Role of Lipid-Lowering and Anti-Inflammatory Therapies on Plaque Stabilization
Abstract
:1. Introduction
2. Treatment of Atherosclerotic Plaques
2.1. Diagnostic Modalities for Vulnerable Plaque Detection
2.2. Approach to Plaque Stabilization
3. Statins
3.1. Ezetimibe
3.2. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors
3.3. Omega-3 Fatty Acids
4. Colchicine
4.1. Other Medications
4.2. Mechanical Stabilization
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Dawson, L.P.; Lum, M.; Nerleker, N.; Nicholls, S.J.; Layland, J. Coronary Atherosclerotic Plaque Regression. J. Am. Coll. Cardiol. 2022, 79, 66–82. [Google Scholar] [CrossRef] [PubMed]
- Dimitroglou, Y.; Aggeli, C.; Theofilis, P.; Tsioufis, P.; Oikonomou, E.; Chasikidis, C.; Tsioufis, K.; Tousoulis, D. Novel Anti-Inflammatory Therapies in Coronary Artery Disease and Acute Coronary Syndromes. Life 2023, 13, 1669. [Google Scholar] [CrossRef] [PubMed]
- Legutko, J.; Bryniarski, K.L.; Kaluza, G.L.; Roleder, T.; Pociask, E.; Kedhi, E.; Wojakowski, W.; Jang, I.-K.; Kleczynski, P. Intracoronary Imaging of Vulnerable Plaque—From Clinical Research to Everyday Practice. J. Clin. Med. 2022, 11, 6639. [Google Scholar] [CrossRef]
- Kogo, T.; Hiro, T.; Kitano, D.; Takayama, T.; Fukamachi, D.; Morikawa, T.; Sudo, M.; Okumura, Y. Macrophage Accumulation within Coronary Arterial Wall in Diabetic Patients with Acute Coronary Syndrome: A Study with in-Vivo Intravascular Imaging Modalities. Cardiovasc. Diabetol. 2020, 19, 135. [Google Scholar] [CrossRef]
- Schoenhagen, P.; Ziada, K.M.; Kapadia, S.R.; Crowe, T.D.; Nissen, S.E.; Tuzcu, E.M. Extent and Direction of Arterial Remodeling in Stable versus Unstable Coronary Syndromes: An Intravascular Ultrasound Study. Circulation 2000, 101, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Hao, H.; Shibuya, M.; Imanaka, T.; Fukunaga, M.; Miki, K.; Tamaru, H.; Sawada, H.; Naito, Y.; Ohyanagi, M.; et al. Accuracy of OCT, Grayscale IVUS, and Their Combination for the Diagnosis of Coronary TCFA: An Ex Vivo Validation Study. JACC Cardiovasc. Imaging 2015, 8, 451–460. [Google Scholar] [CrossRef]
- Nair, A.; Kuban, B.D.; Tuzcu, E.M.; Schoenhagen, P.; Nissen, S.E.; Vince, D.G. Coronary Plaque Classification with Intravascular Ultrasound Radiofrequency Data Analysis. Circulation 2002, 106, 2200–2206. [Google Scholar] [CrossRef] [PubMed]
- Stone, G.W.; Maehara, A.; Lansky, A.J.; de Bruyne, B.; Cristea, E.; Mintz, G.S.; Mehran, R.; McPherson, J.; Farhat, N.; Marso, S.P.; et al. A Prospective Natural-History Study of Coronary Atherosclerosis. N. Engl. J. Med. 2011, 364, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Calvert, P.A.; Obaid, D.R.; O’Sullivan, M.; Shapiro, L.M.; McNab, D.; Densem, C.G.; Schofield, P.M.; Braganza, D.; Clarke, S.C.; Ray, K.K.; et al. Association between IVUS Findings and Adverse Outcomes in Patients with Coronary Artery Disease: The VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc. Imaging 2011, 4, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.M.; Garcia-Garcia, H.M.; de Boer, S.P.M.; Kardys, I.; Heo, J.H.; Akkerhuis, K.M.; Oemrawsingh, R.M.; van Domburg, R.T.; Ligthart, J.; Witberg, K.T.; et al. In Vivo Detection of High-Risk Coronary Plaques by Radiofrequency Intravascular Ultrasound and Cardiovascular Outcome: Results of the ATHEROREMO-IVUS Study. Eur. Heart J. 2014, 35, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.W.; Räber, L.; di Mario, C.; Bourantas, C.; Jia, H.; Mattesini, A.; Gonzalo, N.; de la Torre Hernandez, J.M.; Prati, F.; Koskinas, K.; et al. Clinical Use of Intracoronary Imaging. Part 2: Acute Coronary Syndromes, Ambiguous Coronary Angiography Findings, and Guiding Interventional Decision-Making: An Expert Consensus Document of the European Association of Percutaneous Cardiovascular Interventions: Endorsed by the Chinese Society of Cardiology, the Hong Kong Society of Transcatheter Endocardiovascular Therapeutics (HKSTENT) and the Cardiac Society of Australia and New Zealand. Eur. Heart J. 2019, 40, 2566–2584. [Google Scholar] [CrossRef] [PubMed]
