Ultraviolet Filters: Dissecting Current Facts and Myths
Abstract
:1. Introduction
2. Classification of UV-Protective Filters
3. Regulatory Issues
4. Is Sunscreen an Endocrine Disruptor?
4.1. Gonadocorticoid Effects
4.2. Developmental Toxicity
4.3. Thyroid Interference
5. Does Sunscreen Harm Marine Ecosystems and the Environment?
5.1. Coral Reefs
5.2. Other Marine and Terrestial Animals
6. Is Sunscreen Neurotoxic?
7. Is Sunscreen Carcinogenic?
8. Does Sunscreen Cause Acne?
9. Does Sunscreen Cause Vitamin D Deficiency?
10. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BP | Benzophenone |
DBPs | disinfection by-products |
DNA | deoxyribonucleic acid |
E2 | estradiol |
EU | European Union |
EUR | Euro |
FDA | Food and Drug Administration |
GRASE | generally recognized as safe and effective |
hAR | human androgen receptor |
hERα | human estrogen receptor alpha |
JCIA | Japan Cosmetic Industry Association |
NMSC | non-melanoma skin cancer |
PA | protection grade of UVA |
SCCS | safety statement of the European commission |
SPF | sun protection factor |
TSH | thyroid-stimulating hormone |
T3 | triiodo-thyronine |
T4 | thyroxine |
US | United States |
USA | United States of America |
USD | United States Dollar |
UV | ultraviolet |
UVA | ultraviolet A |
UVB | ultraviolet B |
UVC | ultraviolet C |
References
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV Radiation and the Skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [PubMed]
- Addor, F.A.S.; Barcaui, C.B.; Gomes, E.E.; Lupi, O.; Marçon, C.R.; Miot, H.A. Sunscreen Lotions in the Dermatological Prescription: Review of Concepts and Controversies. An. Bras. Dermatol. 2022, 97, 204–222. [Google Scholar] [CrossRef] [PubMed]
- Garnacho Saucedo, G.M.; Salido Vallejo, R.; Moreno Giménez, J.C. Efectos de la radiación solar y actualización en fotoprotección. Ann. Pediatría 2020, 92, e1–e377. [Google Scholar] [CrossRef] [PubMed]
- Lyons, A.B.; Trullas, C.; Kohli, I.; Hamzavi, I.H.; Lim, H.W. Photoprotection beyond Ultraviolet Radiation: A Review of Tinted Sunscreens. J. Am. Acad. Dermatol. 2021, 84, 1393–1397. [Google Scholar] [CrossRef] [PubMed]
- Apalla, Z.; Lallas, A.; Sotiriou, E.; Lazaridou, E.; Ioannides, D. Epidemiological Trends in Skin Cancer. Dermatol. Pract. Concept. 2017, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gruber, P.; Zito, P.M. Skin Cancer. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- National Collaborating Centre for Cancer (UK). N.C.C. for Stage IV Melanoma. In Melanoma: Assessment and Management; National Institute for Health and Care Excellence (NICE): London, UK, 2015. [Google Scholar]
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Barsouk, A. Epidemiology of Melanoma. Med. Sci. 2021, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Fang, L.; Ni, R.; Zhang, H.; Pan, G. Changing Trends in the Disease Burden of Non-Melanoma Skin Cancer Globally from 1990 to 2019 and Its Predicted Level in 25 Years. BMC Cancer 2022, 22, 836. [Google Scholar] [CrossRef] [PubMed]
- Guy, G.P.; Machlin, S.R.; Ekwueme, D.U.; Yabroff, K.R. Prevalence and Costs of Skin Cancer Treatment in the U.S., 2002−2006 and 2007−2011. Am. J. Prev. Med. 2015, 48, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Sander, M.; Sander, M.; Burbidge, T.; Beecker, J. The Efficacy and Safety of Sunscreen Use for the Prevention of Skin Cancer. Can. Med. Assoc. J. 2020, 192, E1802–E1808. [Google Scholar] [CrossRef]
- Saewan, N.; Jimtaisong, A. Natural Products as Photoprotection. J. Cosmet. Dermatol. 2015, 14, 47–63. [Google Scholar] [CrossRef]
- Wang, S.Q.; Xu, H.; Stanfield, J.W.; Osterwalder, U.; Herzog, B. Comparison of Ultraviolet A Light Protection Standards in the United States and European Union through in Vitro Measurements of Commercially Available Sunscreens. J. Am. Acad. Dermatol. 2017, 77, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Tabbakh, T.; Volkov, A.; Wakefield, M.; Dobbinson, S. Implementation of the SunSmart Program and Population Sun Protection Behaviour in Melbourne, Australia: Results from Cross-Sectional Summer Surveys from 1987 to 2017. PLoS Med. 2019, 16, e1002932. [Google Scholar] [CrossRef]
- Slip, Slop, Slap, Seek, Slide|Cancer Council. Available online: https://www.cancer.org.au/cancer-information/causes-and-prevention/sun-safety/campaigns-and-events/slip-slop-slap-seek-slide (accessed on 3 October 2023).
- Ekstein, S.F.; Hylwa, S. Sunscreens: A Review of UV Filters and Their Allergic Potential. Dermatitis 2022. publish ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yoo, J. History of Sunscreen: An Updated View. J. Cosmet. Dermatol. 2021, 20, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.L.; Khachemoune, A. Dispelling Myths about Sunscreen. J. Dermatol. Treat. 2022, 33, 666–670. [Google Scholar] [CrossRef] [PubMed]
- Gabros, S.; Nessel, T.A.; Zito, P.M. Sunscreens And Photoprotection. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Center for Drug Evaluation and Research. Sun Protection Factor (SPF); FDA: Silver Spring, MD, USA, 2018. [Google Scholar]
- Sunscreen FAQs. Available online: https://www.aad.org/media/stats-sunscreen (accessed on 26 April 2023).
- Passeron, T.; Lim, H.W.; Goh, C.-L.; Kang, H.Y.; Ly, F.; Morita, A.; Ocampo Candiani, J.; Puig, S.; Schalka, S.; Wei, L.; et al. Photoprotection According to Skin Phototype and Dermatoses: Practical Recommendations from an Expert Panel. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Wolf, P.; Krutmann, J. Sonnenschutz der Zukunft: Herausforderungen und Möglichkeiten. Hautarzt 2022, 73, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Kuritzky, L.A.; Beecker, J. Sunscreens. Can. Med. Assoc. J. 2015, 187, E419. [Google Scholar] [CrossRef]
- Bens, G. Sunscreens. In Sunlight, Vitamin D and Skin Cancer; Springer: New York, NY, USA, 2014; pp. 429–463. ISBN 978-1-4939-0436-5. [Google Scholar]
- Mohania, D.; Chandel, S.; Kumar, P.; Verma, V.; Digvijay, K.; Tripathi, D.; Choudhury, K.; Mitten, S.K.; Shah, D. Ultraviolet Radiations: Skin Defense-Damage Mechanism. In Ultraviolet Light in Human Health, Diseases and Environment; Ahmad, S.I., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2017; Volume 996, pp. 71–87. ISBN 978-3-319-56016-8. [Google Scholar]
- Schneider, S.L.; Lim, H.W. A Review of Inorganic UV Filters Zinc Oxide and Titanium Dioxide. Photodermatol. Photoimmunol. Photomed. 2019, 35, 442–446. [Google Scholar] [CrossRef]
- Wang, S.Q.; Balagula, Y.; Osterwalder, U. Photoprotection: A Review of the Current and Future Technologies. Dermatol. Ther. 2010, 23, 31–47. [Google Scholar] [CrossRef]
- Maier, T.; Korting, H.C. Sunscreens–Which and What For? Skin Pharmacol. Physiol. 2005, 18, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Surber, C.; Plautz, J.; Osterwalder, U. Nano ist groß!: Fakten und Mythen über nanopartikuläre UV-Filter. Hautarzt 2022, 73, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Kern, J.; Wood, E.; Almukhtar, R.; Angra, K.; Lipp, M.; Goldman, M. Evaluation of an SPF50 Sunscreen Containing Photolyase and Antioxidants for Its Anti-Photoaging Properties and Photoprotection. J. Drugs Dermatol. 2022, 21, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Narla, S.; Lim, H.W. Sunscreen: FDA Regulation, and Environmental and Health Impact. Photochem. Photobiol. Sci. 2020, 19, 66–70. [Google Scholar] [CrossRef] [PubMed]
- EUR-Lex-02009R1223-20231201-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2009/1223/2023-12-01 (accessed on 24 March 2024).
