Non-Invasive Ventilation Support during Hospitalization for SARS-CoV-2 and the Risk of Venous Thromboembolism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Characteristics and Data Collection
2.2. Statistical Analyses
3. Results
3.1. General Characteristics of Population
3.2. Multivariate Logistic Regression Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beckman, M.G.; Hooper, W.C.; Critchley, S.E.; Ortel, T.L. Venous thromboembolism: A public health concern. Am. J. Prev. Med. 2010, 38 (Suppl. S4), S495–S501. [Google Scholar] [CrossRef]
- Agnelli, G. Prevention of venous thromboembolism in surgical patients. Circulation 2004, 110 (Suppl. S24), IV4–IV12. [Google Scholar] [CrossRef] [PubMed]
- Bikdeli, B.; Monreal, M.; Jiménez, D. Pulmonary embolism in Europe remains a cause of concern despite declining deaths. Lancet Respir. Med. 2020, 8, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Barco, S.; Mahmoudpour, S.H.; Valerio, L.; Klok, F.A.; Münzel, T.; Middeldorp, S.; Ageno, W.; Cohen, A.T.; Hunt, B.J.; Konstantinides, S.V. Trends in mortality related to pulmonary embolism in the European Region, 2000-15: Analysis of vital registration data from the WHO Mortality Database. Lancet Respir Med. 2020, 8, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Kollias, A.; Kyriakoulis, K.G.; Dimakakos, E.; Poulakou, G.; Stergiou, G.S.; Syrigos, K. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: Emerging evidence and call for action. Br. J. Haematol. 2020, 189, 846–847. [Google Scholar] [CrossRef]
- Minet, C.; Potton, L.; Bonadona, A.; Hamidfar-Roy, R.; Somohano, C.A.; Lugosi, M.; Cartier, J.C.; Ferretti, G.; Schwebel, C.; Timsit, J.F. Venous thromboembolism in the ICU: Main characteristics, diagnosis and thromboprophylaxis. Crit. Care 2015, 19, 287. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Manson, J.J.; Crooks, C.; Naja, M.; Ledlie, A.; Goulden, B.; Liddle, T.; Khan, E.; Mehta, P.; Martin-Gutierrez, L.; Waddington, K.E.; et al. COVID-19-associated hyperinflammation and escalation of patient care: A retrospective longitudinal cohort study. Lancet Rheumatol. 2020, 2, e594–e602. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Rad, S.; Rostami, T.; Rostami, M.; Mousavi, S.A.; Mirhoseini, S.A.; Kiumarsi, A. Hematologic predictors of mortality in hospitalized patients with COVID-19: A comparative study. Hematology 2020, 25, 383–388. [Google Scholar] [CrossRef]
- Kollias, A.; Kyriakoulis, K.G.; Stergiou, G.S.; Syrigos, K. Heterogeneity in reporting venous thromboembolic phenotypes in COVID-19: Methodological issues and clinical implications. Br. J. Haematol. 2020, 190, 529–532. [Google Scholar] [CrossRef]
- Joly, B.S.; Siguret, V.; Veyradier, A. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Med. 2020, 46, 1603–1606. [Google Scholar] [CrossRef] [PubMed]
- Thachil, J.; Tang, N.; Gando, S.; Falanga, A.; Cattaneo, M.; Levi, M.; Clark, C.; Iba, T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 2020, 18, 1023–1026. [Google Scholar] [CrossRef] [PubMed]
- Bikdeli, B.; Madhavan, M.V.; Jimenez, D.; Chuich, T.; Dreyfus, I.; Driggin, E.; Nigoghossian, C.; Ageno, W.; Madjid, M.; Guo, Y.; et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 2950–2973. [Google Scholar] [CrossRef]