- Schuurman, A.-S.; Vroegindewey, M.; Kardys, I.; Oemrawsingh, R.M.; Cheng, J.M.; de Boer, S.; Garcia-Garcia, H.M.; van Geuns, R.-J.; Regar, E.S.; Daemen, J.; et al. Near-Infrared Spectroscopy-Derived Lipid Core Burden Index Predicts Adverse Cardiovascular Outcome in Patients with Coronary Artery Disease during Long-Term Follow-Up. Eur. Heart J. 2018, 39, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Waksman, R.; Di Mario, C.; Torguson, R.; Ali, Z.A.; Singh, V.; Skinner, W.H.; Artis, A.K.; Cate, T.T.; Powers, E.; Kim, C.; et al. Identification of Patients and Plaques Vulnerable to Future Coronary Events with Near-Infrared Spectroscopy Intravascular Ultrasound Imaging: A Prospective, Cohort Study. Lancet 2019, 394, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, H.; Bourantas, C.; Bagnall, A.; Mintz, G.S.; Kunadian, V. OCT for the Identification of Vulnerable Plaque in Acute Coronary Syndrome. JACC Cardiovasc. Imaging 2015, 8, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Kubo, T.; Ino, Y.; Mintz, G.S.; Shiono, Y.; Shimamura, K.; Takahata, M.; Terada, K.; Higashioka, D.; Emori, H.; Wada, T.; et al. Optical Coherence Tomography Detection of Vulnerable Plaques at High Risk of Developing Acute Coronary Syndrome. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 1376–1384. [Google Scholar] [CrossRef]
- Xing, L.; Higuma, T.; Wang, Z.; Aguirre, A.D.; Mizuno, K.; Takano, M.; Dauerman, H.L.; Park, S.-J.; Jang, Y.; Kim, C.-J.; et al. Clinical Significance of Lipid-Rich Plaque Detected by Optical Coherence Tomography: A 4-Year Follow-Up Study. J. Am. Coll. Cardiol. 2017, 69, 2502–2513. [Google Scholar] [CrossRef]
- Prati, F.; Romagnoli, E.; Gatto, L.; La Manna, A.; Burzotta, F.; Ozaki, Y.; Marco, V.; Boi, A.; Fineschi, M.; Fabbiocchi, F.; et al. Relationship between Coronary Plaque Morphology of the Left Anterior Descending Artery and 12 Months Clinical Outcome: The CLIMA Study. Eur. Heart J. 2020, 41, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the Diagnosis and Management of Chronic Coronary Syndromes: The Task Force for the Diagnosis and Management of Chronic Coronary Syndromes of the European Society of Cardiology (ESC). Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [PubMed]
- Sandfort, V.; Lima, J.A.C.; Bluemke, D.A. Noninvasive Imaging of Atherosclerotic Plaque Progression: Status of Coronary Computed Tomography Angiography. Circ. Cardiovasc. Imaging 2015, 8, e003316. [Google Scholar] [CrossRef] [PubMed]
- Sarraju, A.; Nissen, S.E. Atherosclerotic Plaque Stabilization and Regression: A Review of Clinical Evidence. Nat. Rev. Cardiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Ferencik, M.; Mayrhofer, T.; Bittner, D.O.; Emami, H.; Puchner, S.B.; Lu, M.T.; Meyersohn, N.M.; Ivanov, A.V.; Adami, E.C.; Patel, M.R.; et al. Use of High-Risk Coronary Atherosclerotic Plaque Detection for Risk Stratification of Patients With Stable Chest Pain: A Secondary Analysis of the PROMISE Randomized Clinical Trial. JAMA Cardiol. 2018, 3, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.J.; Shen, L.; Nguyen, J.; Rapelje, K.; Porter, C.; Shlofmitz, E.; Jeremias, A.; Cohen, D.J.; Ali, Z.A.; Shlofmitz, R. Accuracy and Limitation of Plaque Detection by Coronary CTA: A Section-to-Section Comparison with Optical Coherence Tomography. Sci. Rep. 2023, 13, 11845. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, D.; Suzuki, K.; Usui, E.; Hada, M.; Yuki, H.; Niida, T.; Minami, Y.; Lee, H.; McNulty, I.; Ako, J.; et al. High-Risk Plaques on Coronary Computed Tomography Angiography: Correlation With Optical Coherence Tomography. JACC Cardiovasc. Imaging 2024, 17, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Motoyama, S.; Ito, H.; Sarai, M.; Kondo, T.; Kawai, H.; Nagahara, Y.; Harigaya, H.; Kan, S.; Anno, H.; Takahashi, H.; et al. Plaque Characterization by Coronary Computed Tomography Angiography and the Likelihood of Acute Coronary Events in Mid-Term Follow-Up. J. Am. Coll. Cardiol. 2015, 66, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the Management of Acute Coronary Syndromes: Developed by the Task Force on the Management of Acute Coronary Syndromes of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice: Developed by the Task Force for Cardiovascular Disease Prevention in Clinical Practice with Representatives of the European Society of Cardiology and 12 Medical Societies With the Special Contribution of the European Association of Preventive Cardiology (EAPC). Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Boden, W.E.; O’Rourke, R.A.; Teo, K.K.; Hartigan, P.M.; Maron, D.J.; Kostuk, W.J.; Knudtson, M.; Dada, M.; Casperson, P.; Harris, C.L.; et al. Optimal Medical Therapy with or without PCI for Stable Coronary Disease. N. Engl. J. Med. 2007, 356, 1503–1516. [Google Scholar] [CrossRef] [PubMed]
