Post-Transplant Cardiovascular Disease in Kidney Transplant Recipients: Incidence, Risk Factors, and Outcomes in the Era of Modern Immunosuppression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Study Cohort
2.4. Explanatory Variables
2.5. Outcome Variables
2.6. Post-Transplant Cardiovascular Disease Definition
2.7. Pre-Transplant Cardiovascular Screening
2.8. Immunosuppression
2.9. Statistical Analysis
3. Results
3.1. Predictors of PTCVD
3.2. Graft and Recipient Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Legendre, C.; Canaud, G.; Martinez, F. Factors influencing long-term outcome after kidney transplantation. Transpl. Int. 2014, 27, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Günay, E.; Çelebi, T.; Şen, S.; Aşcı, G.; Kumbaraci, B.S.; Gökalp, C.; Yılmaz, M.; Töz, H. Investigation of the Factors Affecting Allograft Kidney Functions: Results of 10 Years. Transplant. Proc. 2019, 51, 1082–1085. [Google Scholar] [CrossRef] [PubMed]
- Pita-Fernández, S.; Pértega-Díaz, S.; Valdés-Cañedo, F.; Seijo-Bestilleiro, R.; Seoane-Pillado, T.; Fernández-Rivera, C.; Alonso-Hernández, A.; Lorenzo-Aguiar, D.; López-Calviño, B.; López-Muñiz, A. Incidence of cardiovascular events after kidney transplantation and cardiovascular risk scores: Study protocol. BMC Cardiovasc Disord. 2011, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, M.A.; Weir, M.R.; Adey, D.B.; House, A.A.; Bostom, A.G.; Kusek, J.W. Inadequacy of Cardiovascular Risk Factor Management in Chronic Kidney Transplantation-Evidence from the FAVORIT Study. Clin. Transplant. 2012, 26, E438–E446. [Google Scholar] [CrossRef]
- Miller, L.W. Cardiovascular toxicities of immunosuppressive agents. Am. J. Transplant. 2002, 2, 807–818. [Google Scholar] [CrossRef]
- Van Laecke, S.; Malfait, T.; Schepers, E.; Van Biesen, W. Cardiovascular disease after transplantation: An emerging role of the immune system. Transpl. Int. 2018, 31, 689–699. [Google Scholar] [CrossRef]
- Vivek, V.; Bhandari, S. Prevalence of modifiable cardiovascular risk factors in long-term renal transplant patients. Int. J. Nephrol. Renovasc. Dis. 2010, 3, 175–182. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21694943/?tool=EBI (accessed on 30 March 2022). [PubMed]
- Birdwell, K.A.; Park, M. Post-Transplant Cardiovascular Disease. Clin. J. Am. Soc. Nephrol. 2021, 16, 1878–1889. Available online: https://cjasn.asnjournals.org/content/16/12/1878 (accessed on 12 May 2022). [CrossRef]
- Levey, A.S.; Coresh, J.; Greene, T.; Marsh, J.; Stevens, L.A.; Kusek, J.W.; Van Lente, F.; Chronic Kidney Disease Epidemiology Collaboration. Expressing the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate with Standardized Serum Creatinine Values. Clin. Chem. 2007, 53, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Fine, J.P.; Gray, R.J. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J. Am. Stat. Assoc. 1999, 94, 496–509. [Google Scholar] [CrossRef]
- Alalawi, F.; Gulzar, K.; Seddik, A.A.; Alnour, H.; Ahmad, M.; Najad, S.; Osman, O.E.; Yousif, H.; Railey, M.; Alhadari, A. Renal allograft survival: Incidence and risk factors associated with graft dysfunction. Indian J. Transplant. 2023, 17, 182–189. [Google Scholar] [CrossRef]
- Ayar, Y.; Ersoy, A.; Ocakoglu, G.; Yildiz, A.; Oruc, A.; Soyak, H.; Calapkulu, M.; Sahin, A.; Topal, N.B.; Okeer, E.; et al. Risk Factors Affecting Graft and Patient Survivals After Transplantation From Deceased Donors in a Developing Country: A Single-Center Experience. Transplant. Proc. 2017, 49, 270–277. [Google Scholar] [CrossRef]
- Pinto-Ramirez, J.; Garcia-Lopez, A.; Salcedo-Herrera, S.; Patino-Jaramillo, N.; Garcia-Lopez, J.; Barbosa-Salinas, J.; Riveros-Enriquez, S.; Hernandez-Herrera, G.; Giron-Luque, F. Risk factors for graft loss and death among kidney transplant recipients: A competing risk analysis. PLoS ONE 2022, 17, e0269990. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.r-project.org/about.html (accessed on 8 June 2023).