- Australian Regulatory Guidelines for Sunscreens. Available online: https://www.tga.gov.au/sites/default/files/australian-regulatory-guidelines-for-sunscreens.pdf (accessed on 22 July 2023).
- Food and Drug Administration Sunscreen Drug Products For Over-The-Counter Human Use; Final Monograph. Available online: https://www.govinfo.gov/content/pkg/FR-1999-05-21/pdf/99-12853.pdf (accessed on 17 May 2024).
- Osterwalder, U. Interview|Uli Osterwalder from BASF Talks about Regional Regulatory Differences in the Field of UV Filters, Efficient UVA Und UVB Filters, Global Formulation Trends and the Latest Global Skin Cancer Statistics. Available online: https://www.cossma.com/fileadmin/all/cossma/Archiv/2016/01_02/COS1602_16_BASF.pdf (accessed on 16 July 2023).
- After More Than A Decade, FDA Still Won’t Allow New Sunscreens. Available online: https://cen.acs.org/articles/93/i20/Decade-FDA-Still-Wont-Allow.html (accessed on 26 April 2023).
- Center for Drug Evaluation and Research. Sunscreen: How to Help Protect Your Skin from the Sun; FDA: Silver Spring, MD, USA, 2023. [Google Scholar]
- Wang, S.Q.; Stanfield, J.W.; Osterwalder, U. In Vitro Assessments of UVA Protection by Popular Sunscreens Available in the United States. J. Am. Acad. Dermatol. 2008, 59, 934–942. [Google Scholar] [CrossRef]
- Moyal, D. UVA Protection Labeling and in Vitro Testing Methods. Photochem. Photobiol. Sci. 2010, 9, 516–523. [Google Scholar] [CrossRef]
- The European Commission. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022R1176 (accessed on 24 March 2024).
- European Commission. Directorate General for Health and Food Safety. In Opinion on Benzophenone-3; Publications Office: Luxembourg, 2022. [Google Scholar]
- European Commission. Directorate General for Health and Food Safety. In Opinion on Octocrylene; Publications Office: Luxembourg, 2021. [Google Scholar]
- PubChem PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 24 March 2024).
- Your Medical Specialist Portal & Encyclopedia-Altmeyers Encyclopedia. Available online: https://www.altmeyers.org/en (accessed on 24 March 2024).
- CosIng-Cosmetics-GROWTH-European Commission. Available online: https://ec.europa.eu/growth/tools-databases/cosing/ (accessed on 24 March 2024).
- ECHA Cosmetics-Uv-Filters. Available online: https://echa.europa.eu/de/cosmetics-uv-filters (accessed on 24 March 2024).
- Mitchelmore, C.L.; Burns, E.E.; Conway, A.; Heyes, A.; Davies, I.A. A Critical Review of Organic Ultraviolet Filter Exposure, Hazard, and Risk to Corals. Environ. Toxicol. Chem. 2021, 40, 967–988. [Google Scholar] [CrossRef]
- Klammer, H.; Schlecht, C.; Wuttke, W.; Schmutzler, C.; Gotthardt, I.; Köhrle, J.; Jarry, H. Effects of a 5-Day Treatment with the UV-Filter Octyl-Methoxycinnamate (OMC) on the Function of the Hypothalamo-Pituitary-Thyroid Function in Rats. Toxicology 2007, 238, 192–199. [Google Scholar] [CrossRef]
- Janjua, N.R.; Mogensen, B.; Andersson, A.-M.; Petersen, J.H.; Henriksen, M.; Skakkebæk, N.E.; Wulf, H.C. Systemic Absorption of the Sunscreens Benzophenone-3, Octyl-Methoxycinnamate, and 3-(4-Methyl-Benzylidene) Camphor After Whole-Body Topical Application and Reproductive Hormone Levels in Humans. J. Investig. Dermatol. 2004, 123, 57–61. [Google Scholar] [CrossRef]
- Matta, M.K.; Zusterzeel, R.; Pilli, N.R.; Patel, V.; Volpe, D.A.; Florian, J.; Oh, L.; Bashaw, E.; Zineh, I.; Sanabria, C.; et al. Effect of Sunscreen Application Under Maximal Use Conditions on Plasma Concentration of Sunscreen Active Ingredients: A Randomized Clinical Trial. JAMA 2019, 321, 2082. [Google Scholar] [CrossRef]
- Matta, M.K.; Florian, J.; Zusterzeel, R.; Pilli, N.R.; Patel, V.; Volpe, D.A.; Yang, Y.; Oh, L.; Bashaw, E.; Zineh, I.; et al. Effect of Sunscreen Application on Plasma Concentration of Sunscreen Active Ingredients: A Randomized Clinical Trial. JAMA 2020, 323, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Adamson, A.S.; Shinkai, K. Systemic Absorption of Sunscreen: Balancing Benefits With Unknown Harms. JAMA 2020, 323, 223–224. [Google Scholar] [CrossRef] [PubMed]
- Janjua, N.; Kongshoj, B.; Andersson, A.-M.; Wulf, H. Sunscreens in Human Plasma and Urine after Repeated Whole-Body Topical Application. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, H.; Krause, M.; Jørgensen, N.; Rehfeld, A.; Skakkebæk, N.E.; Andersson, A.-M. UV Filters in Matched Seminal Fluid-, Urine-, and Serum Samples from Young Men. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Krause, M.; Frederiksen, H.; Sundberg, K.; Jørgensen, F.S.; Jensen, L.N.; Nørgaard, P.; Jørgensen, C.; Ertberg, P.; Juul, A.; Drzewiecki, K.T.; et al. Presence of Benzophenones Commonly Used as UV Filters and Absorbers in Paired Maternal and Fetal Samples. Environ. Int. 2018, 110, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Valle-Sistac, J.; Molins-Delgado, D.; Díaz, M.; Ibáñez, L.; Barceló, D.; Silvia Díaz-Cruz, M. Determination of Parabens and Benzophenone-Type UV Filters in Human Placenta. First Description of the Existence of Benzyl Paraben and Benzophenone-4. Environ. Int. 2016, 88, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Schlumpf, M.; Kypke, K.; Wittassek, M.; Angerer, J.; Mascher, H.; Mascher, D.; Vökt, C.; Birchler, M.; Lichtensteiger, W. Exposure Patterns of UV Filters, Fragrances, Parabens, Phthalates, Organochlor Pesticides, PBDEs, and PCBs in Human Milk: Correlation of UV Filters with Use of Cosmetics. Chemosphere 2010, 81, 1171–1183. [Google Scholar] [CrossRef] [PubMed]
- Kinter, K.J.; Anekar, A.A. Biochemistry, Dihydrotestosterone. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Kunz, P.Y.; Fent, K. Multiple Hormonal Activities of UV Filters and Comparison of in Vivo and in Vitro Estrogenic Activity of Ethyl-4-Aminobenzoate in Fish. Aquat. Toxicol. 2006, 79, 305–324. [Google Scholar] [CrossRef]
- Schlumpf, M.; Cotton, B.; Conscience, M.; Haller, V.; Steinmann, B.; Lichtensteiger, W. In Vitro and in Vivo Estrogenicity of UV Screens. Environ. Health Perspect. 2001, 109, 239–244. [Google Scholar] [CrossRef]
- Seidlová-Wuttke, D.; Christoffel, J.; Rimoldi, G.; Jarry, H.; Wuttke, W. Comparison of Effects of Estradiol with Those of Octylmethoxycinnamate and 4-Methylbenzylidene Camphor on Fat Tissue, Lipids and Pituitary Hormones. Toxicol. Appl. Pharmacol. 2006, 214, 1–7. [Google Scholar] [CrossRef]
- Gomez, E.; Pillon, A.; Fenet, H.; Rosain, D.; Duchesne, M.J.; Nicolas, J.C.; Balaguer, P.; Casellas, C. Estrogenic Activity of Cosmetic Components in Reporter Cell Lines: Parabens, UV Screens, and Musks. J. Toxicol. Environ. Health A 2005, 68, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Schreurs, R.; Lanser, P.; Seinen, W.; van der Burg, B. Estrogenic Activity of UV Filters Determined by an in Vitro Reporter Gene Assay and an in Vivo Transgenic Zebrafish Assay. Arch. Toxicol. 2002, 76, 257–261. [Google Scholar] [CrossRef]
