef]
- Danpanichkul, P.; Ng, C.H.; Muthiah, M.; Suparan, K.; Hao Tan, D.J.; Duangsonk, K.; Sukphutanan, B.; Kongarin, S.; Harinwan, N.; Panpradist, N.; et al. From Shadows to Spotlight: Exploring the Escalating Burden of Alcohol-Associated Liver Disease and Alcohol Use Disorder in Young Women. Am. J. Gastroenterol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Odriozola, A.; Santos-Laso, A.; Del Barrio, M.; Cabezas, J.; Iruzubieta, P.; Arias-Loste, M.T.; Rivas, C.; Duque, J.C.R.; Anton, A.; Fabrega, E.; et al. Fatty Liver Disease, Metabolism and Alcohol Interplay: A Comprehensive Review. Int. J. Mol Sci 2023, 24, 7791. [Google Scholar] [CrossRef] [PubMed]
- Liangpunsakul, S.; Lai, X.; Ross, R.A.; Yu, Z.; Modlik, E.; Westerhold, C.; Heathers, L.; Paul, R.; O’Connor, S.; Crabb, D.W.; et al. Novel serum biomarkers for detection of excessive alcohol use. Alcohol. Clin. Exp. Res. 2015, 39, 556–565. [Google Scholar] [CrossRef]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.; Diaz, I.; Barchetta, I.; Mantovani, A. Gastrointestinal cancers in lean individuals with non-alcoholic fatty liver disease: A systematic review and meta-analysis. Liver Int. 2023, 44, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Ramai, D.; Singh, J.; Lester, J.; Khan, S.R.; Chandan, S.; Tartaglia, N.; Ambrosi, A.; Serviddio, G.; Facciorusso, A. Systematic review with meta-analysis: Bariatric surgery reduces the incidence of hepatocellular carcinoma. Aliment. Pharmacol. Ther. 2021, 53, 977–984. [Google Scholar] [CrossRef]
- Stine, J.G.; DiJoseph, K.; Pattison, Z.; Harrington, A.; Chinchilli, V.M.; Schmitz, K.H.; Loomba, R. Exercise Training Is Associated With Treatment Response in Liver Fat Content by Magnetic Resonance Imaging Independent of Clinically Significant Body Weight Loss in Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2023, 118, 1204–1213. [Google Scholar] [CrossRef]
Associated Gene in Lean MASLD | SNP ID | Function | Alleles | Genotype | Country | Findings | Ref. |
---|---|---|---|---|---|---|---|
PNPLA3 | rs738409 | Missense variant (C>G, I148M) | C/G | CC, CG, GG | Australia |
| [23] |
Austria |
| [24] | |||||
Hong Kong |
| [25] | |||||
Italy |
| [26] | |||||
Japan |
| [27] | |||||
Italy, UK, Spain, Australia |
| [28] | |||||
UK |
| [29] | |||||
USA |
| [30] | |||||
TM6SF2 | rs58542926 | Missense variant (C>T, E167K) | C/T | CC, CT, TT | Australia |
| [23] |
Austria |
| [24] | |||||
Hong Kong |
| [25] | |||||
Italy |
| [26] | |||||
UK |
| [29] | |||||
NCAN | rs2228602 | Missense Variant (C>T, D704=) | C/T | CC, CT, TT | Austria |