- Weiner, D.E.; Tighiouart, H.; Vlagopoulos, P.T.; Griffith, J.L.; Salem, D.N.; Levey, A.S.; Sarnak, M.J. Effects of anemia and left ventricular hypertrophy on cardiovascular disease in patients with chronic kidney disease. J. Am. Soc. Nephrol. 2005, 16, 1803–1810. Available online: https://pubmed.ncbi.nlm.nih.gov/15857925/ (accessed on 27 January 2022). [CrossRef]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- Ojo, A.O. Cardiovascular complications after renal transplantation and their prevention. Transplantation 2006, 82, 603–611. [Google Scholar] [CrossRef]
- Stoumpos, S.; Jardine, A.G.; Mark, P.B. Cardiovascular morbidity and mortality after kidney transplantation. Transpl. Int. 2015, 28, 10–21. [Google Scholar] [CrossRef]
- Seoane-Pillado, M.T.; Pita-Fernández, S.; Valdés-Cañedo, F.; Seijo-Bestilleiro, R.; Pértega-Díaz, S.; Fernández-Rivera, C.; Alonso-Hernández, Á.; González-Martín, C.; Balboa-Barreiro, V. Incidence of cardiovascular events and associated risk factors in kidney transplant patients: A competing risks survival analysis. BMC Cardiovasc. Disord. 2017, 17, 72. [Google Scholar] [CrossRef]
- Okumi, M.; The Japan Academic Consortium of Kidney Transplantation; Kakuta, Y.; Unagami, K.; Maenosono, R.; Miyake, K.; Iizuka, J.; Takagi, T.; Ishida, H.; Tanabe, K. cardiovascular disease in kidney transplant recipients: Japan Academic Consortium of Kidney Transplantation (JACK) cohort study. Clin. Exp. Nephrol. 2018, 22, 702–709. [Google Scholar] [CrossRef]
- Kasiske, B.L.; Guijarro, C.; Massy, Z.A.; Wiederkehr, M.R.; Ma, J.Z. Cardiovascular Disease After Renal Transplantation. J. Am. Soc. Nephrol. 1996, 7, 158–165. Available online: http://journals.lww.com/jasn (accessed on 30 March 2022).
- Han, D.; Grinyó, J.M.; Rostaing, L.P.; Sallam, K. Cardiovascular effects of immunosuppression agents. Front. Cardiovasc. Med. 2022, 9, 981838. [Google Scholar]
- Palanisamy, A.P.; Schiltz, C.E.; Pilch, N.A.; Hunt, K.J.; Nadig, S.N.; Dowden, J.E.; McGillicuddy, J.W.; Baliga, P.K.; Chavin, K.D.; Taber, D.J. Cardiovascular risk factors contribute to disparities in graft outcomes in African American renal transplant recipients: A retrospective analysis. Blood Press 2015, 24, 14–22. [Google Scholar] [CrossRef]
- Nimmo, A.; Graham-Brown, M.; Griffin, S.; Sharif, A.; Ravanan, R.; Taylor, D. Pre-Kidney Transplant Screening for Coronary Artery Disease: Current Practice in the United Kingdom. Transpl. Int. 2022, 35, 10039. [Google Scholar] [CrossRef]
- Sharif, A. The Argument for Abolishing Cardiac Screening of Asymptomatic Kidney Transplant Candidates. Am. J. Kidney Dis. 2020, 75, 946–954. [Google Scholar] [CrossRef]