- Maron, D.J.; Hochman, J.S.; Reynolds, H.R.; Bangalore, S.; O’Brien, S.M.; Boden, W.E.; Chaitman, B.R.; Senior, R.; López-Sendón, J.; Alexander, K.P.; et al. Initial Invasive or Conservative Strategy for Stable Coronary Disease. N. Engl. J. Med. 2020, 382, 1395–1407. [Google Scholar] [CrossRef] [PubMed]
- Stone, G.W.; Maehara, A.; Ali, Z.A.; Held, C.; Matsumura, M.; Kjøller-Hansen, L.; Bøtker, H.E.; Maeng, M.; Engstrøm, T.; Wiseth, R.; et al. Percutaneous Coronary Intervention for Vulnerable Coronary Atherosclerotic Plaque. J. Am. Coll. Cardiol. 2020, 76, 2289–2301. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-J.; Ahn, J.-M.; Kang, D.-Y.; Yun, S.-C.; Ahn, Y.-K.; Kim, W.-J.; Nam, C.-W.; Jeong, J.-O.; Chae, I.-H.; Shiomi, H.; et al. Preventive Percutaneous Coronary Intervention versus Optimal Medical Therapy Alone for the Treatment of Vulnerable Atherosclerotic Coronary Plaques (PREVENT): A Multicentre, Open-Label, Randomised Controlled Trial. Lancet 2024, 403, 1753–1765. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Oesterle, A.; Laufs, U.; Liao, J.K. Pleiotropic Effects of Statins on the Cardiovascular System. Circ. Res. 2017, 120, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Pulipati, V.P.; Alenghat, F.J. The Impact of Lipid-Lowering Medications on Coronary Artery Plaque Characteristics. Am. J. Prev. Cardiol. 2021, 8, 100294. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.H.; Genest, J.; Gotto, A.M.; Kastelein, J.J.P.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive Protein. N. Engl. J. Med. 2008, 359, 2195–2207. [Google Scholar] [CrossRef] [PubMed]
- Scandinavian Simvastatin Survival Study Group. Randomised Trial of Cholesterol Lowering in 4444 Patients with Coronary Heart Disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 1994, 344, 1383–1389. [Google Scholar] [CrossRef]
- Adhyaru, B.B.; Jacobson, T.A. Safety and Efficacy of Statin Therapy. Nat. Rev. Cardiol. 2018, 15, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Takagi, T.; Yoshida, K.; Akasaka, T.; Hozumi, T.; Morioka, S.; Yoshikawa, J. Intravascular Ultrasound Analysis of Reduction in Progression of Coronary Narrowing by Treatment with Pravastatin. Am. J. Cardiol. 1997, 79, 1673–1676. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.E.; Nicholls, S.J.; Sipahi, I.; Libby, P.; Raichlen, J.S.; Ballantyne, C.M.; Davignon, J.; Erbel, R.; Fruchart, J.C.; Tardif, J.-C.; et al. Effect of Very High-Intensity Statin Therapy on Regression of Coronary Atherosclerosis. JAMA 2006, 295, 1556–1565. [Google Scholar] [CrossRef]
- Räber, L.; Taniwaki, M.; Zaugg, S.; Kelbæk, H.; Roffi, M.; Holmvang, L.; Noble, S.; Pedrazzini, G.; Moschovitis, A.; Lüscher, T.F.; et al. Effect of High-Intensity Statin Therapy on Atherosclerosis in Non-Infarct-Related Coronary Arteries (IBIS-4): A Serial Intravascular Ultrasonography Study. Eur. Heart J. 2015, 36, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Takayama, T.; Hiro, T.; Yamagishi, M.; Daida, H.; Hirayama, A.; Saito, S.; Yamaguchi, T.; Matsuzaki, M.; COSMOS Investigators. Effect of Rosuvastatin on Coronary Atheroma in Stable Coronary Artery Disease: Multicenter Coronary Atherosclerosis Study Measuring Effects of Rosuvastatin Using Intravascular Ultrasound in Japanese Subjects (COSMOS). Circ. J. 2009, 73, 2110–2117. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Ballantyne, C.M.; Barter, P.J.; Chapman, M.J.; Erbel, R.M.; Libby, P.; Raichlen, J.S.; Uno, K.; Borgman, M.; Wolski, K.; et al. Effect of Two Intensive Statin Regimens on Progression of Coronary Disease. N. Engl. J. Med. 2011, 365, 2078–2087. [Google Scholar] [CrossRef]
- Kovarnik, T.; Mintz, G.S.; Skalicka, H.; Kral, A.; Horak, J.; Skulec, R.; Uhrova, J.; Martasek, P.; Downe, R.W.; Wahle, A.; et al. Virtual Histology Evaluation of Atherosclerosis Regression during Atorvastatin and Ezetimibe Administration: HEAVEN Study. Circ. J. 2012, 76, 176–183. [Google Scholar] [CrossRef]
- Nakajima, N.; Miyauchi, K.; Yokoyama, T.; Ogita, M.; Miyazaki, T.; Tamura, H.; Nishino, A.; Yokoyama, K.; Okazaki, S.; Kurata, T.; et al. Effect of Combination of Ezetimibe and a Statin on Coronary Plaque Regression in Patients with Acute Coronary Syndrome: ZEUS Trial (eZEtimibe Ultrasound Study). IJC Metab. Endocr. 2014, 3, 8–13. [Google Scholar] [CrossRef]