- Oudkerk, M.; Büller, H.R.; Kuijpers, D.; van Es, N.; Oudkerk, S.F.; McLoud, T.; Gommers, D.; van Dissel, J.; Ten Cate, H.; van Beek, E.J.R. Diagnosis, Prevention, and Treatment of Thromboembolic Complications in COVID-19: Report of the National Institute for Public Health of the Netherlands. Radiology 2020, 297, E216–E222. [Google Scholar] [CrossRef] [PubMed]
- Gerotziafas, G.T.; Catalano, M.; Colgan, M.P.; Pecsvarady, Z.; Wautrecht, J.C.; Fazeli, B.; Olinic, D.M.; Farkas, K.; Elalamy, I.; Falanga, A.; et al. Guidance for the Management of Patients with Vascular Disease or Cardiovascular Risk Factors and COVID-19: Position Paper from VAS-European Independent Foundation in Angiology/Vascular Medicine. Thromb. Haemost. 2020, 120, 1597–1628. [Google Scholar]
- Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.A.M.P.J.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020, 191, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Bompard, F.; Monnier, H.; Saab, I.; Tordjman, M.; Abdoul, H.; Fournier, L.; Sanchez, O.; Lorut, C.; Chassagnon, G.; Revel, M.P. Pulmonary embolism in patients with COVID-19 pneumonia. Eur. Respir. J. 2020, 56, 2001365. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Capitán, C.; Barba, R.; Díaz-Pedroche, M.D.C.; Sigüenza, P.; Demelo-Rodriguez, P.; Siniscalchi, C.; Pedrajas, J.M.; Farfán-Sedano, A.I.; Olivera, P.E.; Gómez-Cuervo, C.; et al. Presenting Characteristics, Treatment Patterns, and Outcomes among Patients with Venous Thromboembolism during Hospitalization for COVID-19. Semin. Thromb. Hemost. 2021, 47, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Daughety, M.M.; Morgan, A.; Frost, E.; Kao, C.; Hwang, J.; Tobin, R.; Patel, B.; Fuller, M.; Welsby, I.; Ortel, T.L. COVID-19 associated coagulopathy: Thrombosis, hemorrhage and mortality rates with an escalated-dose thromboprophylaxis strategy. Thromb. Res. 2020, 196, 483–485. [Google Scholar] [CrossRef]
- Meschi, T.; Rossi, S.; Volpi, A.; Ferrari, C.; Sverzellati, N.; Brianti, E.; Fabi, M.; Nouvenne, A.; Ticinesi, A. Reorganization of a large academic hospital to face COVID-19 outbreak: The model of Parma, Emilia-Romagna region, Italy. Eur. J. Clin. Investig. 2020, 50, e13250. [Google Scholar] [CrossRef]
- Nouvenne, A.; Zani, M.D.; Milanese, G.; Parise, A.; Baciarello, M.; Bignami, E.G.; Odone, A.; Sverzellati, N.; Meschi, T.; Ticinesi, A. Lung Ultrasound in COVID-19 Pneumonia: Correlations with Chest CT on Hospital admission. Respiration 2020, 99, 617–624. [Google Scholar] [CrossRef]
- Huang, J.; Martinez, J.; Diaz, D.; Wolowich, W.R. Incidence of Venous Thromboembolism in Hospitalized COVID-19 Patients Receiving Thromboprophylaxis. J. Hematol. 2022, 11, 167–175. [Google Scholar] [CrossRef] [PubMed]
- González-García, J.G.; Pascual-Guardia, S.; Aguilar Colindres, R.J.; Ausín Herrero, P.; Alvarado Miranda, M.; Arita Guevara, M.; Badenes Bonet, D.; Bellido Calduch, S.; Caguana Vélez, O.A.; Cumpli Gargallo, C.; et al. Incidence of pulmonary embolism in patients with non-invasive respiratory support during COVID-19 outbreak. Respir. Med. 2021, 178, 106325. [Google Scholar] [CrossRef]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Ventura-Díaz, S.; Quintana-Pérez, J.V.; Gil-Boronat, A.; Herrero-Huertas, M.; Gorospe-Sarasúa, L.; Montilla, J.; Acosta-Batlle, J.; Blázquez-Sánchez, J.; Vicente-Bártulos, A. A higher D-dimer threshold for predicting pulmonary embolism in patients with COVID-19: A retrospective study. Emerg. Radiol. 2020, 27, 679–689. [Google Scholar] [CrossRef]