- Deak, A.T.; Ionita, F.; Kirsch, A.H.; Odler, B.; Rainer, P.P.; Kramar, R.; Kubatzki, M.P.; Eberhard, K.; Berghold, A.; Rosenkranz, A.R. Impact of cardiovascular risk stratification strategies in kidney transplantation over time. Nephrol. Dial. Transplant. 2018, 36, 1810–1818. Available online: https://academic.oup.com/ndt/article/35/10/1810/5918565 (accessed on 19 April 2024). [CrossRef]
- Rangaswami, J.; O Mathew, R.; Parasuraman, R.; Tantisattamo, E.; Lubetzky, M.; Rao, S.; Yaqub, M.S.; A Birdwell, K.; Bennett, W.; Dalal, P.; et al. Cardiovascular disease in the kidney transplant recipient: Epidemiology, diagnosis and management strategies. Nephrol. Dial. Transplant. 2019, 34, 760–773. Available online: https://academic.oup.com/ndt/article/34/5/760/5449079 (accessed on 15 April 2024). [CrossRef]
PTCVD (N = 83) | No-PTCVD (N = 666) | Total (N = 749) | p Value | |
---|---|---|---|---|
Age (years) | 0.001 | |||
- Mean (SD) | 50.1 (13.6) | 44.5 (15.3) | 45.1 (15.2) | |
Sex | 0.565 | |||
- Male | 47 (56.6%) | 399 (59.9%) | 446 (59.5%) | |
- Female | 36 (43.4%) | 267 (40.1%) | 303 (40.5%) | |
Ethnicity | 0.426 | |||
- White | 68 (81.9%) | 542 (81.4%) | 610 (81.4%) | |
- Asian | 13 (15.7%) | 91 (13.7%) | 104 (13.9%) | |
- Black | 2 (2.4%) | 13 (2.0%) | 15 (2.0%) | |
- Other | 0 (0.0%) | 20 (3.0%) | 20 (2.7%) | |
Primary renal disease | 0.090 | |||
- ADPKD | 6 (7.2%) | 79 (11.9%) | 85 (11.3%) | |
- GN | 30 (36.1%) | 190 (28.5%) | 220 (29.4%) | |
- DKD | 2 (2.4%) | 71 (10.7%) | 73 (9.7%) | |
- HKD | 7 (8.4%) | 41 (6.2%) | 48 (6.4%) | |
- Reflux/CPN | 17 (20.5%) | 105 (15.8%) | 122 (16.3%) | |
- Unknown | 10 (12.0%) | 109 (16.4%) | 119 (15.9%) | |
- Other | 11 (13.3%) | 71 (10.7%) | 82 (10.9%) | |
Pre-transplant diabetes | 0.055 | |||
- No | 77 (92.8%) | 566 (85.0%) | 643 (85.8%) | |
- Yes | 6 (7.2%) | 100 (15.0%) | 106 (14.2%) | |
Transplant number | 0.872 | |||
- Mean (SD) | 1.2 (0.4) | 1.1 (0.4) | 1.1 (0.4) | |
Pre-emptive transplant | 0.069 | |||
- No | 61 (77.2%) | 429 (67.1%) | 490 (68.2%) | |
- Yes | 18 (22.8%) | 210 (32.9%) | 228 (31.8%) | |
Donor type | 0.224 | |||
- DD | 63 (75.9%) | 461 (69.4%) | 524 (70.1%) | |
- LD | 20 (24.1%) | 203 (30.6%) | 223 (29.9%) | |
Total HLA mismatch | 0.460 | |||
- Mean (SD) | 2.33 (1.47) | 2.46 (1.4) | 2.44 (1.4) | |
Total ischaemia time | 0.115 | |||
- Mean (SD) | 14.0 (7.5) | 12.5 (7.7) | 12.7 (7.7) | |
Main immunosuppression | 0.005 | |||
- MTORI | 1 (1.2%) | 10 (1.5%) | 11 (1.5%) | |
- Cyc | 15 (18.3%) | 50 (7.6%) | 65 (8.8%) | |
- Tac | 66 (80.5%) | 599 (90.9%) | 665 (89.7%) | |
Antimetabolite | 0.018 | |||
- None | 16 (19.8%) | 64 (9.7%) | 80 (10.8%) | |
- MPA | 53 (65.4%) | 506 (76.9%) | 559 (75.6%) | |
- Aza | 12 (14.8%) | 88 (13.4%) | 100 (13.5%) | |
Steroid maintenance | 0.020 | |||
- <2 wks | 32 (38.6%) | 352 (53.3%) | 384 (51.6%) | |
- 2 w–6mo | 1 (1.2%) | 17 (2.6%) | 18 (2.4%) | |