- Molina-Molina, J.-M.; Escande, A.; Pillon, A.; Gomez, E.; Pakdel, F.; Cavaillès, V.; Olea, N.; Aït-Aïssa, S.; Balaguer, P. Profiling of Benzophenone Derivatives Using Fish and Human Estrogen Receptor-Specific in Vitro Bioassays. Toxicol. Appl. Pharmacol. 2008, 232, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Lim, W.; Bazer, F.W.; Song, G. Avobenzone Suppresses Proliferative Activity of Human Trophoblast Cells and Induces Apoptosis Mediated by Mitochondrial Disruption. Reprod. Toxicol. 2018, 81, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Durrer, S.; Ehnes, C.; Fuetsch, M.; Maerkel, K.; Schlumpf, M.; Lichtensteiger, W. Estrogen Sensitivity of Target Genes and Expression of Nuclear Receptor Co-Regulators in Rat Prostate after Pre- and Postnatal Exposure to the Ultraviolet Filter 4-Methylbenzylidene Camphor. Environ. Health Perspect. 2007, 115 (Suppl. 1), 42–50. [Google Scholar] [CrossRef] [PubMed]
- Maerkel, K.; Durrer, S.; Henseler, M.; Schlumpf, M.; Lichtensteiger, W. Sexually Dimorphic Gene Regulation in Brain as a Target for Endocrine Disrupters: Developmental Exposure of Rats to 4-Methylbenzylidene Camphor. Toxicol. Appl. Pharmacol. 2007, 218, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.C. Sex-Hormone-Binding Globulin. Clin. Endocrinol. 1974, 3, 69–96. [Google Scholar] [CrossRef] [PubMed]
- Aker, A.M.; Watkins, D.J.; Johns, L.E.; Ferguson, K.K.; Soldin, O.P.; Anzalota Del Toro, L.V.; Alshawabkeh, A.N.; Cordero, J.F.; Meeker, J.D. Phenols and Parabens in Relation to Reproductive and Thyroid Hormones in Pregnant Women. Environ. Res. 2016, 151, 30–37. [Google Scholar] [CrossRef]
- Scinicariello, F.; Buser, M.C. Serum Testosterone Concentrations and Urinary Bisphenol A, Benzophenone-3, Triclosan, and Paraben Levels in Male and Female Children and Adolescents: NHANES 2011–2012. Environ. Health Perspect. 2016, 124, 1898–1904. [Google Scholar] [CrossRef]
- Suh, S.; Pham, C.; Smith, J.; Mesinkovska, N.A. The Banned Sunscreen Ingredients and Their Impact on Human Health: A Systematic Review. Int. J. Dermatol. 2020, 59, 1033–1042. [Google Scholar] [CrossRef]
- Sánchez-Cárdenas, C.; Servín-Vences, M.R.; José, O.; Treviño, C.L.; Hernández-Cruz, A.; Darszon, A. Acrosome Reaction and Ca2+ Imaging in Single Human Spermatozoa: New Regulatory Roles of [Ca2+]i. Biol. Reprod. 2014, 91, 1–13. [Google Scholar] [CrossRef]
- Rehfeld, A.; Egeberg, D.L.; Almstrup, K.; Petersen, J.H.; Dissing, S.; Skakkebæk, N.E. EDC IMPACT: Chemical UV Filters Can Affect Human Sperm Function in a Progesterone-like Manner. Endocr. Connect. 2018, 7, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Rehfeld, A.; Dissing, S.; Skakkebæk, N.E. Chemical UV Filters Mimic the Effect of Progesterone on Ca2+ Signaling in Human Sperm Cells. Endocrinology 2016, 157, 4297–4308. [Google Scholar] [CrossRef]
- Schlumpf, M.; Schmid, P.; Durrer, S.; Conscience, M.; Maerkel, K.; Henseler, M.; Gruetter, M.; Herzog, I.; Reolon, S.; Ceccatelli, R.; et al. Endocrine Activity and Developmental Toxicity of Cosmetic UV Filters—An Update. Toxicology 2004, 205, 113–122. [Google Scholar] [CrossRef]
- Faass, O.; Schlumpf, M.; Reolon, S.; Henseler, M.; Maerkel, K.; Durrer, S.; Lichtensteiger, W. Female Sexual Behavior, Estrous Cycle and Gene Expression in Sexually Dimorphic Brain Regions after Pre- and Postnatal Exposure to Endocrine Active UV Filters. Neurotoxicology 2009, 30, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Weisbrod, C.J.; Kunz, P.Y.; Zenker, A.K.; Fent, K. Effects of the UV Filter Benzophenone-2 on Reproduction in Fish. Toxicol. Appl. Pharmacol. 2007, 225, 255–266. [Google Scholar] [CrossRef]
- Buck Louis, G.M.; Chen, Z.; Kim, S.; Sapra, K.J.; Bae, J.; Kannan, K. Urinary Concentrations of Benzophenone-Type Ultraviolet Light Filters and Semen Quality. Fertil. Steril. 2015, 104, 989–996. [Google Scholar] [CrossRef]
- Chen, M.; Tang, R.; Fu, G.; Xu, B.; Zhu, P.; Qiao, S.; Chen, X.; Xu, B.; Qin, Y.; Lu, C.; et al. Association of Exposure to Phenols and Idiopathic Male Infertility. J. Hazard. Mater. 2013, 250–251, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, M.; Xu, B.; Tang, R.; Han, X.; Qin, Y.; Xu, B.; Hang, B.; Mao, Z.; Huo, W.; et al. Parental Phenols Exposure and Spontaneous Abortion in Chinese Population Residing in the Middle and Lower Reaches of the Yangtze River. Chemosphere 2013, 93, 217–222. [Google Scholar] [CrossRef]
- Buck Louis, G.M.; Kannan, K.; Sapra, K.J.; Maisog, J.; Sundaram, R. Urinary Concentrations of Benzophenone-Type Ultraviolet Radiation Filters and Couples’ Fecundity. Am. J. Epidemiol. 2014, 180, 1168–1175. [Google Scholar] [CrossRef]
- Brent, G.A. Mechanisms of Thyroid Hormone Action. J. Clin. Investig. 2012, 122, 3035–3043. [Google Scholar] [CrossRef]
- Schmutzler, C.; Gotthardt, I.; Hofmann, P.J.; Radovic, B.; Kovacs, G.; Stemmler, L.; Nobis, I.; Bacinski, A.; Mentrup, B.; Ambrugger, P.; et al. Endocrine Disruptors and the Thyroid Gland—A Combined in Vitro and in Vivo Analysis of Potential New Biomarkers. Environ. Health Perspect. 2007, 115 (Suppl. 1), 77–83. [Google Scholar] [CrossRef]
- Axelstad, M.; Boberg, J.; Hougaard, K.S.; Christiansen, S.; Jacobsen, P.R.; Mandrup, K.R.; Nellemann, C.; Lund, S.P.; Hass, U. Effects of Pre- and Postnatal Exposure to the UV-Filter Octyl Methoxycinnamate (OMC) on the Reproductive, Auditory and Neurological Development of Rat Offspring. Toxicol. Appl. Pharmacol. 2011, 250, 278–290. [Google Scholar] [CrossRef] [PubMed]
- Axelstad, M.; Hansen, P.R.; Boberg, J.; Bonnichsen, M.; Nellemann, C.; Lund, S.P.; Hougaard, K.S.; Hass, U. Developmental Neurotoxicity of Propylthiouracil (PTU) in Rats: Relationship between Transient Hypothyroxinemia during Development and Long-Lasting Behavioural and Functional Changes. Toxicol. Appl. Pharmacol. 2008, 232, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cahova, J.; Blahova, J.; Mares, J.; Hodkovicova, N.; Sauer, P.; Kroupova, H.K.; Svobodova, Z. Octinoxate as a Potential Thyroid Hormone Disruptor—A Combination of in Vivo and in Vitro Data. Sci. Total Environ. 2023, 856, 159074. [Google Scholar] [CrossRef] [PubMed]
- Janjua, N.R.; Kongshoj, B.; Petersen, J.H.; Wulf, H.C. Sunscreens and Thyroid Function in Humans after Short-Term Whole-Body Topical Application: A Single-Blinded Study. Br. J. Dermatol. 2007, 156, 1080–1082. [Google Scholar] [CrossRef] [PubMed]
- Aker, A.M.; Johns, L.; McElrath, T.F.; Cantonwine, D.E.; Mukherjee, B.; Meeker, J.D. Associations between Maternal Phenol and Paraben Urinary Biomarkers and Maternal Hormones during Pregnancy: A Repeated Measures Study. Environ. Int. 2018, 113, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, S.; Won, S.; Choi, K. Considering Common Sources of Exposure in Association Studies-Urinary Benzophenone-3 and DEHP Metabolites Are Associated with Altered Thyroid Hormone Balance in the NHANES 2007–2008. Environ. Int. 2017, 107, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Przybyla, J.; Geldhof, G.J.; Smit, E.; Kile, M.L. A Cross Sectional Study of Urinary Phthalates, Phenols and Perchlorate on Thyroid Hormones in US Adults Using Structural Equation Models (NHANES 2007–2008). Environ. Res. 2018, 163, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Carstensen, L.; Beil, S.; Börnick, H.; Stolte, S. Structure-Related Endocrine-Disrupting Potential of Environmental Transformation Products of Benzophenone-Type UV Filters: A Review. J. Hazard. Mater. 2022, 430, 128495. [Google Scholar] [CrossRef]
