Impact of CytoSorb Hemoadsorption Therapy on Fluid Balance in Patients with Septic Shock
Abstract
:1. Background
2. Material and Methods
2.1. Ethics Approval, Legal Considerations
2.2. Study Design
2.3. Objectives
2.4. Assessed Parameters
2.5. Data Collection
2.6. Procedure
2.7. Statistics
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; Jones, G.; David, S.; Olariu, E.; Cadwell, K.K. Frequency and mortality of septic shock in Europe and North America: A systematic review and meta-analysis. Crit. Care 2019, 23, 196. [Google Scholar] [CrossRef] [PubMed]
- Chappell, D.; Jacob, M.; Becker, B.F.; Hofmann-Kiefer, K.; Conzen, P.; Rehm, M. Expedition glycocalyx. A newly discovered “Great Barrier Reef”. Anaesthesist 2008, 57, 959–969. [Google Scholar] [CrossRef] [PubMed]
- Dolmatova, E.V.; Wang, K.; Mandavilli, R.; Griendling, K.K. The effects of sepsis on endothelium and clinical implications. Cardiovasc. Res. 2021, 117, 60–73. [Google Scholar] [CrossRef]
- Peters, K.; Unger, R.E.; Brunner, J.; Kirkpatrick, C. Molecular basis of endothelial dysfunction in sepsis. Cardiovasc. Res. 2003, 60, 49–57. [Google Scholar] [CrossRef]
- Joffre, J.; Hellman, J.; Ince, C.; Ait-Oufella, H. Endothelial Responses in Sepsis. Am. J. Respir. Crit. Care Med. 2020, 202, 361–370. [Google Scholar] [CrossRef]
- Joffre, J.; Hellman, J. Oxidative Stress and Endothelial Dysfunction in Sepsis and Acute Inflammation. Antioxidants Redox Signal. 2021, 35, 1291–1307. [Google Scholar] [CrossRef]
- Ince, C.; Mayeux, P.R.; Nguyen, T.; Gomez, H.; Kellum, J.A.; Ospina-Tascón, G.A.; Hernandez, G.; Murray, P.; De Backer, D.; ADQI XIV Workgroup. The endothelium in sepsis. Shock 2016, 45, 259–270. [Google Scholar] [CrossRef]
- Iba, T.; Levy, J.H. Derangement of the endothelial glycocalyx in sepsis. J. Thromb. Haemost. 2019, 17, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Schouten, M.; Wiersinga, W.J.; Levi, M.; van der Poll, T. Inflammation, endothelium, and coagulation in sepsis. J. Leukoc. Biol. 2008, 83, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; van der Poll, T. Inflammation and coagulation. Crit. Care Med. 2010, 38 (Suppl. S2), S26–S34. [Google Scholar] [CrossRef] [PubMed]
- Delano, M.J.; Ward, P.A. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol. Rev. 2016, 274, 330–353. [Google Scholar] [CrossRef]
- Hellenthal, K.E.M.; Brabenec, L.; Wagner, N.M. Regulation and Dysregulation of Endothelial Permeability during Systemic In-flammation. Cells 2022, 11, 1935. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef]
- Gruda, M.C.; Ruggeberg, K.G.; O’Sullivan, P.; Guliashvili, T.; Scheirer, A.R.; Golobish, T.D.; Capponi, V.J.; Chan, P.P. Broad adsorption of sepsis-related PAMP and DAMP molecules, mycotoxins, and cytokines from whole blood using CytoSorb® sorbent porous polymer beads. PLoS ONE 2018, 13, e0191676. [Google Scholar] [CrossRef]