| [24] |
GCKR | rs6834314 | NR | C/T | CC, CT, TT | Austria |
| [24] |
rs1260326 | Missense variant (T>C, P466L) | T/C | TT, TC, CC | China |
| [31] | |
rs780093 | Intron variant | T/C | TT, TC, CC | China |
| [31] | |
rs780094 | Intron variant | T/C | TT, TC, CC | China |
| [31] | |
LYPLAL1 | rs12137855 | Intron Variant | C/T | CC, CT, TT | Austria |
| [24] |
TBC1D1 | rs2279028 | Upstream gene variant | A/G | AA, AG, GG | China |
| [32] |
HFE | rs1800562 | Missense variant (G>A, C282Y) | G/A | GG, GA, AA | UK |
| [29] |
SLC17A3 | rs9348697 | Upstream gene variant | C/T | CC, CT, TT | UK |
| [29] |
FTO | rs1421085 | Intron variant | T/C | TT, TC, CC | China |
| [33] |
rs3751812 | Intron variant | G/T | GG, GT, TT | China |
| [33] | |
rs8050136 | Intron variant | C/A | CC, CA, AA | China |
| [33] | |
rs9939609 | Intron variant | T/A | TT, TA, AA | China |
| [33] |
Year | Country | LNM n (%M) | NLNM n (%M) | LM n (%M) | NLM n (%M) | Age of LM (Year) * | Diagnostic Method of SLD | Cardiometabolic Risk | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WC | FBS | HbA1c | TG | HDL | DM | HTN | HLD | |||||||||
2021 | Austria | 254 (32.7) | NR | 169 (52.7) | 471 (69.2) | 59.6 ± 8.6 | U/S and TE | ↑ a, ↓ c | NR | NR | ↑ a, ↓ c | ↓ a, ↑ c | ↑ a, ↓ c | ↑ a, ↓ c | ↑ a, ↓ c | [40] |
2021 | Austria | 892 (34.2) | NR | 205 (56.6) | 1141 (64.6) | 60.3 ± 10.2 | U/S | ↑ a, ↓ c | NR | NR | ↑ a, ↓ c | ↓ a, ↑ c | ↑ a, ↓ c | ↑ a, ↓ c | ↑ a, ↓ c | [40] |
2017 | Austria | 71 (54.3) | NR | 55 (47.3) | 61 (47.5) | 61 (12.5) | U/S | = a, ↓ c | ↑ a, ↓ c | = a, ↓ c | ↑ a, ↓ c | ↓ a, ↑ c | ↑ a, ↓ c | NR | NR | [24] |
2020 | Brazil | 3372 (54.8) | 2880 (82.2) | 349 (88) | 2536 (92.1) | 44 ± 9 | U/S | ↑ a, ↓ b, c | ↑ a,b, ↓ c | NR | ↑ a,b, ↓ c | ↓ a, = b, ↑ c | NR | NR | NR | [41] |
2023 | China | NR | NR | 262 (24.4) | 1043 (35.3) | NR | U/S | ↓ c | ↓ c | ↓ c | ↓ c | ↑ c | NR | NR | NR | [42] |
2023 2022 | China | 216 (41.2) | NR | 106 (35.8) | NR | 72.54 ± 6.05 | U/S | ↑ a | ↑ a | NR | ↑ a | ↓ a | = a | ↑ a | = a | [31,32] |
2022 | China | 743 (66.8) | NR | 369 (33.2) | NR | 53.45 ± 10.91 | U/S | ↑ a | = a | = a | ↑ a | ↓ a | ↓ a | NR | NR | [43] |
2022 | China | 19,605 (69.3) | 31,105 (77.7) | 1543 (75) | 21,654 (78) | 53.6 ± 11.4 | U/S | ↑ a, ↓ b, c | ↑ a,b, ↓ c | NR | ↑ a,b, ↓ c | = a, ↑ b, c | ↑ a,b, ↓ c | ↑ a,b, ↓ c | NR | [44] |
2023 | France | NR | NR | 3664 (43.7) | 22,089 (69.6) | 45.1 (NR) | U/S | ↓ c | NR | NR | ↓ c | NR | ↓ c | NR | ↓ c | [45] |
2017 | Hong Kong | NR | NR | 72 (45.8) | 235 (58.7) | 54 ± 11 | H and TE | ↓ c | = c | = c | = c | = c | = c | ↓ c | NR | [25] |