- Cui, S.; Chen, S.; Li, X.; Liu, S.; Wang, F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 1421–1424. [Google Scholar] [CrossRef]
- Danzi, G.B.; Loffi, M.; Galeazzi, G.; Gherbesi, E. Acute pulmonary embolism and COVID-19 pneumonia: A random association? Eur. Heart J. 2020, 41, 1858. [Google Scholar] [CrossRef] [PubMed]
- Hunt, B.J.; Levi, M. Re The source of elevated plasma D-dimer levels in COVID-19 infection. Br. J. Haematol. 2020, 190, e133–e134. [Google Scholar] [CrossRef]
- Guan, W.J.; Liang, W.H.; Zhao, Y.; Liang, H.R.; Chen, Z.S.; Li, Y.M.; Liu, X.Q.; Chen, R.C.; Tang, C.L.; Wang, T.; et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur. Respir. J. 2020, 55, 2000547. [Google Scholar] [CrossRef]
- Brüggemann, R.A.G.; Spaetgens, B.; Gietema, H.A.; Brouns, S.H.A.; Stassen, P.M.; Magdelijns, F.J.; Rennenberg, R.J.; Henry, R.M.A.; Mulder, M.M.G.; van Bussel, B.C.T.; et al. The prevalence of pulmonary embolism in patients with COVID-19 and respiratory decline: A three-setting comparison. Thromb. Res. 2020, 196, 486–490. [Google Scholar] [CrossRef] [PubMed]
Patients without VTE n = 1444 | Patients with VTE n = 27 (1.8%) | p | p Adjusted for Age and Sex | |
---|---|---|---|---|
Demography and personal history | ||||
Age, years | 76 (63–84) | 79 (66–88) | 0.482 | |
Females, % | 45 | 52 | 0.511 | |
Chronic illnesses, number | 3 (1–5) | 3 (2–5) | 0.175 | 0.251 |
CHA2DS2Vasc Score | 3 (1–4) | 4 (2–5) | 0.034 | 0.021 |
Diabetes, % | 21 | 41 | 0.012 | 0.015 |
Obesity, % | 11 | 26 | 0.017 | 0.013 |
Hypertension, % | 59 | 74 | 0.114 | 0.140 |
Chronic heart disease, % | 26 | 22 | 0.629 | 0.520 |
Dyslipidemia, % | 17 | 19 | 0.839 | 0.837 |
Cancer, % | 16 | 11 | 0.508 | 0.462 |
Arrhythmias, % | 15 | 19 | 0.615 | 0.737 |
Vasculopathies, % | 10 | 19 | 0.147 | 0.188 |
Dementia, % | 18 | 22 | 0.566 | 0.783 |
Epilepsy, % | 4 | 7 | 0.327 | 0.354 |
Drugs, number | 4 (1–6) | 4 (1–7) | 0.892 | 0.782 |
Drugs AVKs/DOACs, % | 13 | 15 | 0.788 | 0.913 |
Antiaggregants, % | 30 | 33 | 0.757 | 0.847 |
Antiepileptics, % | 7 | 19 | 0.026 | 0.041 |
Hypoglycemic, % | 13 | 27 | 0.049 | 0.063 |
Insulin, % | 7 | 19 | 0.015 | 0.023 |
Clinical presentation upon admission | ||||
Symptom duration, days | 7 (3–10) | 7 (5–10) | 0.692 | 0.523 |
Fever, % | 81 | 81 | 0.983 | 0.896 |
Dyspnea, % | 54 | 46 | 0.424 | 0.377 |
Cough, % | 44 | 65 | 0.029 | 0.021 |
CT-ground glass, % | 94 | 93 | 0.719 | 0.833 |
CT visual score, % | 30 (20–50) | 40 (25–60) | 0.058 | 0.053 |
RT-PCR positive on admission, % | 63 | 63 | 0.972 | 0.926 |
ECG on admission | ||||
ECG abnormalities, % | 52 | 74 | 0.022 | 0.028 |
Atrial fibrillation, % | 12 | 15 | 0.702 | 0.794 |
QT interval, millisecond | 384 (356–418) | 398 (337–425) | 0.956 | 0.955 |
QT correct, millisecond | 449 (430–473) | 444 (424–471 | 0.575 | 0.439 |
Arterial blood gas analysis on admission | ||||
pH | 7.44 (7.41–7.47) | 7.46 (7.43–7.49) | 0.322 | 0.246 |