- Jansen, A.; Waalders, N.J.B.; van Lier, D.P.T.; Kox, M.; Pickkers, P. CytoSorb hemoperfusion markedly attenuates circulating cytokine concentrations during systemic inflammation in humans in vivo. Crit. Care 2023, 27, 117. [Google Scholar] [CrossRef]
- Piskovatska, V.; Santos, A.N.; Kalies, K.; Korca, E.; Stiller, M.; Szabó, G.; Simm, A.; Wächter, K. Proteins Adsorbed during Intraoperative Hemoadsorption and Their In Vitro Effects on Endothelium. Healthcare 2023, 11, 310. [Google Scholar] [CrossRef]
- Denzinger, M.; Staendker, L.; Ehlers, K.; Schneider, J.M.; Schulz, T.; Hein, T.; Wiese, S.; Roecker, A.; Gross, R.; Münch, J.; et al. Bioassay for Endothelial Damage Mediators Retrieved by Hemoadsorption. Sci. Rep. 2019, 9, 14522. [Google Scholar] [CrossRef]
- Kogelmann, K.; Hübner, T.; Schwameis, F.; Drüner, M.; Scheller, M.; Jarczak, D. First Evaluation of a New Dynamic Scoring System Intended to Support Prescription of Adjuvant CytoSorb Hemoadsorption Therapy in Patients with Septic Shock. J. Clin. Med. 2021, 10, 2939. [Google Scholar] [CrossRef]
- Schultz, P.; Schwier, E.; Eickmeyer, C.; Henzler, D.; Köhler, T. High-dose CytoSorb hemoadsorption is associated with improved survival in patients with septic shock: A retrospective cohort study. J. Crit. Care 2021, 64, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Träger, K.; Schütz, C.; Fischer, G.; Schröder, J.; Skrabal, C.; Liebold, A.; Reinelt, H. Cytokine Reduction in the Setting of an ARDS-Associated Inflammatory Response with Multiple Organ Failure. Case Rep. Crit. Care 2016, 2016, 9852073. [Google Scholar] [CrossRef] [PubMed]
- Hinz, B.; Jauch, O.; Noky, T.; Friesecke, S.; Abel, P.; Kaiser, R. CytoSorb, a Novel Therapeutic Approach for Patients with Septic Shock: A Case Report. Int. J. Artif. Organs 2015, 38, 461–464. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Thamm, K.; Schmidt, B.M.W.; Falk, C.S.; Kielstein, J.T. Effect of extracorporeal cytokine removal on vascular barrier function in a septic shock patient. J. Intensiv. Care 2017, 5, 12. [Google Scholar] [CrossRef]
- Neyra, J.A.; Li, X.; Canepa-Escaro, F.; Adams-Huet, B.; Toto, R.D.; Yee, J.; Hedayati, S.S. Cumulative Fluid Balance and Mortality in Septic Patients with or Without Acute Kidney Injury and Chronic Kidney Disease*. Crit. Care Med. 2016, 44, 1891–1900. [Google Scholar] [CrossRef]
- Tigabu, B.M.; Davari, M.; Kebriaeezadeh, A.; Mojtahedzadeh, M. Fluid volume, fluid balance and patient outcome in severe sepsis and septic shock: A systematic review. J. Crit. Care 2018, 48, 153–159. [Google Scholar] [CrossRef]
- Cronhjort, M.; Hjortrup, P.B.; Holst, L.B.; Joelsson-Alm, E.; Mårtensson, J.; Svensen, C.; Perner, A. Association between fluid balance and mortality in patients with septic shock: A post hoc analysis of the TRISS trial. Acta Anaesthesiol. Scand. 2016, 60, 925–933. [Google Scholar] [CrossRef]