- Ozáez, I.; Aquilino, M.; Morcillo, G.; Martínez-Guitarte, J.-L. UV Filters Induce Transcriptional Changes of Different Hormonal Receptors in Chironomus Riparius Embryos and Larvae. Environ. Pollut. 2016, 214, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Balmer, M.E.; Buser, H.-R.; Müller, M.D.; Poiger, T. Occurrence of Some Organic UV Filters in Wastewater, in Surface Waters, and in Fish from Swiss Lakes. Environ. Sci. Technol. 2005, 39, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Danovaro, R.; Bongiorni, L.; Corinaldesi, C.; Giovannelli, D.; Damiani, E.; Astolfi, P.; Greci, L.; Pusceddu, A. Sunscreens Cause Coral Bleaching by Promoting Viral Infections. Environ. Health Perspect. 2008, 116, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Madikizela, L.M.; Ncube, S.; Tutu, H.; Richards, H.; Newman, B.; Ndungu, K.; Chimuka, L. Pharmaceuticals and Their Metabolites in the Marine Environment: Sources, Analytical Methods and Occurrence. Trends Environ. Anal. Chem. 2020, 28, e00104. [Google Scholar] [CrossRef]
- He, K.; Hain, E.; Timm, A.; Tarnowski, M.; Blaney, L. Occurrence of Antibiotics, Estrogenic Hormones, and UV-Filters in Water, Sediment, and Oyster Tissue from the Chesapeake Bay. Sci. Total Environ. 2019, 650, 3101–3109. [Google Scholar] [CrossRef] [PubMed]
- Pintado-Herrera, M.G.; Lara Martín, P.A. Fate and Behavior of UV Filters in the Marine Environment. In Sunscreens in Coastal Ecosystems; Tovar-Sánchez, A., Sánchez-Quiles, D., Blasco, J., Eds.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2020; Volume 94, pp. 59–83. ISBN 978-3-030-56076-8. [Google Scholar]
- Kung, T.A.; Lee, S.H.; Yang, T.C.; Wang, W.H. Survey of Selected Personal Care Products in Surface Water of Coral Reefs in Kenting National Park, Taiwan. Sci. Total Environ. 2018, 635, 1302–1307. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Ekpeghere, K.I.; Jeong, H.-J.; Oh, J.-E. Effects of the Summer Holiday Season on UV Filter and Illicit Drug Concentrations in the Korean Wastewater System and Aquatic Environment. Environ. Pollut. 2017, 227, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.-K.; Chung, Y.; Ryu, J.-C. Simultaneous Determination of Benzophenone-Type UV Filters in Water and Soil by Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2006, 1131, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Kameda, Y.; Kimura, K.; Miyazaki, M. Occurrence and Profiles of Organic Sun-Blocking Agents in Surface Waters and Sediments in Japanese Rivers and Lakes. Environ. Pollut. 2011, 159, 1570–1576. [Google Scholar] [CrossRef]
- Horricks, R.A.; Tabin, S.K.; Edwards, J.J.; Lumsden, J.S.; Marancik, D.P. Organic Ultraviolet Filters in Nearshore Waters and in the Invasive Lionfish (Pterois Volitans) in Grenada, West Indies. PLoS ONE 2019, 14, e0220280. [Google Scholar] [CrossRef]
- O’Malley, E.; O’Brien, J.W.; Verhagen, R.; Mueller, J.F. Annual Release of Selected UV Filters via Effluent from Wastewater Treatment Plants in Australia. Chemosphere 2020, 247, 125887. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, E.; O’Brien, J.W.; Tscharke, B.; Thomas, K.V.; Mueller, J.F. Per Capita Loads of Organic UV Filters in Australian Wastewater Influent. Sci. Total Environ. 2019, 662, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Langford, K.H.; Reid, M.J.; Fjeld, E.; Øxnevad, S.; Thomas, K.V. Environmental Occurrence and Risk of Organic UV Filters and Stabilizers in Multiple Matrices in Norway. Environ. Int. 2015, 80, 1–7. [Google Scholar] [CrossRef] [PubMed]
- da Silva, C.P.; Emídio, E.S.; de Marchi, M.R.R. The Occurrence of UV Filters in Natural and Drinking Water in São Paulo State (Brazil). Environ. Sci. Pollut. Res. 2015, 22, 19706–19715. [Google Scholar] [CrossRef] [PubMed]
- Shetty, N.; Schalka, S.; Lim, H.W.; Mohammad, T.F. The Effects of UV Filters on Health and the Environment. Photochem. Photobiol. Sci. 2023, 22, 2463–2471. [Google Scholar] [CrossRef]
- Quintaneiro, C.; Teixeira, B.; Benedé, J.L.; Chisvert, A.; Soares, A.M.V.M.; Monteiro, M.S. Toxicity Effects of the Organic UV-Filter 4-Methylbenzylidene Camphor in Zebrafish Embryos. Chemosphere 2019, 218, 273–281. [Google Scholar] [CrossRef]
- Fent, K.; Zenker, A.; Rapp, M. Widespread Occurrence of Estrogenic UV-Filters in Aquatic Ecosystems in Switzerland. Environ. Pollut. 2010, 158, 1817–1824. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Division on Earth and Life Studies; Board on Health Sciences Policy; Board on Environmental Studies and Toxicology; Ocean Studies Board; Committee on Environmental Impact of Currently Marketed Sunscreens and Potential Human Impacts of Changes in Sunscreen Usage. Review of Fate, Exposure, and Effects of Sunscreens in Aquatic Environments and Implications for Sunscreen Usage and Human Health; National Academies Press: Washington, DC, USA, 2022; ISBN 0-309-27283-1. [Google Scholar]
- Molins-Delgado, D.; Máñez, M.; Andreu, A.; Hiraldo, F.; Eljarrat, E.; Barceló, D.; Díaz-Cruz, M.S. A Potential New Threat to Wild Life: Presence of UV Filters in Bird Eggs from a Preserved Area. Environ. Sci. Technol. 2017, 51, 10983–10990. [Google Scholar] [CrossRef]
- Nam, D.-H.; Lee, B.; Eom, I.; Kim, P.; Yeo, M.-K. Uptake and Bioaccumulation of Titanium- and Silver-Nanoparticles in Aquatic Ecosystems. Mol. Cell. Toxicol. 2014, 10, 9–17. [Google Scholar] [CrossRef]
- Sharifan, H.; Klein, D.; Morse, A.N. UV Filters Interaction in the Chlorinated Swimming Pool, a New Challenge for Urbanization, a Need for Community Scale Investigations. Environ. Res. 2016, 148, 273–276. [Google Scholar] [CrossRef]
- Teo, T.L.L.; Coleman, H.M.; Khan, S.J. Chemical Contaminants in Swimming Pools: Occurrence, Implications and Control. Environ. Int. 2015, 76, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Sherwood, V.F.; Kennedy, S.; Zhang, H.; Purser, G.H.; Sheaff, R.J. Altered UV Absorbance and Cytotoxicity of Chlorinated Sunscreen Agents. Cutan. Ocul. Toxicol. 2012, 31, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Chatzigianni, M.; Pavlou, P.; Siamidi, A.; Vlachou, M.; Varvaresou, A.; Papageorgiou, S. Environmental Impacts Due to the Use of Sunscreen Products: A Mini-Review. Ecotoxicology 2022, 31, 1331–1345. [Google Scholar] [CrossRef] [PubMed]
- Danovaro, R.; Corinaldesi, C. Sunscreen Products Increase Virus Production Through Prophage Induction in Marine Bacterioplankton. Microb. Ecol. 2003, 45, 109–118. [Google Scholar] [CrossRef] [PubMed]
- The Senate State of Hawaii, Twenty-Ninth Legislature. 2018. Available online: https://www.capitol.hawaii.gov/sessions/session2018/bills/SB2571_.pdf (accessed on 21 July 2023).
- Masuda, R.K.; Manuel, M.K. Chairperson Board Of Land And Natural Resources Commission On Water Resource Management. Available online: https://www.capitol.hawaii.gov/sessions/Session2022/Testimony/HB1519_HD1_TESTIMONY_CPC_02-15-22_.PDF (accessed on 25 July 2023).