- >6mo | 50 (60.2%) | 292 (44.2%) | 342 (46.0%) | |
Number of immunosuppressive agents | 0.026 | |||
- Single Agent | 7 (8.4%) | 26 (4.0%) | 33 (4.5%) | |
- Two Agents | 38 (45.8%) | 389 (59.4%) | 427 (57.9%) | |
- Three Agents | 38 (45.8%) | 240 (36.6%) | 278 (37.7%) | |
Donor CMV status | 0.632 | |||
- Positive | 40 (58.0%) | 301 (54.9%) | 341 (55.3%) | |
Recipient CMV status | 0.106 | |||
- Positive | 44 (64.7%) | 298 (54.4%) | 342 (55.5%) | |
Smoking history | 0.775 | |||
- Never smoked | 48 (64.9%) | 408 (66.7%) | 456 (66.5%) | |
- Current smoker | 12 (16.2%) | 81 (13.2%) | 93 (13.6%) | |
- Ex-smoker | 14 (18.9%) | 123 (20.1%) | 137 (20.0%) | |
History of acute rejection | 0.259 | |||
- No AR | 70 (84.3%) | 590 (88.6%) | 660 (88.1%) | |
- History of AR | 13 (15.7%) | 76 (11.4%) | 89 (11.9%) | |
Duration of RRT (mo) | 0.069 | |||
- Median (IQR) | 30.0 (14.858) | 26.0 (12.045) | 26.0 (12.048) | |
Pre-transplant BMI (kg/m2) | 0.519 | |||
- Mean (SD) | 27.4 (4.8) | 26.7 (8.4) | 26.8 (8.1) | |
Post-transplant diabetes | 0.053 | |||
- Yes | 19 (22.9%) | 98 (14.7%) | 117 (15.6%) | |
Baseline eGFR(mL/min/1/73m2) | 0.030 | |||
- Median (IQR) | 46.0 (37.0–61.0) | 51.5 (41.0–64.3) | 51.0 (40.0–64.0) | |
CMV { XE “CMV” } viremia | 0.395 | |||
- Yes | 9 (10.8%) | 95 (14.3%) | 104 (13.9%) | |
EBV { XE “EBV” } viremia | 0.342 | |||
- Yes | 13 (15.7%) | 80 (12.0%) | 93 (12.4%) | |
Polyoma viremia | 0.131 | |||
- Yes | 68 (10.2%) | 13 (15.7%) | 81 (10.8%) | |
Any DNA virus infection | 0.204 | |||
- Yes | 29 (34.9%) | 188 (28.2%) | 217 (29.0%) | |
Average tacrolimus level (mmol/L) | 0.003 | |||
- Mean (SD) | 4.6 (2.2) | 5.7 (2.7) | 5.5 (2.7) | |
Mean haemoglobin (g/L) | 0.023 | |||
- Mean (SD) | 121.3 (21.4) | 126.7 (19.4) | 126.1 (19.8) | |
Mean uPCR (mg/mmol) | 0.024 | |||
- Median (IQR) | 40.5 (13.2–1.0) | 22.7 (11.3–63.3) | 24.3 (11.4–66.5) | |
Average PTH { XE “PTH” } level (ng/L) | 0.009 | |||
- Median (IQR) | 13.1 (8.2–18.1) | 10.0 (6.7–15.5) | 10.2 (6.8–16.2) | |
eGFR slope (mL/min/year) | 0.079 | |||
- Median (IQR) | −1.33(−3.21–0.23) | −0.77(−2.60–0.56) | −0.81(−2.66–0.55) |
Univariate Competing Risk Regression Model | Multivariate Competing Risk Regression Model | |||||
---|---|---|---|---|---|---|
Characteristic | SHR | 95% CI | p-Value | SHR | 95% CI | p-Value |
Recipient age at transplant (per decade) | 1.26 | 1.10–1.45 | <0.001 | 1.22 | 1.01–1.46 | 0.036 |
Female | 1.06 | 0.68–1.63 | 0.8 | |||
Ethnicity | ||||||
White | 1.00 | — | — | |||
Asian | 1.28 | 0.69–2.36 | 0.43 | |||
Black | 1.70 | 0.44–6.60 | 0.44 | |||
Other | 0.00 | 0.00–0.00 | <0.001 | |||
Pre-transplant BMI (per 5 kg/m2) | 1.07 | 1.00–1.15 | 0.065 | |||
Primary renal disease | ||||||
ADPKD{ XE “ADPKD” } | 1.00 | — | — | |||
GN{ XE “GN” } | 1.48 | 0.61–3.56 | 0.39 | |||