- Lewejohann, J.C.; Braasch, H.; Hansen, M.; Zimmermann, C.; Muhl, E.; Keck, T. Adequate fluid resuscitation in septic shock with high catecholamine doses. Med. Klin. Intensivmed. Notfmed. 2016, 111, 514–524. [Google Scholar] [CrossRef]
- Shi, R.; Hamzaoui, O.; De Vita, N.; Monnet, X.; Teboul, J.L. Vasopressors in septic shock: Which, when, and how much? Ann. Transl. Med. 2020, 8, 794. [Google Scholar] [CrossRef]
- Monnet, X.; Marik, P.; Teboul, J.L. Passive leg raising for predicting fluid responsiveness: A systematic review and meta-analysis. Intensive Care Med. 2016, 42, 1935–1947. [Google Scholar] [CrossRef] [PubMed]
- La Via, L.; Vasile, F.; Perna, F.; Zawadka, M. Prediction of fluid responsiveness in critical care: Current evidence and future per-spective. Trends Anaesthesia Crit. Care 2024, 5, 101316. [Google Scholar] [CrossRef]
- Khwannimit, B.; Bhurayanontachai, R. Prediction of fluid responsiveness in septic shock patients: Comparing stroke volume variation by FloTrac/Vigileo and automated pulse pressure variation. Eur. J. Anaesthesiol. 2012, 29, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Sanfilippo, F.; La Via, L.; Dezio, V.; Amelio, P.; Genoese, G.; Franchi, F.; Messina, A.; Robba, C.; Noto, A. Inferior vena cava distensibility from subcostal and trans-hepatic imaging using both M-mode or artificial intelligence: A prospective study on mechanically ventilated patients. Intensiv. Care Med. Exp. 2023, 11, 40. [Google Scholar] [CrossRef]
- Boyd, J.H.; Forbes, J.; Nakada, T.-A.; Walley, K.R.; Russell, J.A. Fluid resuscitation in septic shock: A positive fluid balance and elevated central venous pressure are associated with increased mortality*. Crit. Care Med. 2011, 39, 259–265. [Google Scholar] [CrossRef]
- Murgolo, F.; Mussi, R.D.; Messina, A.; Pisani, L.; Dalfino, L.; Civita, A.; Stufano, M.; Gianluca, A.; Staffieri, F.; Bartolomeo, N.; et al. Subclinical cardiac dysfunction may impact on fluid and vasopressor administration during early resus-citation of septic shock. J. Anesth. Analg. Crit. Care 2023, 3, 29. [Google Scholar] [CrossRef]
Overall Patient Population | Hospital Survivors | Hospital Non-Survivors | Survivors vs. Non-Survivors | |||||||
---|---|---|---|---|---|---|---|---|---|---|
n | Mean | SD | n | Mean | SD | n | Mean | SD | p-Value | |
Age [years] | 124 | 60.39 | 14.84 | 41 | 56.59 | 14.9 | 83 | 62.27 | 14.54 | 0.034 |
Weight [kg] | 124 | 86.21 | 25.58 | 41 | 89.02 | 27.213 | 83 | 84.82 | 24.79 | 0.345 |
APACHE II Score T0 | 123 | 36.54 | 9.75 | 41 | 34.10 | 9.99 | 82 | 37.77 | 9.45 | 0.033 |
SAPS II Score T0 | 120 | 55.53 | 14.94 | 41 | 55.80 | 14.99 | 79 | 55.38 | 15.01 | 0.866 |
ICU stay [days] | 124 | 20.56 | 25.40 | 41 | 30.66 | 19.07 | 83 | 15.57 | 26.72 | 0.001 |
Hospital stay [days] | 124 | 30.13 | 42.36 | 41 | 48.34 | 34.97 | 83 | 21.13 | 42.98 | 0.001 |
Ventilation duration [days] | 121 | 14.75 | 20.73 | 39 | 19.56 | 14.25 | 82 | 12.47 | 22.91 | 0.001 |