- Miller, I.B.; Pawlowski, S.; Kellermann, M.Y.; Petersen-Thiery, M.; Moeller, M.; Nietzer, S.; Schupp, P.J. Toxic Effects of UV Filters from Sunscreens on Coral Reefs Revisited: Regulatory Aspects for “Reef Safe” Products. Environ. Sci. Eur. 2021, 33, 74. [Google Scholar] [CrossRef]
- Corinaldesi, C.; Marcellini, F.; Nepote, E.; Damiani, E.; Danovaro, R. Impact of Inorganic UV Filters Contained in Sunscreen Products on Tropical Stony Corals (Acropora Spp.). Sci. Total Environ. 2018, 637–638, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Prato, E.; Fabbrocini, A.; Libralato, G.; Migliore, L.; Parlapiano, I.; D’Adamo, R.; Rotini, A.; Manfra, L.; Lofrano, G.; Carraturo, F.; et al. Comparative Toxicity of Ionic and Nanoparticulate Zinc in the Species Cymodoce Truncata, Gammarus Aequicauda and Paracentrotus Lividus. Environ. Sci. Pollut. Res. Int. 2021, 28, 42891–42900. [Google Scholar] [CrossRef] [PubMed]
- Vimercati, L.; Cavone, D.; Caputi, A.; De Maria, L.; Tria, M.; Prato, E.; Ferri, G.M. Nanoparticles: An Experimental Study of Zinc Nanoparticles Toxicity on Marine Crustaceans. General Overview on the Health Implications in Humans. Front. Public Health 2020, 8, 192. [Google Scholar] [CrossRef]
- Wu, F.; Harper, B.J.; Harper, S.L. Comparative Dissolution, Uptake, and Toxicity of Zinc Oxide Particles in Individual Aquatic Species and Mixed Populations. Environ. Toxicol. Chem. 2019, 38, 591–602. [Google Scholar] [CrossRef]
- Kukla, S.; Slobodskova, V.; Mazur, A.; Chelomin, V.; Kamenev, Y. Genotoxic Testing of Titanium Dioxide Nanoparticles in Far Eastern Mussels, Mytilus Trossulus. Pollution 2021, 7, 129–140. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Ma, X.Y.; Wang, X.C.; Ngo, H.H. Assessment of Multiple Hormone Activities of a UV-Filter (Octocrylene) in Zebrafish (Danio Rerio). Chemosphere 2016, 159, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Blüthgen, N.; Meili, N.; Chew, G.; Odermatt, A.; Fent, K. Accumulation and Effects of the UV-Filter Octocrylene in Adult and Embryonic Zebrafish (Danio Rerio). Sci. Total Environ. 2014, 476–477, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Zucchi, S.; Blüthgen, N.; Ieronimo, A.; Fent, K. The UV-Absorber Benzophenone-4 Alters Transcripts of Genes Involved in Hormonal Pathways in Zebrafish (Danio Rerio) Eleuthero-Embryos and Adult Males. Toxicol. Appl. Pharmacol. 2011, 250, 137–146. [Google Scholar] [CrossRef] [PubMed]
- K., W.F. The Structure and Life-History of the Harlequin Fly (Chironomus). Nature 1901, 63, 230. [Google Scholar] [CrossRef]
- Pomierny, B.; Krzyżanowska, W.; Broniowska, Ż.; Strach, B.; Bystrowska, B.; Starek-Świechowicz, B.; Maciejska, A.; Skórkowska, A.; Wesołowska, J.; Walczak, M.; et al. Benzophenone-3 Passes Through the Blood-Brain Barrier, Increases the Level of Extracellular Glutamate, and Induces Apoptotic Processes in the Hippocampus and Frontal Cortex of Rats. Toxicol. Sci. 2019, 171, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Thorel, E.; Clergeaud, F.; Jaugeon, L.; Rodrigues, A.M.S.; Lucas, J.; Stien, D.; Lebaron, P. Effect of 10 UV Filters on the Brine Shrimp Artemia salina and the Marine Microalga Tetraselmis sp. Toxics 2020, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Boyd, A.; Stewart, C.B.; Philibert, D.A.; How, Z.T.; El-Din, M.G.; Tierney, K.B.; Blewett, T.A. A Burning Issue: The Effect of Organic Ultraviolet Filter Exposure on the Behaviour and Physiology of Daphnia Magna. Sci. Total Environ. 2021, 750, 141707. [Google Scholar] [CrossRef] [PubMed]
- Gago-Ferrero, P.; Alonso, M.B.; Bertozzi, C.P.; Marigo, J.; Barbosa, L.; Cremer, M.; Secchi, E.R.; Azevedo, A.; Lailson-Brito, J., Jr.; Torres, J.P.M.; et al. First Determination of UV Filters in Marine Mammals. Octocrylene Levels in Franciscana Dolphins. Environ. Sci. Technol. 2013, 47, 5619–5625. [Google Scholar] [CrossRef] [PubMed]
- Haynes, V.N.; Ward, J.E.; Russell, B.J.; Agrios, A.G. Photocatalytic Effects of Titanium Dioxide Nanoparticles on Aquatic Organisms—Current Knowledge and Suggestions for Future Research. Aquat. Toxicol. 2017, 185, 138–148. [Google Scholar] [CrossRef]
- Abd El-Atti, M.; Desouky, M.M.A.; Mohamadien, A.; Said, R.M. Effects of Titanium Dioxide Nanoparticles on Red Swamp Crayfish, Procambarus Clarkii: Bioaccumulation, Oxidative Stress and Histopathological Biomarkers. Egypt. J. Aquat. Res. 2019, 45, 11–18. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, Z.; Zhu, X. Toxic Effects of TiO2 NPs on Zebrafish. Int. J. Environ. Res. Public. Health 2019, 16, 523. [Google Scholar] [CrossRef]
- Wang, T.; Huang, X.; Jiang, X.; Hu, M.; Huang, W.; Wang, Y. Differential in Vivo Hemocyte Responses to Nano Titanium Dioxide in Mussels: Effects of Particle Size. Aquat. Toxicol. 2019, 212, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.W.Y.; Leung, P.T.Y.; Djurišić, A.B.; Leung, K.M.Y. Toxicities of Nano Zinc Oxide to Five Marine Organisms: Influences of Aggregate Size and Ion Solubility. Anal. Bioanal. Chem. 2010, 396, 609–618. [Google Scholar] [CrossRef]
- Oliviero, M.; Schiavo, S.; Dumontet, S.; Manzo, S. DNA Damages and Offspring Quality in Sea Urchin Paracentrotus Lividus Sperms Exposed to ZnO Nanoparticles. Sci. Total Environ. 2019, 651, 756–765. [Google Scholar] [CrossRef]
- Save the Reef. Available online: https://savethereef.org/ (accessed on 26 April 2023).
- Print, P.F. Digital Finger OCEAN RESPECT–SCHUTZ DER WELTMEERE|Eau Thermale Avène. Available online: https://www.eau-thermale-avene.de/deine-haut/sonne/ocean-respect-schutz-der-weltmeere (accessed on 26 April 2023).
- Adhoc, A. Der neue Sonnenschutz mit ultrabreitem UVA/UVB- und HEV Blue Light Schutz. Available online: https://www.apotheke-adhoc.de/avene/produkte-sonnenpflege/der-neue-sonnenschutz-mit-ultrabreitem-uva/uvb-und-hev-blue-light-schutz-1/ (accessed on 26 April 2023).
- Stien, D.; Suzuki, M.; Rodrigues, A.M.S.; Yvin, M.; Clergeaud, F.; Thorel, E.; Lebaron, P. A Unique Approach to Monitor Stress in Coral Exposed to Emerging Pollutants. Sci. Rep. 2020, 10, 9601. [Google Scholar] [CrossRef]
- The Facts About NIVEA Reef Safe Sunscreen|Sun Care|NIVEA. Available online: https://www.nivea.co.uk/advice/sun/reef-safe-sunscreen (accessed on 26 April 2023).
- Marine Safe Sunscreen-Safe for the Ocean-La Roche-Posay. Available online: https://www.laroche-posay.ca/en_CA/reef-safe-sunscreen (accessed on 26 April 2023).
- USA, B.S. Reef Friendly Suncare. Available online: https://bondisands.com/pages/reef-friendly-suncare (accessed on 26 April 2023).