2022 | India | NR | NR | 267 (NR) | 1006 (NR) | 43 (19) | H | NR | ↓ c | = c | = c | = c | NR | NR | NR | [46] |
2017 | Italy | NR | NR | 143 (72) | 526 (72) | 46 ± 13 | H | ↓ c | NR | NR | = c | ↑ c | ↓ c | ↓ c | NR | [26] |
2023 | Japan | NR | NR | 86 (50.0) | 695 (53.0) | 57.5 (62) | H | NR | NR | ↓ c | ↓ c | NR | = c | ↓ c | ↓ c | [27] |
2021 | Korea | 2987 (30.9) | NR | 525 (57.7) | 1274 (40.3) | 60.5 ± 10.8 | Predictive model | ↑ a, ↓ c | ↑ a,c | NR | ↑ a,c | ↓ a,c | ↑ a,c | ↑ a, = c | NR | [47] |
2018 | Sweden | NR | NR | 123 (57.7) | 523 (63.3) | 51.4 ± 13.4 | H | NR | ↓ c | NR | ↓ c | NR | ↓ c | = c | = c | [48] |
2023 | Taiwan | 217 (20.7) | NR | 105 (34.3) | 200 (56.5) | 42.96 ± 11.59 | U/S | ↑ a, ↓ c | = a, ↓ c | NR | ↑ a, ↓ c | ↓ a, ↑ c | NR | NR | NR | [49] |
2023 | UK | 10,266 (38.6) | 2245 (45.6) | 631 (58.0) | 2115 (57.35) | 67.74 | MRI | ↑ a, ↓ b, c | ↑ a,b, = c | NR | ↑ a, ↓ b,c | ↓ a, ↑ b,c | NR | NR | NR | [29] |
2022 | UK | NR | NR | 136 (53) | 871 (60) | 55.8 ± 7.4 | NR | ↓ c | = c | ↓ c | ↑ c | ↑ c | NR | NR | NR | [50] |
2023 | USA | NR | NR | 430 (34.9) | 2980 (44.0) | NR | Imaging, H, and TE | NR | NR | NR | NR | NR | ↓ c | = c | = c | [56] |
2023 | USA | NR | NR | 2137 (41.2) | 16,457 (47.9) | 51.0 (27) | Imaging and H | NR | NR | ↓ c | ↓ c | ↑ c | ↓ c | ↓ c | ↓ c | [30] |
2022 | USA | NR | NR | 414 (34.1) | 4420 (47.0) | 51.5 ± 18.0 | Imaging, H, and TE | NR | NR | NR | NR | NR | ↓ c | ↓ c | ↓ c | [57] |
2021 | USA | NR | NR | 433 (41.1) | 2953 (41.4) | 58.5 ± 13.1 | H | NR | NR | = c | ↓ c | ↑ c | ↓ c | ↓ c | ↓ c | [51] |
2014 | USA | NR | NR | 125 (NR) | 965 (NR) | NR | Imaging and H | ↓ c | NR | NR | ↓ c | ↑ c | ↓ c | ↓ c | ↓ c | [52] |
2021 | Italy, UK, Spain, Australia | NR | NR | 195 (75.4) | 1144 (37.3) | 45 (19) | U/S and TE | ↓ c | ↓ c | NR | ↓ c | = c | ↓ c | NR | NR | [28] |
Year | Study Design | Country | LM n (%M) | NLM n (%M) | Age of LM (Year) * | Diagnostic Method of SLD | Liver Function (LM vs. NLM) | Histopathological Severity of SLD (LM vs. NLM) | Liver-Related Complications (LM vs. NLM) | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hepatocyte Integrity | Biliary Excretory Function | Synthetic Function | PLT | ||||||||||
2017 | C | Austria | 55 (47.3) | 61 (47.5) | 61 (12.5) | U/S | = | = | NR | NR | NR | NR | [24] |
2020 | P | Brazil | 349 (88) | 2536 (92.1) | 44 ± 9 | U/S | ↑ | ↑ | NR | NR | NR | NR | [41] |
2023 | P | China | 262 (24.4) | 1043 (35.3) | NR | U/S | = | NR | NR | NR | NR | = | [42] |
2022 | P | China | 1543 (75) | 21,654 (78) | 53.6 ± 11.4 | U/S | ↑ | NR | NR | NR | NR | ↑ | [44] |