HCO3−, mmol/L | 25 (23–27) | 26 (24–28) | 0.072 | 0.059 |
pCO2, mmHg | 36 (33–40) | 38 (35–40) | 0.166 | 0.175 |
pO2, mmHg | 75 (63–95) | 74 (62–87) | 0.632 | 0.603 |
pO2/FiO2, mmHg | 256 (147–349) | 205 (145–311) | 0.314 | 0.342 |
Blood tests on admission | ||||
WBC, 1000/mm3 | 6.99 (5.12–9.55) | 9.16 (6.62–12.50) | 0.010 | 0.011 |
Neutrophils, 1000/mm3 | 5.32 (3.62–7.87) | 7.65 (5.43–10.13) | 0.002 | 0.002 |
Lymphocytes, 1000/mm3 | 0.92 (0.63–1.28) | 0.82 (0.50–1.16) | 0.144 | 0.148 |
C-reactive protein, mg/L | 96 (44–162) | 138 (105–220) | 0.001 | 0.001 |
D-dimer, ng/dL | 1046 (640–2025) | 1572 (1003–3859) | 0.020 | 0.010 |
D-dimer ≥ 9000 ng/dL, % | 7 | 21 | 0.017 | 0.013 |
Creatinine, mg/dL | 0.9 (0.7–1.2) | 1.1 (0.8–1.3) | 0.307 | 0.267 |
PCT, ng/mL | 0.16 (0.07–0.48) | 0.19 (0.13–0.45) | 0.202 | 0.220 |
PT | 1.21 (1.13–1.32) | 1.18 (1.11–1.33) | 0.504 | 0.549 |
INR ratio | 1.21 (1.13–1.33) | 1.22 (1.13–1.33) | 0.922 | 0.848 |
aPTT ratio | 0.97 (0.90–1.07) | 0.93 (0.88–1.03) | 0.082 | 0.093 |
Fibrinogen, mg/dL | 596 (469–730) | 612 (525–866) | 0.236 | 0.189 |
Clinical course | ||||
Worst O2 saturation during hospitalization, % | 92 (88–94) | 88 (83–91) | 0.002 | 0.002 |
Worst pO2 during hospitalization, mmHg | 60 (50–72) | 51 (43–61) | 0.002 | 0.002 |
Maximum oxygen flow, % | 40 (28–75) | 75 (36–95) | 0.001 | 0.001 |
Max temperature during hospitalization, °C | 37.6 (36.8–38.5) | 38.2 (37.7–38.8) | 0.024 | 0.010 |
Non-invasive ventilation support, % | 8 | 44 | <0.001 | <0.001 |
Peripherial ischemia, % | 0.3 | 0.0 | 0.784 | / |
Ictus, % | 0.6 | 0.0 | 0.698 | / |
Sedation, % | 26 | 50 | 0.007 | 0.010 |
Therapies | ||||
Antivirals, % | 43 | 67 | 0.016 | 0.012 |
Antibiotics % | 92 | 100 | 0.127 | / |
Penicillins, % | 81 | 96 | 0.046 | 0.075 |
Linezolid, % | 5 | 33 | <0.001 | <0.001 |
Hydroxychloroquine, % | 57 | 93 | <0.001 | 0.002 |
Colchicine, % | 7 | 19 | 0.022 | 0.021 |
Steroids, % | 19 | 33 | 0.072 | 0.081 |
Tocilizumab, % | 3 | 30 | <0.001 | <0.001 |
Enoxaparin, % | 90 | 100 | 0.077 | / |
Enoxaparin dose, | 6000 (4000–8000) | 10000 (8000–16,000) | <0.001 | <0.001 |
Fondaparinux dose, % | 2.5 (2–5) | 7.5 (7.5–7.5) | 0.090 | 0.101 |
Outcomes | ||||
Death, % | 27 | 41 | 0.104 | 0.119 |
Intensive care unit, % | 4 | 19 | <0.001 | <0.001 |
Odds Ratio | 95% Confidence Interval | p | |
---|---|---|---|
Non-invasive ventilation support | 15.530 | 6.244–38.627 | <0.001 |
CHA2DS2Vasc Score > 3 | 3.404 | 1.362–8.513 | 0.009 |
Cough | 3.019 | 1.265–7.202 | 0.013 |
Neutrophils, 1000/mm3 | 1.089 | 1.015–1.169 | 0.018 |
ECG abnormalities | 2.722 | 1.039–7.133 | 0.042 |
First Period 28 February–22 March 2020 | ||||
---|---|---|---|---|
Patients without VTE n = 766 | Patients with VTE n = 12 (1.5%) | p | p Adjusted for Age and Sex | |
Age | 72 (61–81) | 66 (54–77) | 0.168 | |
Females, % | 40 | 25 | 0.294 | |
Diabetes, % | 19 | 42 | 0.056 | 0.042 |
Obesity, % | 12 | 42 | 0.002 | 0.009 |
CHA2DS2Vasc Score | 2 (1–4) | 3 (2–4) | 0.556 | 0.004 |
Cough, % | 52 | 83 | 0.034 | 0.080 |
Dyspnea, % | 49 | 33 | 0.283 | 0.366 |
CT visual score, % | 30 (20–50) | 45 (28–63) | 0.114 | 0.101 |
ECG abnormalities, % | 46 | 58 | 0.382 | 0.175 |
Blood tests on admission | ||||
WBC, 1000/mm3 | 6.52 (4.9–9.05) | 8.06 (5.38–10.82) | 0.251 | 0.206 |