DKD{ XE “DKD” } | 0.38 | 0.08–1.85 | 0.23 | |||
HKD{ XE “HKD” } | 2.15 | 0.72–6.39 | 0.17 | |||
Reflux/CPN{ XE “CPN” } | 1.58 | 0.63–3.95 | 0.33 | |||
Unknown | 0.95 | 0.35–2.59 | 0.92 | |||
Other | 1.46 | 0.53–4.00 | 0.46 | |||
Pre-emptive transplant | 0.65 | 0.39–1.09 | 0.11 | |||
Dialysis vintage (per year) | 1.06 | 1.00–1.12 | 0.037 | 1.07 | 1.00–1.14 | 0.048 |
Pre-transplant diabetes | 0.56 | 0.25–1.28 | 0.17 | |||
Donor type | ||||||
DD{ XE “DD” } | 1.00 | — | — | |||
LD{ XE “LD” } | 0.78 | 0.47–1.30 | 0.34 | |||
Total mismatch | 1.03 | 0.88–1.22 | 0.71 | |||
Total ischaemic time | 1.01 | 0.99–1.04 | 0.34 | |||
CNI{ XE “CNI” } | ||||||
Tacrolimus | 1.00 | — | — | |||
Cyclosporine | 1.57 | 0.90–2.75 | 0.11 | |||
Antimetabolite | ||||||
None | 1.00 | — | ||||
MPA{ XE “MPA” } | 0.83 | 0.47–1.46 | 0.52 | |||
Aza{ XE “Aza” } | 0.72 | 0.33–1.56 | 0.41 | |||
Corticosteroid treatment | ||||||
<2 wks | 1.00 | — | — | |||
2 w–6 mo | 0.85 | 0.11–6.62 | 0.88 | |||
>6 mo | 1.26 | 0.80–1.97 | 0.32 | |||
Number of immunosuppressive agents | 1.16 | 0.79–1.68 | 0.45 | |||
Recipient CMV-positive | 1.53 | 0.93–2.52 | 0.09 | |||
Donor CMV-positive | 1.08 | 0.66–1.76 | 0.76 | |||
CMV viremia | 0.76 | 0.39–1.50 | 0.44 | |||
EBV viremia | 1.01 | 0.56–1.81 | 0.98 | |||
Polyoma viremia | 1.80 | 0.98–3.29 | 0.057 | |||
Smoking history | ||||||
Never smoked | 1.00 | — | ||||
Current smoker | 1.31 | 0.72–2.40 | 0.37 | |||
Ex-smoker | 1.17 | 0.63–2.19 | 0.62 | |||
Median tacrolimus level | 0.91 | 0.82–1.00 | 0.061 | 0.93 | 0.85–1.02 | 0.10 |
Post-transplant diabetes | 1.55 | 0.93–2.58 | 0.092 | |||
Baseline eGFR (per 10 mL/min increase) | 0.91 | 0.79–1.03 | 0.14 | 0.98 | 0.96–1.00 | 0.032 |
Slope of eGFR | 0.96 | 0.92, 1.00 | 0.073 | 0.91 | 0.86, 0.98 | 0.007 |
Average uPCR | 1.00 | 1.00–1.00 | 0.12 | |||
Average PTH (per 10 units increase) | 1.04 | 0.98–1.10 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chukwu, C.A.; Rao, A.; Middleton, R.; Kalra, P.A. Post-Transplant Cardiovascular Disease in Kidney Transplant Recipients: Incidence, Risk Factors, and Outcomes in the Era of Modern Immunosuppression. J. Clin. Med. 2024, 13, 2734. https://doi.org/10.3390/jcm13102734
Chukwu CA, Rao A, Middleton R, Kalra PA. Post-Transplant Cardiovascular Disease in Kidney Transplant Recipients: Incidence, Risk Factors, and Outcomes in the Era of Modern Immunosuppression. Journal of Clinical Medicine. 2024; 13(10):2734. https://doi.org/10.3390/jcm13102734
Chicago/Turabian StyleChukwu, Chukwuma Austin, Anirudh Rao, Rachel Middleton, and Philip A. Kalra. 2024. "Post-Transplant Cardiovascular Disease in Kidney Transplant Recipients: Incidence, Risk Factors, and Outcomes in the Era of Modern Immunosuppression" Journal of Clinical Medicine 13, no. 10: 2734. https://doi.org/10.3390/jcm13102734