2023 | P | France | 3664 (43.7) | 22,089 (69.6) | 45.1 (NR) | U/S | ↓ | ↓ | NR | NR | NR | ↑ | [45] |
2017 | P | Hong Kong | 72 (45.8) | 235 (58.7) | 54 ± 11 | H and TE | = | ↓ | NR | NR | = | ↓ | [25] |
2022 | C | India | 267 (NR) | 1006 (NR) | 43 (19) | H | ↓ | = | NR | NR | = | NR | [46] |
2017 | C | Italy | 143 (72) | 526 (72) | 46 ± 13 | H | = | NR | = | ↑ | ↓ | NR | [26] |
2023 | R | Japan | 86 (50.0) | 695 (53.0) | 57.5 (62) | H | ↑ | NR | = | = | ↓ | = | [27] |
2021 | C | Korea | 525 (57.7) | 1274 (40.3) | 60.5 ± 10.8 | Predictive model | ↓ | ↓ | NR | = | NR | NR | [47] |
2018 | R | Sweden | 123 (57.7) | 523 (63.3) | 51.4 ± 13.4 | H | ↑ | = | ↑ | = | ↓ | ↑ | [48] |
2023 | C | Taiwan | 105 (34.3) | 200 (56.5) | 42.96 ± 11.59 | U/S | ↑ | NR | NR | NR | NR | NR | [49] |
2023 | R | UK | 631 (58.0) | 2115 (57.35) | 67.74 | MRI | ↑ | ↑ | NR | NR | NR | NR | [29] |
2023 | R | USA | 430 (34.9) | 2980 (44.0) | NR | NR | NR | NR | NR | NR | NR | = | [56] |
2023 | P | USA | 2137 (41.2) | 16,457 (47.9) | 51.0 (27) | Imaging, H, and TE | ↑ | NR | NR | ↓ | ↓ | = | [30] |
2022 | R | USA | 414 (34.1) | 4420 (47.0) | 51.5 ± 18.0 | Imaging and H | NR | NR | NR | NR | NR | = | [57] |
2021 | P | USA | 433 (41.1) | 2953 (41.4) | 58.5 ± 13.1 | Imaging, H, and TE | ↑ | = | ↑ | = | NR | ↓ | [51] |
2021 | P | Italy, UK, Spain, Australia | 195 (75.4) | 1144 (37.3) | 45 (19) | Imaging and H | = | ↓ | = | = | ↓ | = | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danpanichkul, P.; Suparan, K.; Kim, D.; Wijarnpreecha, K. What Is New in Metabolic Dysfunction-Associated Steatotic Liver Disease in Lean Individuals: From Bench to Bedside. J. Clin. Med. 2024, 13, 278. https://doi.org/10.3390/jcm13010278
Danpanichkul P, Suparan K, Kim D, Wijarnpreecha K. What Is New in Metabolic Dysfunction-Associated Steatotic Liver Disease in Lean Individuals: From Bench to Bedside. Journal of Clinical Medicine. 2024; 13(1):278. https://doi.org/10.3390/jcm13010278
Chicago/Turabian StyleDanpanichkul, Pojsakorn, Kanokphong Suparan, Donghee Kim, and Karn Wijarnpreecha. 2024. "What Is New in Metabolic Dysfunction-Associated Steatotic Liver Disease in Lean Individuals: From Bench to Bedside" Journal of Clinical Medicine 13, no. 1: 278. https://doi.org/10.3390/jcm13010278
APA StyleDanpanichkul, P., Suparan, K., Kim, D., & Wijarnpreecha, K. (2024). What Is New in Metabolic Dysfunction-Associated Steatotic Liver Disease in Lean Individuals: From Bench to Bedside. Journal of Clinical Medicine, 13(1), 278. https://doi.org/10.3390/jcm13010278