- Ruszkiewicz, J.A.; Pinkas, A.; Ferrer, B.; Peres, T.V.; Tsatsakis, A.; Aschner, M. Neurotoxic Effect of Active Ingredients in Sunscreen Products, a Contemporary Review. Toxicol. Rep. 2017, 4, 245–259. [Google Scholar] [CrossRef]
- Skórkowska, A.; Maciejska, A.; Pomierny, B.; Krzyżanowska, W.; Starek-Świechowicz, B.; Bystrowska, B.; Broniowska, Ż.; Kazek, G.; Budziszewska, B. Effect of Combined Prenatal and Adult Benzophenone-3 Dermal Exposure on Factors Regulating Neurodegenerative Processes, Blood Hormone Levels, and Hematological Parameters in Female Rats. Neurotox. Res. 2020, 37, 683–701. [Google Scholar] [CrossRef]
- Wnuk, A.; Rzemieniec, J.; Staroń, J.; Litwa, E.; Lasoń, W.; Bojarski, A.; Kajta, M. Prenatal Exposure to Benzophenone-3 Impairs Autophagy, Disrupts RXRs/PPARγ Signaling, and Alters Epigenetic and Post-Translational Statuses in Brain Neurons. Mol. Neurobiol. 2019, 56, 4820–4837. [Google Scholar] [CrossRef]
- Fediuk, D.J.; Wang, T.; Raizman, J.E.; Parkinson, F.E.; Gu, X. Tissue Deposition of the Insect Repellent DEET and the Sunscreen Oxybenzone From Repeated Topical Skin Applications in Rats. Int. J. Toxicol. 2010, 29, 594–603. [Google Scholar] [CrossRef]
- Wnuk, A.; Kajta, M. Is the Commonly Used UV Filter Benzophenone-3 a Risk Factor for the Nervous System? Acta Biochim. Pol. 2021, 68, 557–563. [Google Scholar] [CrossRef]
- Huo, W.; Cai, P.; Chen, M.; Li, H.; Tang, J.; Xu, C.; Zhu, D.; Tang, W.; Xia, Y. The Relationship between Prenatal Exposure to BP-3 and Hirschsprung’s Disease. Chemosphere 2016, 144, 1091–1097. [Google Scholar] [CrossRef]
- Wang, J.; Meng, X.; Feng, C.; Xiao, J.; Zhao, X.; Xiong, B.; Feng, J. Benzophenone-3 Induced Abnormal Development of Enteric Nervous System in Zebrafish through MAPK/ERK Signaling Pathway. Chemosphere 2021, 280, 130670. [Google Scholar] [CrossRef]
- Li, V.W.T.; Tsui, M.P.M.; Chen, X.; Hui, M.N.Y.; Jin, L.; Lam, R.H.W.; Yu, R.M.K.; Murphy, M.B.; Cheng, J.; Lam, P.K.S.; et al. Effects of 4-Methylbenzylidene Camphor (4-MBC) on Neuronal and Muscular Development in Zebrafish (Danio Rerio) Embryos. Environ. Sci. Pollut. Res. 2016, 23, 8275–8285. [Google Scholar] [CrossRef]
- Broniowska, Ż.; Pomierny, B.; Smaga, I.; Filip, M.; Budziszewska, B. The Effect of UV-Filters on the Viability of Neuroblastoma (SH-SY5Y) Cell Line. NeuroToxicology 2016, 54, 44–52. [Google Scholar] [CrossRef]
- Chu, S.; Kwon, B.R.; Lee, Y.-M.; Zoh, K.-D.; Choi, K. Effects of 2-Ethylhexyl-4-Methoxycinnamate (EHMC) on Thyroid Hormones and Genes Associated with Thyroid, Neurotoxic, and Nephrotoxic Responses in Adult and Larval Zebrafish (Danio Rerio). Chemosphere 2021, 263, 128176. [Google Scholar] [CrossRef]
- Kalafatakis, K.; Gkanti, V.; Mackenzie-Gray Scott, C.; Zarros, A.; Baillie, G.; Tsakiris, S. Acetylcholinesterase Activity as a Neurotoxicity Marker within the Context of Experimentally-Simulated Hyperprolinaemia: An in Vitro Approach. J. Nat. Sci. Biol. Med. 2015, 6, 98. [Google Scholar] [CrossRef]
- Nataraj, B.; Maharajan, K.; Malafaia, G.; Hemalatha, D.; Ahmed, M.A.I.; Ramesh, M. Gene Expression Profiling in Liver of Zebrafish Exposed to Ethylhexyl Methoxycinnamate and Its Photoproducts. Sci. Total Environ. 2022, 826, 154046. [Google Scholar] [CrossRef]
- Jin, M.; Li, N.; Sheng, W.; Ji, X.; Liang, X.; Kong, B.; Yin, P.; Li, Y.; Zhang, X.; Liu, K. Toxicity of Different Zinc Oxide Nanomaterials and Dose-Dependent Onset and Development of Parkinson’s Disease-like Symptoms Induced by Zinc Oxide Nanorods. Environ. Int. 2021, 146, 106179. [Google Scholar] [CrossRef] [PubMed]
- Nanomaterials in Sunscreen Products–COSlaw.Eu. Available online: https://coslaw.eu/nanomaterials-in-sunscreen-products/ (accessed on 8 August 2023).
- Li, Y.; Li, J.; Yin, J.; Li, W.; Kang, C.; Huang, Q.; Li, Q. Systematic Influence Induced by 3 Nm Titanium Dioxide Following Intratracheal Instillation of Mice. J. Nanosci. Nanotechnol. 2010, 10, 8544–8549. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Z.; Li, X. Cytotoxicity of Titanium Dioxide Nanoparticles in Rat Neuroglia Cells. Brain Inj. 2013, 27, 934–939. [Google Scholar] [CrossRef]
- Disdier, C.; Devoy, J.; Cosnefroy, A.; Chalansonnet, M.; Herlin-Boime, N.; Brun, E.; Lund, A.; Mabondzo, A. Tissue Biodistribution of Intravenously Administrated Titanium Dioxide Nanoparticles Revealed Blood-Brain Barrier Clearance and Brain Inflammation in Rat. Part. Fibre Toxicol. 2015, 12, 27. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Jiao, F.; Lao, F.; Li, W.; Gu, Y.; Li, Y.; Ge, C.; Zhou, G.; Li, B.; et al. Time-Dependent Translocation and Potential Impairment on Central Nervous System by Intranasally Instilled TiO2 Nanoparticles. Toxicology 2008, 254, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Guo, F.; Zhao, F.; Fu, Z. Effects of Titanium Dioxide Nanoparticles Exposure on Parkinsonism in Zebrafish Larvae and PC12. Chemosphere 2017, 173, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Valentini, X.; Deneufbourg, P.; Paci, P.; Rugira, P.; Laurent, S.; Frau, A.; Stanicki, D.; Ris, L.; Nonclercq, D. Morphological Alterations Induced by the Exposure to TiO2 Nanoparticles in Primary Cortical Neuron Cultures and in the Brain of Rats. Toxicol. Rep. 2018, 5, 878–889. [Google Scholar] [CrossRef]
- Center for Food Safety and Applied Nutrition. FDA Removes 7 Synthetic Flavoring Substances from Food Additives List; FDA: Silver Spring, MD, USA, 2020. [Google Scholar]
- Abstract for TR-533. Available online: https://ntp.niehs.nih.gov/publications/reports/tr/500s/tr533/index.html?utm_source=direct&utm_medium=prod&utm_campaign=ntpgolinks&utm_term=tr533abs (accessed on 26 April 2023).