- Tsujita, K.; Sugiyama, S.; Sumida, H.; Shimomura, H.; Yamashita, T.; Yamanaga, K.; Komura, N.; Sakamoto, K.; Oka, H.; Nakao, K.; et al. Impact of Dual Lipid-Lowering Strategy With Ezetimibe and Atorvastatin on Coronary Plaque Regression in Patients With Percutaneous Coronary Intervention: The Multicenter Randomized Controlled PRECISE-IVUS Trial. J. Am. Coll. Cardiol. 2015, 66, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Ando, K.; Daidoji, H.; Otaki, Y.; Sugawara, S.; Matsui, M.; Ikeno, E.; Hirono, O.; Miyawaki, H.; Yashiro, Y.; et al. A Randomized Controlled Trial of Eicosapentaenoic Acid in Patients with Coronary Heart Disease on Statins. J. Cardiol. 2017, 70, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; Cho, L.; Kastelein, J.J.P.; Koenig, W.; Somaratne, R.; Kassahun, H.; Yang, J.; et al. Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated Patients: The GLAGOV Randomized Clinical Trial. JAMA 2016, 316, 2373–2384. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, Y.; Puri, R.; Hammadah, M.; Duggal, B.; Uno, K.; Kapadia, S.R.; Tuzcu, E.M.; Nissen, S.E.; Nicholls, S.J. Frequency-Domain Optical Coherence Tomographic Analysis of Plaque Microstructures at Nonculprit Narrowings in Patients Receiving Potent Statin Therapy. Am. J. Cardiol. 2014, 114, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Komukai, K.; Kubo, T.; Kitabata, H.; Matsuo, Y.; Ozaki, Y.; Takarada, S.; Okumoto, Y.; Shiono, Y.; Orii, M.; Shimamura, K.; et al. Effect of Atorvastatin Therapy on Fibrous Cap Thickness in Coronary Atherosclerotic Plaque as Assessed by Optical Coherence TomographyThe EASY-FIT Study. J. Am. Coll. Cardiol. 2014, 64, 2207–2217. [Google Scholar] [CrossRef] [PubMed]
- Nishiguchi, T.; Kubo, T.; Tanimoto, T.; Ino, Y.; Matsuo, Y.; Yamano, T.; Terada, K.; Emori, H.; Katayama, Y.; Taruya, A.; et al. Effect of Early Pitavastatin Therapy on Coronary Fibrous-Cap Thickness Assessed by Optical Coherence Tomography in Patients With Acute Coronary Syndrome: The ESCORT Study. JACC Cardiovasc. Imaging 2018, 11, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Räber, L.; Koskinas, K.C.; Yamaji, K.; Taniwaki, M.; Roffi, M.; Holmvang, L.; Garcia Garcia, H.M.; Zanchin, T.; Maldonado, R.; Moschovitis, A.; et al. Changes in Coronary Plaque Composition in Patients With Acute Myocardial Infarction Treated With High-Intensity Statin Therapy (IBIS-4): A Serial Optical Coherence Tomography Study. JACC Cardiovasc. Imaging 2019, 12, 1518–1528. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; Otake, H.; Shinohara, M.; Kuroda, M.; Tsuda, S.; Toba, T.; Nagano, Y.; Toh, R.; Ishida, T.; Shinke, T.; et al. Effect of Rosuvastatin and Eicosapentaenoic Acid on Neoatherosclerosis: The LINK-IT Trial. EuroIntervention 2019, 15, e1099–e1106. [Google Scholar] [CrossRef] [PubMed]
- Kini, A.S.; Baber, U.; Kovacic, J.C.; Limaye, A.; Ali, Z.A.; Sweeny, J.; Maehara, A.; Mehran, R.; Dangas, G.; Mintz, G.S.; et al. Changes in Plaque Lipid Content after Short-Term Intensive versus Standard Statin Therapy: The YELLOW Trial (Reduction in Yellow Plaque by Aggressive Lipid-Lowering Therapy). J. Am. Coll. Cardiol. 2013, 62, 21–29. [Google Scholar] [CrossRef]
- Räber, L.; Ueki, Y.; Otsuka, T.; Losdat, S.; Häner, J.D.; Lonborg, J.; Fahrni, G.; Iglesias, J.F.; van Geuns, R.-J.; Ondracek, A.S.; et al. Effect of Alirocumab Added to High-Intensity Statin Therapy on Coronary Atherosclerosis in Patients With Acute Myocardial Infarction: The PACMAN-AMI Randomized Clinical Trial. JAMA 2022, 327, 1771–1781. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Kataoka, Y.; Nissen, S.E.; Prati, F.; Windecker, S.; Puri, R.; Hucko, T.; Aradi, D.; Herrman, J.-P.R.; Hermanides, R.S.; et al. Effect of Evolocumab on Coronary Plaque Phenotype and Burden in Statin-Treated Patients Following Myocardial Infarction. JACC Cardiovasc. Imaging 2022, 15, 1308–1321. [Google Scholar] [CrossRef]
- Puri, R.; Libby, P.; Nissen, S.E.; Wolski, K.; Ballantyne, C.M.; Barter, P.J.; Chapman, M.J.; Erbel, R.; Raichlen, J.S.; Uno, K.; et al. Long-Term Effects of Maximally Intensive Statin Therapy on Changes in Coronary Atheroma Composition: Insights from SATURN. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 380–388. [Google Scholar] [CrossRef]