Therapy delay after sepsis diagnosis [h] | 124 | 28.69 | 26.00 | 41 | 22.46 | 23.27 | 83 | 31.77 | 26.86 | 0.022 |
Adsorbers used [n] | 124 | 2.58 | 1.57 | 41 | 3.37 | 1.69 | 83 | 2.19 | 1.37 | 0.001 |
DSS Score | 124 | 7.41 | 1.93 | 41 | 7.39 | 1.76 | 83 | 7.42 | 2.03 | 0.751 |
ABP [L/kg] | 124 | 6.91 | 0.04 | 41 | 9.00 | 0.05 | 83 | 6.00 | 0.03 | 0.001 |
SOFA Score T0 | 115 | 10.45 | 3.24 | 39 | 9.59 | 3.08 | 76 | 10.86 | 3.26 | 0.106 |
SOFA Score T72 | 91 | 10.53 | 2.92 | 39 | 9.64 | 2.99 | 52 | 11.19 | 2.72 | 0.025 |
Administered volume T0 [mL/kg] | 115 | 80.43 | 74.62 | 38 | 76.18 | 73.52 | 77 | 82.53 | 75.56 | 0.649 |
Administered volume T72 [mL/kg] | 91 | 52.36 | 85.57 | 40 | 36.32 | 32.35 | 51 | 64.94 | 109.52 | 0.031 |
Fluid balance T0 [mL/kg] | 114 | 77.88 | 72.57 | 37 | 70.98 | 69.08 | 77 | 81.19 | 74.39 | 0.433 |
Fluid balance T72 [mL/kg] | 92 | 40.13 | 39.98 | 40 | 27.11 | 32.83 | 52 | 50.15 | 42.34 | 0.002 |
Norepinephrine max T0 [µg/kg/min] | 117 | 0.76 | 0.86 | 40 | 0.68 | 1.25 | 77 | 0.80 | 0.57 | 0.008 |
Norepinephrine max T72 [µg/kg/min] | 92 | 0.47 | 0.51 | 40 | 0.24 | 0.22 | 52 | 0.63 | 0.59 | 0.001 |
Lactate max T0 [mmol/L] | 109 | 5.64 | 4.19 | 31 | 4.83 | 4.03 | 78 | 5.96 | 4.24 | 0.192 |
Lactate max T72 [mmol/L] | 85 | 4.08 | 4.96 | 40 | 1.64 | 1.20 | 45 | 6.25 | 5.95 | 0.001 |
Procalcitonin T0 [ng/mL] | 108 | 30.43 | 47.44 | 41 | 34.76 | 46.97 | 67 | 27.79 | 47.89 | 0.721 |
Procalcitonin T72 [ng/mL] | 82 | 16.66 | 25.91 | 38 | 20.29 | 31.42 | 44 | 13.53 | 19.83 | 0.395 |
Creatinine T0 [mg/dL] | 110 | 2.78 | 2.02 | 37 | 3.02 | 2.12 | 73 | 2.65 | 1.97 | 0.296 |
Creatinine T72 [mg/dL] | 88 | 1.48 | 0.81 | 36 | 1.31 | 0.66 | 52 | 1.59 | 0.89 | 0.191 |
C-reactive protein T0 [mg/L] | 109 | 196.68 | 143.72 | 37 | 238.19 | 155.24 | 72 | 175.36 | 133.58 | 0.043 |
C-reactive protein T72 [mg/L] | 83 | 168.40 | 126.74 | 35 | 208.74 | 131.20 | 48 | 138.98 | 116.08 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kogelmann, K.; Hübner, T.; Drüner, M.; Jarczak, D. Impact of CytoSorb Hemoadsorption Therapy on Fluid Balance in Patients with Septic Shock. J. Clin. Med. 2024, 13, 294. https://doi.org/10.3390/jcm13010294
Kogelmann K, Hübner T, Drüner M, Jarczak D. Impact of CytoSorb Hemoadsorption Therapy on Fluid Balance in Patients with Septic Shock. Journal of Clinical Medicine. 2024; 13(1):294. https://doi.org/10.3390/jcm13010294
Chicago/Turabian StyleKogelmann, Klaus, Tobias Hübner, Matthias Drüner, and Dominik Jarczak. 2024. "Impact of CytoSorb Hemoadsorption Therapy on Fluid Balance in Patients with Septic Shock" Journal of Clinical Medicine 13, no. 1: 294. https://doi.org/10.3390/jcm13010294
APA StyleKogelmann, K., Hübner, T., Drüner, M., & Jarczak, D. (2024). Impact of CytoSorb Hemoadsorption Therapy on Fluid Balance in Patients with Septic Shock. Journal of Clinical Medicine, 13(1), 294. https://doi.org/10.3390/jcm13010294