Neutrophils, 1000/mm3 | 5.03 (3.45–7.45) | 6.76 (4.26–9.55) | 0.151 | 0.113 |
C-reactive protein, mg/L | 102 (50–170) | 184 (106–249) | 0.005 | 0.003 |
CRP ≥ 250 mg/L, % | 9 | 25 | 0.051 | 0.051 |
D-dimer, ng/dL | 980 (636–1747) | 1111 (804–1734) | 0.389 | 0.141 |
D-dimer ≥ 9000 ng/dL, % | 7 | 11 | 0.589 | 0.537 |
aPTT ratio | 0.97 (0.90–1.05) | 0.94 (0.85–1.04) | 0.380 | 0.340 |
Clinical course | ||||
Worst O2 saturation during hospitalization, % | 91 (85–94) | 88 (82–90) | 0.021 | 0.006 |
Worst pO2 during hospitalization, mmHg | 58 (46–67) | 48 (43–53) | 0.030 | 0.024 |
Maximum oxygen flow, % | 44 (28–75) | 85 (76–100) | <0.001 | <0.001 |
Max temperature during hospitalization, °C | 38.0 (37.1–38.7) | 38.8 (38.4–39.0) | 0.004 | 0.008 |
Non-invasive ventilation support, % | 10 | 75 | <0.001 | <0.001 |
Sedation, % | 28 | 67 | 0.003 | 0.004 |
Outcomes | ||||
Death, % | 28 | 33 | 0.688 | 0.314 |
Intensive care unit ICU, % | 5 | 33 | <0.001 | 0.001 |
Second Period 23 March–10 June 2020 | ||||
Patients without VTE n= 678 | Patients with VTE n= 15 (2.2%) | p | pAdjusted for Age and Sex | |
Age | 80 (68–88) | 85 (80–88) | 0.102 | |
Females, % | 52 | 73 | 0.099 | |
Diabetes, % | 22 | 40 | 0.099 | 0.096 |
Obesity, % | 10 | 13 | 0.709 | 0.443 |
CHA2DS2Vasc Score | 3 (2–5) | 5 (4–6) | 0.022 | 0.115 |
Cough, % | 34 | 50 | 0.215 | 0.112 |
Dyspnea, % | 54 | 46 | 0.424 | 0.378 |
CT visual score, % | 30 (20–50) | 33 (25–60) | 0.290 | 0.274 |
ECG abnormalities, %, | 59 | 87 | 0.029 | 0.089 |
Blood tests on admission | ||||
WBC, 1000/mm3 | 7.46 (5.51–10.37) | 10.02 (6.98–13.64) | 0.023 | 0.036 |
Neutrophils, 1000/mm3 | 5.61 (3.77–8.39) | 7.99 (6.14–11.81) | 0.007 | 0.012 |
C-reactive protein, mg/L | 89 (36–154) | 124 (104–164) | 0.033 | 0.013 |
CRP ≥ 250 mg/L, % | 6 | 7 | 0.923 | 0.814 |
D-dimer, ng/dL | 1101 (657–2260) | 2621 (1233–9000) | 0.014 | 0.022 |
D-dimer ≥ 9000 ng/dL, % | 7 | 30 | 0.007 | 0.008 |
aPTT ratio | 0.99 (0.90–1.08) | 0.92 (0.88–1.01) | 0.125 | 0.184 |
Clinical course | ||||
Worst O2 saturation during hospitalization, % | 93 (90–95) | 90 (86–93) | 0.020 | 0.031 |
Worst pO2 during hospitalization, mmHg | 64 (55–75) | 54 (43–67) | 0.016 | 0.014 |
Maximum oxygen flow, %, | 36 (28–75) | 36 (27–85) | 0.632 | 0.576 |
Max temperature during hospitalization, | 37.3 (36.0–38.0) | 37.8 (36.0–38.2) | 0.343 | 0.148 |
Non-invasive ventilation support, % | 6 | 20 | 0.024 | 0.014 |
Sedation, % | 25 | 36 | 0.362 | 0.480 |
Outcome | ||||
Death, % | 25 | 47 | 0.060 | 0.125 |
Intensive care unit ICU, % | 2 | 7 | 0.196 | 0.107 |
Odds Ratio | 95% Confidence Interval | p | |
---|---|---|---|
Non-invasive ventilation support | 30.297 | 7.344–124.990 | <0.001 |
Dyspnea | 0.159 | 0.039–0.647 | 0.010 |
C-reactive protein | 1.010 | 1.001–1.020 | 0.027 |
Odds Ratio | 95% Confidence Interval | p | |
Non-invasive ventilation support | 9.825 | 2.136–45.181 | 0.003 |
CHA2DS2-VASC SCORE | 1.568 | 1.084–2.267 | 0.017 |
Neutrophils, 1000/mm3 | 1.105 | 1.009–1.211 | 0.032 |
Drugs | Pharmacodynamics | Mechanism of Action |
---|---|---|