- Foubert, K.; Dendooven, E.; Theunis, M.; Naessens, T.; Ivanova, B.; Pieters, L.; Gilissen, L.; Huygens, S.; De Borggraeve, W.; Lambert, J.; et al. The Presence of Benzophenone in Sunscreens and Cosmetics Containing the Organic UV Filter Octocrylene: A Laboratory Study. Contact Dermatitis 2021, 85, 69–77. [Google Scholar] [CrossRef]
- Downs, C.A.; DiNardo, J.C.; Stien, D.; Rodrigues, A.M.S.; Lebaron, P. Benzophenone Accumulates over Time from the Degradation of Octocrylene in Commercial Sunscreen Products. Chem. Res. Toxicol. 2021, 34, 1046–1054. [Google Scholar] [CrossRef]
- Phiboonchaiyanan, P.P.; Busaranon, K.; Ninsontia, C.; Chanvorachote, P. Benzophenone-3 Increases Metastasis Potential in Lung Cancer Cells via Epithelial to Mesenchymal Transition. Cell Biol. Toxicol. 2017, 33, 251–261. [Google Scholar] [CrossRef]
- Alamer, M.; Darbre, P.D. Effects of Exposure to Six Chemical Ultraviolet Filters Commonly Used in Personal Care Products on Motility of MCF-7 and MDA-MB-231 Human Breast Cancer Cells in Vitro. J. Appl. Toxicol. 2018, 38, 148–159. [Google Scholar] [CrossRef]
- Rachoń, D.; Rimoldi, G.; Wuttke, W. In Vitro Effects of Benzophenone-2 and Octyl-Methoxycinnamate on the Production of Interferon-γ and Interleukin-10 by Murine Splenocytes. Immunopharmacol. Immunotoxicol. 2006, 28, 501–510. [Google Scholar] [CrossRef]
- Clerici, M.; Clerici, E.; Shearer, G.M. Cytokine Dysregulation in Invasive Cervical Carcinoma and Other Human Neoplasias: Time to Consider the TH1/TH2 Paradigm. JNCI J. Natl. Cancer Inst. 1998, 90, 261–263. [Google Scholar] [CrossRef]
- Lee, K.P.; Trochimowicz, H.J.; Reinhardt, C.F. Pulmonary Response of Rats Exposed to Titanium Dioxide (TiO2) by Inhalation for Two Years. Toxicol. Appl. Pharmacol. 1985, 79, 179–192. [Google Scholar] [CrossRef]
- Driscoll, K.E. Review of Lung Particle Overload, Rat Lung Cancer, and the Conclusions of the Edinburgh Expert Panel—It’s Time to Revisit Cancer Hazard Classifications for Titanium Dioxide and Carbon Black. Front. Public Health 2022, 10, 907318. [Google Scholar] [CrossRef]
- Gürtler, A.; Laurenz, S. The impact of clinical nutrition on inflammatory skin diseases. JDDG J. Dtsch. Dermatol. Ges. 2022, 20, 185–202. [Google Scholar] [CrossRef]
- Sutaria, A.H.; Masood, S.; Schlessinger, J. Acne Vulgaris. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Conforti, C.; Giuffrida, R.; Fadda, S.; Fai, A.; Romita, P.; Zalaudek, I.; Dianzani, C. Topical Dermocosmetics and Acne Vulgaris. Dermatol. Ther. 2021, 34, e14436. [Google Scholar] [CrossRef]
- National Guideline Alliance (UK). Skin Care Advice for People with Acne Vulgaris: Acne Vulgaris: Management: Evidence Review B; National Institute for Health and Care Excellence (NICE): London, UK, 2021; ISBN 978-1-4731-4147-6. [Google Scholar]
- Bowe, W.P.; Kircik, L.H. The Importance of Photoprotection and Moisturization in Treating Acne Vulgaris. J. Drugs Dermatol. JDD 2014, 13, s89–s94. [Google Scholar] [PubMed]
- Bansal, P.; Sardana, K.; Vats, G.; Sharma, L.; Garga, U.; Khurana, A. A Prospective Study Examining Trigger Factors and Hormonal Abnormalities in Adult Female Acne. Indian Dermatol. Online J. 2020, 11, 544. [Google Scholar] [CrossRef]
- Narang, I.; Sardana, K.; Bajpai, R.; Garg, V.K. Seasonal Aggravation of Acne in Summers and the Effect of Temperature and Humidity in a Study in a Tropical Setting. J. Cosmet. Dermatol. 2019, 18, 1098–1104. [Google Scholar] [CrossRef]
- Sardana, K.; Sharma, R.C.; Sarkar, R. Seasonal Variation in Acne Vulgaris-Myth or Reality. J. Dermatol. 2002, 29, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Del Rosso, J.Q. The Role of Skin Care as an Integral Component in the Management of Acne Vulgaris: Part 1: The Importance of Cleanser and Moisturizer Ingredients, Design, and Product Selection. J. Clin. Aesthetic Dermatol. 2013, 6, 19–27. [Google Scholar]
- Mills, O.H.; Kligman, A.M. Comedogenicity of Sunscreens. Experimental Observations in Rabbits. Arch. Dermatol. 1982, 118, 417–419. [Google Scholar] [CrossRef]
- Mills, O.H.; Porte, M.; Kligman, A.M. Enhancement of Comedogenic Substances by Ultraviolet Radiation. Br. J. Dermatol. 1978, 98, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Del Rosso, J.Q.; Gold, M.; Rueda, M.J.; Brandt, S.; Winkelman, W.J. Efficacy, Safety, and Subject Satisfaction of a Specified Skin Care Regimen to Cleanse, Medicate, Moisturize, and Protect the Skin of Patients under Treatment for Acne Vulgaris. J. Clin. Aesthetic Dermatol. 2015, 8, 22–30. [Google Scholar]
- Funk, J.O.; Dromgoole, S.H.; Maibach, H.I. Sunscreen Intolerance. Contact Sensitization, Photocontact Sensitization, and Irritancy of Sunscreen Agents. Dermatol. Clin. 1995, 13, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Tampucci, S.; Tofani, G.; Chetoni, P.; Di Gangi, M.; Mezzetta, A.; Paganini, V.; Burgalassi, S.; Pomelli, C.S.; Monti, D. Sporopollenin Microcapsule: Sunscreen Delivery System with Photoprotective Properties. Pharmaceutics 2022, 14, 2041. [Google Scholar] [CrossRef] [PubMed]
- Abdi, S.A.H.; Ali, A.; Sayed, S.F.; Nagarajan, S.; Abutahir; Alam, P.; Ali, A. Sunscreen Ingredient Octocrylene’s Potency to Disrupt Vitamin D Synthesis. Int. J. Mol. Sci. 2022, 23, 10154. [Google Scholar] [CrossRef] [PubMed]
- Janoušek, J.; Pilařová, V.; Macáková, K.; Nomura, A.; Veiga-Matos, J.; da Silva, D.D.; Remião, F.; Saso, L.; Malá-Ládová, K.; Malý, J.; et al. Vitamin D: Sources, Physiological Role, Biokinetics, Deficiency, Therapeutic Use, Toxicity, and Overview of Analytical Methods for Detection of Vitamin D and Its Metabolites. Crit. Rev. Clin. Lab. Sci. 2022, 59, 517–554. [Google Scholar] [CrossRef] [PubMed]
- Grigalavicius, M.; Iani, V.; Juzeniene, A. Layer Thickness of SPF 30 Sunscreen and Formation of Pre-Vitamin D. Anticancer Res. 2016, 36, 1409–1415. [Google Scholar] [PubMed]
- Anglin, R.E.S.; Samaan, Z.; Walter, S.D.; McDonald, S.D. Vitamin D Deficiency and Depression in Adults: Systematic Review and Meta-Analysis. Br. J. Psychiatry J. Ment. Sci. 2013, 202, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Tsiaras, W.; Weinstock, M. Factors Influencing Vitamin D Status. Acta Derm. Venereol. 2011, 91, 115–124. [Google Scholar] [CrossRef]
- Norval, M.; Wulf, H.C. Does Chronic Sunscreen Use Reduce Vitamin D Production to Insufficient Levels? Br. J. Dermatol. 2009, 161, 732–736. [Google Scholar] [CrossRef]
- Holick, M.F. Sunlight, UV Radiation, Vitamin D, and Skin Cancer: How Much Sunlight Do We Need? In Sunlight, Vitamin D and Skin Cancer; Reichrath, J., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2020; Volume 1268, pp. 19–36. ISBN 978-3-030-46226-0. [Google Scholar]
- Wolf, P. Vitamin D: One More Argument for Broad-spectrum Ultraviolet A + Ultraviolet B Sunscreen Protection. Br. J. Dermatol. 2019, 181, 881–882. [Google Scholar] [CrossRef]
- Passeron, T.; Bouillon, R.; Callender, V.; Cestari, T.; Diepgen, T.L.; Green, A.C.; van der Pols, J.C.; Bernard, B.A.; Ly, F.; Bernerd, F.; et al. Sunscreen Photoprotection and Vitamin D Status. Br. J. Dermatol. 2019, 181, 916–931. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.W.; Gilchrest, B.A.; Cooper, K.D.; Bischoff-Ferrari, H.A.; Rigel, D.S.; Cyr, W.H.; Miller, S.; DeLeo, V.A.; Lee, T.K.; Demko, C.A.; et al. Sunlight, Tanning Booths, and Vitamin D. J. Am. Acad. Dermatol. 2005, 52, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Patterson, K.Y.; Phillips, K.M.; Horst, R.L.; Byrdwell, W.C.; Exler, J.; Lemar, L.E.; Holden, J.M. Vitamin D Content and Variability in Fluid Milks from a US Department of Agriculture Nationwide Sampling to Update Values in the National Nutrient Database for Standard Reference. J. Dairy Sci. 2010, 93, 5082–5090. [Google Scholar] [CrossRef]
- Kim, S.; Carson, K.A.; Chien, A.L. Prevalence and Correlates of Sun Protections with Sunburn and Vitamin D Deficiency in Sun-sensitive Individuals. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 2664–2672. [Google Scholar] [CrossRef] [PubMed]
- Neale, R.E.; Khan, S.R.; Lucas, R.M.; Waterhouse, M.; Whiteman, D.C.; Olsen, C.M. The Effect of Sunscreen on Vitamin D: A Review. Br. J. Dermatol. 2019, 181, 907–915. [Google Scholar] [CrossRef]
- Libon, F.; Courtois, J.; Le Goff, C.; Lukas, P.; Fabregat-Cabello, N.; Seidel, L.; Cavalier, E.; Nikkels, A.F. Sunscreens Block Cutaneous Vitamin D Production with Only a Minimal Effect on Circulating 25-Hydroxyvitamin D. Arch. Osteoporos. 2017, 12, 66. [Google Scholar] [CrossRef] [PubMed]
- Herzinger, T. Sun protection factor 50+: Pro and contra. Hautarzt Z. Dermatol. Venerol. Verwandte Geb. 2017, 68, 368–370. [Google Scholar] [CrossRef]
- de Gruijl, F.R.; Webb, A.R.; Rhodes, L.E. Everyday Sunscreen Use May Compromise Vitamin D in Temperate Climes. Br. J. Dermatol. 2020, 182, 1312–1313. [Google Scholar] [CrossRef]
- Young, A.R.; Narbutt, J.; Harrison, G.I.; Lawrence, K.P.; Bell, M.; O’Connor, C.; Olsen, P.; Grys, K.; Baczynska, K.A.; Rogowski-Tylman, M.; et al. Optimal Sunscreen Use, during a Sun Holiday with a Very High Ultraviolet Index, Allows Vitamin D Synthesis without Sunburn. Br. J. Dermatol. 2019, 181, 1052–1062. [Google Scholar] [CrossRef]
- Andersen, P.A.; Buller, D.B.; Walkosz, B.J.; Scott, M.D.; Maloy, J.A.; Cutter, G.R.; Dignan, M.D. Environmental Cues to UV Radiation and Personal Sun Protection in Outdoor Winter Recreation. Arch. Dermatol. 2010, 146, 1241–1247. [Google Scholar] [CrossRef]
- Vitamin, D. Available online: https://lpi.oregonstate.edu/mic/vitamins/vitamin-D (accessed on 1 October 2023).