- Bayturan, O.; Kapadia, S.; Nicholls, S.J.; Tuzcu, E.M.; Shao, M.; Uno, K.; Shreevatsa, A.; Lavoie, A.J.; Wolski, K.; Schoenhagen, P.; et al. Clinical Predictors of Plaque Progression Despite Very Low Levels of Low-Density Lipoprotein Cholesterol. J. Am. Coll. Cardiol. 2010, 55, 2736–2742. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.E.; Tuzcu, E.M.; Schoenhagen, P.; Brown, B.G.; Ganz, P.; Vogel, R.A.; Crowe, T.; Howard, G.; Cooper, C.J.; Brodie, B.; et al. Effect of Intensive Compared with Moderate Lipid-Lowering Therapy on Progression of Coronary Atherosclerosis: A Randomized Controlled Trial. JAMA 2004, 291, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, J.A.; Martinez, E.E. A New Paradigm for Plaque Stabilization. Circulation 2002, 105, 2000–2004. [Google Scholar] [CrossRef] [PubMed]
- Di Giovanni, G.; Nicholls, S.J. Intensive Lipid Lowering Agents and Coronary Atherosclerosis: Insights from Intravascular Imaging. Am. J. Prev. Cardiol. 2022, 11, 100366. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Serban, C.; Sahebkar, A.; Mikhailidis, D.P.; Ursoniu, S.; Ray, K.K.; Rysz, J.; Toth, P.P.; Muntner, P.; Mosteoru, S.; et al. Impact of Statin Therapy on Coronary Plaque Composition: A Systematic Review and Meta-Analysis of Virtual Histology Intravascular Ultrasound Studies. BMC Med. 2015, 13, 229. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, Y.; Garcia-Garcia, H.M.; Beyene, S.S.; Hideo-Kajita, A.; Kuku, K.O.; Kolm, P.; Waksman, R. Effect of Statin Therapy on Fibrous Cap Thickness in Coronary Plaque on Optical Coherence Tomography—Review and Meta-Analysis. Circ. J. 2019, 83, 1480–1488. [Google Scholar] [CrossRef] [PubMed]
- Chia, S.; Raffel, O.C.; Takano, M.; Tearney, G.J.; Bouma, B.E.; Jang, I.-K. Association of Statin Therapy with Reduced Coronary Plaque Rupture: An Optical Coherence Tomography Study. Coron. Artery Dis. 2008, 19, 237–242. [Google Scholar] [CrossRef]
- Nakajima, A.; Minami, Y.; Araki, M.; Kurihara, O.; Soeda, T.; Yonetsu, T.; Wang, Z.; McNulty, I.; Lee, H.; Nakamura, S.; et al. Optical Coherence Tomography Predictors for a Favorable Vascular Response to Statin Therapy. J. Am. Heart Assoc. 2021, 10, e018205. [Google Scholar] [CrossRef] [PubMed]
- Morrone, D.; Weintraub, W.S.; Toth, P.P.; Hanson, M.E.; Lowe, R.S.; Lin, J.; Shah, A.K.; Tershakovec, A.M. Lipid-Altering Efficacy of Ezetimibe plus Statin and Statin Monotherapy and Identification of Factors Associated with Treatment Response: A Pooled Analysis of over 21,000 Subjects from 27 Clinical Trials. Atherosclerosis 2012, 223, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015, 372, 2387–2397. [Google Scholar] [CrossRef] [PubMed]
- Habara, M.; Nasu, K.; Terashima, M.; Ko, E.; Yokota, D.; Ito, T.; Kurita, T.; Teramoto, T.; Kimura, M.; Kinoshita, Y.; et al. Impact on Optical Coherence Tomographic Coronary Findings of Fluvastatin Alone Versus Fluvastatin + Ezetimibe. Am. J. Cardiol. 2014, 113, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; Cho, L.; Kastelein, J.J.P.; Koenig, W.; Somaratne, R.; Kassahun, H.; Yang, J.; et al. Effect of Evolocumab on Coronary Plaque Composition. J. Am. Coll. Cardiol. 2018, 72, 2012–2021. [Google Scholar] [CrossRef] [PubMed]
- Shaw, L.J.; Narula, J.; Chandrashekhar, Y. The Never-Ending Story on Coronary Calcium: Is It Predictive, Punitive, or Protective? J. Am. Coll. Cardiol. 2015, 65, 1283–1285. [Google Scholar] [CrossRef] [PubMed]
- Puri, R.; Nicholls, S.J.; Shao, M.; Kataoka, Y.; Uno, K.; Kapadia, S.R.; Tuzcu, E.M.; Nissen, S.E. Impact of Statins on Serial Coronary Calcification During Atheroma Progression and Regression. J. Am. Coll. Cardiol. 2015, 65, 1273–1282. [Google Scholar] [CrossRef]
- Ray, K.K.; Wright, R.S.; Kallend, D.; Koenig, W.; Leiter, L.A.; Raal, F.J.; Bisch, J.A.; Richardson, T.; Jaros, M.; Wijngaard, P.L.J.; et al. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N. Engl. J. Med. 2020, 382, 1507–1519. [Google Scholar] [CrossRef]
- Niki, T.; Wakatsuki, T.; Yamaguchi, K.; Taketani, Y.; Oeduka, H.; Kusunose, K.; Ise, T.; Iwase, T.; Yamada, H.; Soeki, T.; et al. Effects of the Addition of Eicosapentaenoic Acid to Strong Statin Therapy on Inflammatory Cytokines and Coronary Plaque Components Assessed by Integrated Backscatter Intravascular Ultrasound. Circ. J. 2016, 80, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Kita, Y.; Watanabe, M.; Kamon, D.; Ueda, T.; Soeda, T.; Okayama, S.; Ishigami, K.; Kawata, H.; Horii, M.; Inoue, F.; et al. Effects of Fatty Acid Therapy in Addition to Strong Statin on Coronary Plaques in Acute Coronary Syndrome: An Optical Coherence Tomography Study. J. Am. Heart Assoc. 2020, 9, e015593. [Google Scholar] [CrossRef] [PubMed]