Enoxaparin | This drug has an immediate onset of action. Enoxaparin increases thrombin time (TT) and activated partial thromboplastin time (aPTT). Administered at 1.5 mg/kg subcutaneously, enoxaparin led to a higher ratio of anti-Factor Xa to anti-Factor IIa activity. Enoxaparin administered at 1 mg/kg subcutaneously every 12 h led to aPTT values of 45 s or less in most patients. | Enoxaparin binds to antithrombin III, a serine protease inhibitor, forming a complex that irreversibly inactivates factor Xa, which is frequently used to monitor anticoagulation in the clinical setting. Following factor Xa inactivation, enoxaparin is released and binds to other anti-thrombin molecules. Factor IIa (thrombin) is directly inhibited by enoxaparin. Due to the cascade of effects resulting from enoxaparin binding, thrombin is unable to convert fibrinogen to fibrin and form a clot |
Fondaparinux | Fondaparinux binds specifically to the natural anticoagulant factor, ATIII. Binding to ATIII potentiates the neutralizing action of ATIII on Factor Xa 300-fold. Neutralization of Factor Xa decreases the conversion of prothrombin to thrombin, which subsequently decreases the conversion of fibrinogen to fibrin (loose meshwork). The decrease in thrombin also decreases the activation of Factor XIII, which decreases the conversion of fibrin in its loose meshwork form to its stabilized meshwork form. Disruption of the coagulation cascade effectively decreases the formation of blood clots. Fondaparinux does not inactivate thrombin (activated Factor II). According to the manufacturer, fondaparinux has no known effect on platelet function. | The antithrombotic activity of fondaparinux is the result of the ATIII-mediated selective inhibition of Factor Xa. By selectively binding to ATIII, fondaparinux potentiates (about 300 times) the neutralization of Factor Xa by ATIII. Neutralization of Factor Xa interrupts the blood coagulation cascade and thus inhibits thrombin formation and thrombus development. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siniscalchi, C.; Ticinesi, A.; Nouvenne, A.; Guerra, A.; Parise, A.; Finardi, L.; Cerundolo, N.; Prati, B.; Guida, L.; Meschi, T. Non-Invasive Ventilation Support during Hospitalization for SARS-CoV-2 and the Risk of Venous Thromboembolism. J. Clin. Med. 2024, 13, 2737. https://doi.org/10.3390/jcm13102737
Siniscalchi C, Ticinesi A, Nouvenne A, Guerra A, Parise A, Finardi L, Cerundolo N, Prati B, Guida L, Meschi T. Non-Invasive Ventilation Support during Hospitalization for SARS-CoV-2 and the Risk of Venous Thromboembolism. Journal of Clinical Medicine. 2024; 13(10):2737. https://doi.org/10.3390/jcm13102737
Chicago/Turabian StyleSiniscalchi, Carmine, Andrea Ticinesi, Antonio Nouvenne, Angela Guerra, Alberto Parise, Lorenzo Finardi, Nicoletta Cerundolo, Beatrice Prati, Loredana Guida, and Tiziana Meschi. 2024. "Non-Invasive Ventilation Support during Hospitalization for SARS-CoV-2 and the Risk of Venous Thromboembolism" Journal of Clinical Medicine 13, no. 10: 2737. https://doi.org/10.3390/jcm13102737
APA StyleSiniscalchi, C., Ticinesi, A., Nouvenne, A., Guerra, A., Parise, A., Finardi, L., Cerundolo, N., Prati, B., Guida, L., & Meschi, T. (2024). Non-Invasive Ventilation Support during Hospitalization for SARS-CoV-2 and the Risk of Venous Thromboembolism. Journal of Clinical Medicine, 13(10), 2737. https://doi.org/10.3390/jcm13102737