- Bikle, D.D. Vitamin D: Production, Metabolism and Mechanisms of Action. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Nair, R.; Maseeh, A. Vitamin D: The “Sunshine” Vitamin. J. Pharmacol. Pharmacother. 2012, 3, 118–126. [Google Scholar]
- Stern, R.S.; Weinstein, M.C.; Baker, S.G. Risk Reduction for Nonmelanoma Skin Cancer with Childhood Sunscreen Use. Arch. Dermatol. 1986, 122, 537–545. [Google Scholar] [CrossRef]
- Califf, R.M.; Shinkai, K. Filling in the Evidence About Sunscreen. JAMA 2019, 321, 2077–2079. [Google Scholar] [CrossRef]
EU | AUS | US | Common/Trade Name | IUPAC Name |
---|---|---|---|---|
– | – | 15 N | PABA | 4-Aminobenzoic Acid |
6 | 6 | – | -/- | Camphor Benzalkonium Methosulfate |
10 | 15 | 15 | Homosalate/Neo Heliopan ® HMS | Homomenthyl Salicylate |
6 † | 10 | 6 | Oxybenzone/Neo-Heliopan ® BB | Benzophenone-3 (BP-3) |
8 | 4 | – | Ensulizole | Phenylbenzimidazole Sulfonic Acid |
10 | 10 | – | Ecamsule/Mexoryl ® SX | Terephthalylidene Dicamphor Sulfonic Acid |
5 | 5 | 3 | Avobenzone/Neo Heliopan ® 357 | Butyl Methoxydibenzoylmethane |
6 | 6 | 4 | e.g., Mexoryl ® SL | Benzylidene Camphor Sulfonic Acid |
10 †† | 10 | 10 | Octocrylene/Neo Heliopan ® 303 | Octocrylene |
6 | – | – | -/- | Polyacrylamidomethyl Benzylidene Camphor |
10 | 10 | 7.5 | Octinoxate | Ethylhexyl Methoxycinnamate * (EHMC/OMC) |
10 | 10 | – | PEG-25 PABA | PEG-25 PABA/Polyoxyethylene ethyl-4-aminobenzoate |
10 | 10 | – | Amiloxate/Neo Heliopan ® E 1000 | Isoamyl p-Methoxycinnamate |
5 | 5 | – | e.g., UVINUL T 150 ® | Ethylhexyl Triazone |
15 | 10 | – | Silatrizole/e.g., Mexoryl ® XL | Drometrizole Trisiloxane |
10 | – | – | Iscotrizinol/Uvasorb® HEB | Diethylhexyl Butamido Triazone |
4 | 4 | – | Enzacamene/Neo Heliopan ® MBC | 4-Methylbenzylidene Camphor (4-MBC) |
5 | 5 | 5 | Octisalate/Neo Heliopan ® OS | Ethylhexyl Salicylate |
8 | 8 | 8 | Padimate O | Ethylhexyl Dimethyl PABA |
5 | 10 | 10 | Sulisobenzone/UVINUL® MS 40 | Benzophenone-4, Benzophenone-5 ** |
10 | 10 | – | Bisoctrizole/Tinosorb® M | Methylene Bis-Benzotriazolyl Tetramethylbutylphenol (nano) |
10 | 10 | – | Bisdisulizole disodium/Neoheliopan ® AP | Disodium Phenyl Dibenzimidazole Tetrasulfonate |
10 | 10 | – | Bemotrizinol/Tinosorb ® S | Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine |
10 | 10 | – | Parsol ® SLX | Polysilicone-15/Dimethicodiethylbenzalmalonate |
25 | 25 | 25 G | -/- | Titanium Dioxide (nano) ((n)TiO2) |
10 | 10 | – | e.g., Uvinyl ® A Plus | Diethylamino Hydroxybenzoyl Hexyl Benzoate |
10 | 10 | – | e.g., Tinosorb A 2B ® | Tris-Biphenyl Triazine (nano) |
25 | N/A | 25 G | -/- | Zinc Oxide (nano) ((n)ZnO) |
5 | – | – | e.g., TriAsorB ® | Phenylene Bis-Diphenyltriazine |
3 | – | – | e.g., Mexoryl 400 ® | Methoxypropylamino Cyclohexenylidene Ethoxyethylcyanoacetate |
10 | – | – | -/- | Bis-(Diethylaminohydroxybenzoyl Benzoyl) Piperazine (nano) |
– | 12 | 12 N | e.g., Neo Heliopan ® TS | Trolamine Salicylate |
– | 5 | 5 | Meradimate/Neo Heliopan ® MA | Menthyl Anthranilate |
– | 6 | 3 | Cinoxate/Neo Heliopan ® AV | 2-Ethoxyethyl-p-Methoxycinnamate |
– | 3 | 3 | Dioxybenzone | Benzophenone-8 (BP-8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breakell, T.; Kowalski, I.; Foerster, Y.; Kramer, R.; Erdmann, M.; Berking, C.; Heppt, M.V. Ultraviolet Filters: Dissecting Current Facts and Myths. J. Clin. Med. 2024, 13, 2986. https://doi.org/10.3390/jcm13102986
Breakell T, Kowalski I, Foerster Y, Kramer R, Erdmann M, Berking C, Heppt MV. Ultraviolet Filters: Dissecting Current Facts and Myths. Journal of Clinical Medicine. 2024; 13(10):2986. https://doi.org/10.3390/jcm13102986
Chicago/Turabian StyleBreakell, Thomas, Isabel Kowalski, Yannick Foerster, Rafaela Kramer, Michael Erdmann, Carola Berking, and Markus V. Heppt. 2024. "Ultraviolet Filters: Dissecting Current Facts and Myths" Journal of Clinical Medicine 13, no. 10: 2986. https://doi.org/10.3390/jcm13102986
APA StyleBreakell, T., Kowalski, I., Foerster, Y., Kramer, R., Erdmann, M., Berking, C., & Heppt, M. V. (2024). Ultraviolet Filters: Dissecting Current Facts and Myths. Journal of Clinical Medicine, 13(10), 2986. https://doi.org/10.3390/jcm13102986