- Szarek, M.; Bhatt, D.L.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Tardif, J.-C.; Ballantyne, C.M.; Mason, R.P.; Ketchum, S.B.; Lira, P.A.; et al. Lipoprotein(a) Blood Levels and Cardiovascular Risk Reduction With Icosapent Ethyl. J. Am. Coll. Cardiol. 2024, 83, 1529–1539. [Google Scholar] [CrossRef] [PubMed]
- Budoff, M.J.; Bhatt, D.L.; Kinninger, A.; Lakshmanan, S.; Muhlestein, J.B.; Le, V.T.; May, H.T.; Shaikh, K.; Shekar, C.; Roy, S.K.; et al. Effect of Icosapent Ethyl on Progression of Coronary Atherosclerosis in Patients with Elevated Triglycerides on Statin Therapy: Final Results of the EVAPORATE Trial. Eur. Heart J. 2020, 41, 3925–3932. [Google Scholar] [CrossRef] [PubMed]
- Graham, W.; Roberts, J.B. Intravenous Colchicine in the Management of Gouty Arthritis. Ann. Rheum. Dis. 1953, 12, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, C.S.; Roseira, E.S.; Viana, T.T.; Silveira, M.A.D.; de Melo, R.M.V.; Fernandez, M.G.; Lemos, L.M.G.; Passos, L.C.S. Inflammation in Coronary Atherosclerosis: Insights into Pathogenesis and Therapeutic Potential of Anti-Inflammatory Drugs. Pharmaceuticals 2023, 16, 1242. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.; Fuster, V.; Ridker, P.M. Low-Dose Colchicine for Secondary Prevention of Coronary Artery Disease: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023, 82, 648–660. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.-Y.; Lai, J.-Y.; Li, Y.-T.; Yu, X.-Y.; Liu, Y.-H.; Hu, J.-X.; Gao, B.-B.; Wu, J.-G. Colchicine Efficacy Comparison at Varying Time Points in the Peri-Operative Period for Coronary Artery Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Cardiovasc. Med. 2023, 10, 1156980. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, K.; Arnott, C.; Martínez, G.J.; Ng, B.; McCormack, S.; Sullivan, D.R.; Celermajer, D.S.; Patel, S. Colchicine Therapy and Plaque Stabilization in Patients With Acute Coronary Syndrome: A CT Coronary Angiography Study. JACC Cardiovasc. Imaging 2018, 11, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Montarello, N.J.; Singh, K.; Sinhal, A.; Wong, D.T.L.; Alcock, R.; Rajendran, S.; Dautov, R.; Barlis, P.; Patel, S.; Nidorf, S.M.; et al. Assessing the Impact of Colchicine on Coronary Plaque Phenotype After Myocardial Infarction with Optical Coherence Tomography: Rationale and Design of the COCOMO-ACS Study. Cardiovasc. Drugs Ther. 2022, 36, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Morton, A.C.; Rothman, A.M.K.; Greenwood, J.P.; Gunn, J.; Chase, A.; Clarke, B.; Hall, A.S.; Fox, K.; Foley, C.; Banya, W.; et al. The Effect of Interleukin-1 Receptor Antagonist Therapy on Markers of Inflammation in Non-ST Elevation Acute Coronary Syndromes: The MRC-ILA Heart Study. Eur. Heart J. 2015, 36, 377–384. [Google Scholar] [CrossRef]
- Abbate, A.; Trankle, C.R.; Buckley, L.F.; Lipinski, M.J.; Appleton, D.; Kadariya, D.; Canada, J.M.; Carbone, S.; Roberts, C.S.; Abouzaki, N.; et al. Interleukin-1 Blockade Inhibits the Acute Inflammatory Response in Patients With ST-Segment–Elevation Myocardial Infarction. J. Am. Heart Assoc. 2020, 9, e014941. [Google Scholar] [CrossRef] [PubMed]
- Kleveland, O.; Kunszt, G.; Bratlie, M.; Ueland, T.; Broch, K.; Holte, E.; Michelsen, A.E.; Bendz, B.; Amundsen, B.H.; Espevik, T.; et al. Effect of a Single Dose of the Interleukin-6 Receptor Antagonist Tocilizumab on Inflammation and Troponin T Release in Patients with Non-ST-Elevation Myocardial Infarction: A Double-Blind, Randomized, Placebo-Controlled Phase 2 Trial. Eur. Heart J. 2016, 37, 2406–2413. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M. From RESCUE to ZEUS: Will Interleukin-6 Inhibition with Ziltivekimab Prove Effective for Cardiovascular Event Reduction? Cardiovasc. Res. 2021, 117, e138–e140. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Everett, B.M.; Pradhan, A.; MacFadyen, J.G.; Solomon, D.H.; Zaharris, E.; Mam, V.; Hasan, A.; Rosenberg, Y.; Iturriaga, E.; et al. Low-Dose Methotrexate for the Prevention of Atherosclerotic Events. N. Engl. J. Med. 2019, 380, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Galea, J.; Armstrong, J.; Gadsdon, P.; Holden, H.; Francis, S.E.; Holt, C.M. Interleukin-1β in Coronary Arteries of Patients With Ischemic Heart Disease. Arterioscler. Thromb. Vasc. Biol. 1996, 16, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Soehnlein, O.; Libby, P. Targeting Inflammation in Atherosclerosis—From Experimental Insights to the Clinic. Nat. Rev. Drug Discov. 2021, 20, 589–610. [Google Scholar] [CrossRef] [PubMed]
GS-IVUS | VH-IVUS | NIRS | OCT | |
---|---|---|---|---|
Fibroatheroma/Lipid plaque | Can identify lipid plaque—so called “soft” plaque which is described as an area with low echogenicity in contrast to the reference adventitia. | VH-IVUS cannot directly identify fibroatheroma. Fibroatheroma is described as the presence of 10% confluent necrotic core with an overlying layer of fibrous tissue on 3 consecutive frames (1). | Shows probability of lipid as yellow pixels on chemogram and lipid core burden index (LCBI). LCBI can be calculated in any chosen segment as the proportion of yellow pixels to all pixels in the chosen area multiplied by 1000. LCBI4mm refers to the value of LCBI in chosen 4 mm segment of the artery. | Can identify lipid plaque described as signal-poor regions with diffuse borders (lipid pool) and overlying signal-rich bands (fibrous caps), accompanied by high signal attenuation. Due to this limitation, it is frequently not possible to assess the diameter of the artery with lipid plaque. |
TCFA | GS-IVUS does not have resolution high enough to visualize TCFA. | VH-IVUS cannot identify TCFA directly. TCFA is described as the presence of 10% confluent necrotic core in direct contact with the lumen on 3 consecutive frames (1). | NA | Lipid plaque with the minimum thickness of the fibrous cap less than 65 μm or 80 μm and with lipid occupying >90° in circumference. |
Plaque burden | Percentage of the plaque area within the entire vessel wall | Percentage of the plaque area within the entire vessel wall | NA | NA |
Macrophages | NA | NA | NA | Increased signal intensity within the plaque, accompanied by heterogeneous back shadows |
Study/Publication Year | Study Size | Treatment | Follow-Up Time | Changes in Plaque Composition |
---|---|---|---|---|
IVUS, VH-IVUS | ||||
Takagi et al. [38] 1997 | 36 patients | 10 mg pravastatin + diet vs. diet alone | 3 years | Mean change of lumen area: +10 vs. −9% (p < 0.001) Mean change of plaque area: −7 vs. +41% (p < 0.001) |
Nissen et al. [39] ASTEROID Trial 2006 | 507 patients (349 included in follow-up) with stable and unstable ischemic chest pain | Rosuvastatin 40 mg | 2 years | Values compared to baseline Median PAV decrease: −0.79% (p < 0.001) Median change of atheroma volume in 10 mm prespecified segment with greatest disease: −5.6 mm3 (p < 0.001) Median TAV change: −12.5 mm3 (p < 0.001) 63.6% of patients showed regression of the disease and 36.4% progression of the disease |
Takayama et al. [41] COSMOS 2009 | 214 patients (126 included in follow-up) | Rosuvastatin 2.5 mg (could be increased after 4 weeks) | 76 weeks | Values compared to baseline Mean PAV change: −5.1% (p < 0.001) Mean plaque area change: −21.9 mm3 (p < 0.001) |
Nicholls et al. [42] SATURN 2011 | 1039 patients with both SA and ACS | Rosuvastatin 40 mg vs. atorvastatin 80 mg | 24 months | Median PAV change: −1.22 vs. −0.99% (p = 0.17) Median TAV change: −6.39 vs. −4.42% (p = 0.01) Disease regression (based on TAV): 71.3 vs. 64.7% (p = 0.02) |
Kovarnik et al. [43] HEAVEN 2012 | 89 patients with SA | Atorvastatin 80 mg + ezetimibe 10 mg vs. routine statin therapy (10 mg atorvastatin in statin naïve patients) | 12 months | Mean PAV change: −0.4 vs. 1.4% (p = 0.014) Mean necrotic core change: 1.5 vs. 3.4% (p = 0.18) Mean calcification change: 1.0 vs. 2.6% (p = 0.18) |
Nakajima et al. [44] ZEUS 2014 | 95 patients with ACS | Atorvastatin 20mg + ezetimibe 10 mg vs. atorvastatin 20 mg | 24 weeks | Mean plaque volume change: −12.5 vs. −7.5% (p = 0.06) Mean vessel volume change: −7.4 vs. −2.0% (p = 0.04) |
Raber et al. [40] IBIS-4 2015 | 103 patients with STEMI | Rosuvastatin 40 mg | 13 months | Values compared to baseline Mean PAV change: −0.9% (p = 0.007) Mean TAV change: −13.4 mm3 (p = 0.006) Mean NC volume change: −0.05% (p = 0.926) Mean dense calcium change: 1.28% (p < 0.001) Number of TCFA: 124 vs. 116 (p = 0.15) |
Tsujita et al. [45] PRECISE-IVUS 2015 | 202 patients with SA and ACS | Atorvastatin + 10 mg ezetimibe vs. atorvastatin | 9–12 months | Median plaque volume change: −5.2 vs. −1.3% (p < 0.001) Median TAV change: −6.6 vs. −1.4% (p < 0.001)
|
Watanabe et al. [46] CHERRY 2017 | 193 patients with SA and ACS | Pitavastatin 4 mg + EPA 1800 mg vs. pitavastatin 4 mg | 6–8 months | Median PAV change: −3.7 vs. −1.5% (p = 0.006) Median TAV change: −9.3 vs. −1.7 mm3 (p < 0.001) Median lipid volume change: −3.4 vs. −1.3 mm3 (p = 0.284) Median calcification volume: −0.0 vs. 0 mm3 (p = 0.895) |
Nicholls et al. [47] GLAGOV 2018 | 968 patients with SA | Evelocumab 420 mg (monthly) vs. placebo | 76 weeks | Median PAV change: −1.2 vs. 0.6% (p < 0.001) Median TAV change: −3.6 vs. −0.8 mm3 (p = 0.04) Median necrotic core change: 0.13 vs. 0.46% (p = 0.67) Median dense calcium change: 2.2 vs. 1.4% (p = 0.10) |
OCT | ||||
Kataoka et al. [48] 2014 | 275 patients with SA | No statin vs. low statin vs. high statin (high statin therapy defined as atorvastatin >40 mg or rosuvastatin >20 mg) | Only baseline | Lipid arc: 238 vs. 219 vs. 161 (p = 0.03) Lipid length: 8.8 vs. 7.5 vs. 5.0 mm (p = 0.006) FCT: 74 vs. 91 vs. 116 μm (p < 0.01) TCFA: 52 vs. 20 vs. 8% (p < 0.001) |
Komukai et al. [49] EASY-FIT 2014 | 70 patients with UA | 20 mg vs. 5 mg atorvastatin | 12 months | Median change in FCT: 69 vs. 17% (p < 0.001) Median change in lipid arc: −27% vs. −8% (p < 0.001) Decrease in macrophage grade: −38 vs. −24% (p < 0.001) Median lipid length change: −0.6 vs. −0.4 mm (p = NS) |
Nishiguchi et al. [50] ESCORT 2017 | 70 ACS patients (53 included in final analysis) | 4 mg pitavastatin from baseline vs. 4 mg pitavastatin 3 weeks after baseline | 3 weeks and 36 weeks | Values given for OCT done after 3 weeks Median change in minimum FCT: 20 vs. −6 um (p < 0.05) Median change in maximum lipid arc: 5 vs. −5 (p = NS) Median change in lipid length: 0 vs. 0.6 mm (p = NS) |
Raber et al. [51] IBIS-4 2019 | 103 patients with STEMI | Rosuvastatin 40 mg | 13 months | Values compared to baseline Mean minimum cap thickness change: 21.41 um (p = 0.008) Mean cap thickness change: 69.26 um (p < 0.001) Mean macrophage lines arc change: −3.22 (p < 0.001) Mean lipid arc change: −12.49 (p = 0.013) |
Kuroda et al. [52] 2019 | 48 patients with SA and ACS | Rosuvastatin 10 mg + 1800 mg EPA vs. rosuvastatin 2.5 mg | 1 year | Median change in lipid length: −0.2 vs. 0.8 mm (p < 0.05) Median change in lipid arc: −2 vs. 19 (p < 0.05) Median change in lipid index: −45 vs. 217 (p < 0.05) Median change in macrophage grade: −16 vs. 18 (p < 0.05) |
NIRS | ||||
Kini et al. [53] YELLOW 2013 | 87 patients with SA | Intensive statin therapy (40 mg rosuvastatin) vs. standard of care | 7 weeks | Median change in LCBI4 mm: −24.4 vs. 5.4% (p = 0.02) |
Combined modalities | ||||
Raber et al. [54] PACMAN-AMI 2022 | 300 patients with ACS | 150 mg alirocumab (bi-weekly) vs. placebo | 52 weeks | Median PAV change: −2.13 vs. −0.92% (p < 0.001) Median TAV change: −26.12 vs. −14.97 mm3 (p < 0.001) Median LCBI change: −29.3 vs. −12.38 (p = 0.004) Mean FCT change: 90.95 vs. 62.36 um (p = 0.03) Mean angular extension of macrophages change: −25.98 vs. –15.95 (p < 0.001) |
Nicholls et al. [55] 2022 | 161 patients with NSTEMI (79 patients with IVUS analysis) | Evelocumab 420 mg (monthly) vs. placebo | 52 weeks | Median minimum FCT change: 42.7 vs. 21.5 um (p = 0.015) Median maximum lipid arc change: −57.5 vs. −31.4 (p = 0.04) Median lipid length change: −5.8 vs. −3.3 mm (p = 0.02) Mean PAV change: −2.29 vs. −0.61 (p = 0.009) Mean TAV change: −19.0 vs. −8.9 mm3 (p = 0.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryniarski, K.L.; den Dekker, W.; Legutko, J.; Gasior, P.; Tahon, J.; Diletti, R.; Wilschut, J.M.; Nuis, R.-J.; Daemen, J.; Kleczynski, P.; et al. Role of Lipid-Lowering and Anti-Inflammatory Therapies on Plaque Stabilization. J. Clin. Med. 2024, 13, 3096. https://doi.org/10.3390/jcm13113096
Bryniarski KL, den Dekker W, Legutko J, Gasior P, Tahon J, Diletti R, Wilschut JM, Nuis R-J, Daemen J, Kleczynski P, et al. Role of Lipid-Lowering and Anti-Inflammatory Therapies on Plaque Stabilization. Journal of Clinical Medicine. 2024; 13(11):3096. https://doi.org/10.3390/jcm13113096
Chicago/Turabian StyleBryniarski, Krzysztof L., Wijnand den Dekker, Jacek Legutko, Pawel Gasior, Jeroen Tahon, Roberto Diletti, Jeroen M. Wilschut, Rutger-Jan Nuis, Joost Daemen, Pawel Kleczynski, and et al. 2024. "Role of Lipid-Lowering and Anti-Inflammatory Therapies on Plaque Stabilization" Journal of Clinical Medicine 13, no. 11: 3096. https://doi.org/10.3390/jcm13113096
APA StyleBryniarski, K. L., den Dekker, W., Legutko, J., Gasior, P., Tahon, J., Diletti, R., Wilschut, J. M., Nuis, R.-J., Daemen, J., Kleczynski, P., Van Mieghem, N. M., & Jang, I.-K. (2024). Role of Lipid-Lowering and Anti-Inflammatory Therapies on Plaque Stabilization. Journal of Clinical Medicine, 13(11), 3096. https://doi.org/10.3390/jcm13113096