In Patients with Cardiogenic Shock, Extracorporeal Membrane Oxygenation Is Associated with Very High All-Cause Inpatient Mortality Rate
Abstract
:1. Introduction
2. Methods
2.1. Data Source
2.2. Sample Selection
2.3. Statistical Analysis
3. Results
3.1. Mortality
3.2. Multivariate and Subgroup Analysis
3.3. Complications
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldberg, R.J.; Samad, N.A.; Yarzebski, J.; Gurwitz, J.; Bigelow, C.; Gore, J.M. Temporal trends in cardiogenic shock complicating acute myocardial infarction. N. Engl. J. Med. 1999, 340, 1162–1168. [Google Scholar] [CrossRef]
- Goldberg, R.J.; Spencer, F.A.; Gore, J.M.; Lessard, D.; Yarzebski, J. Thirty-year trends (1975 to 2005) in the magnitude of, management of, and hospital death rates associated with cardiogenic shock in patients with acute myocardial infarction: A population-based perspective. Circulation 2009, 119, 1211–1219. [Google Scholar] [CrossRef]
- Vahdatpour, C.; Collins, D.; Goldberg, S. Cardiogenic Shock. J. Am. Heart Assoc. 2019, 8, e011991. [Google Scholar] [CrossRef] [PubMed]
- Telukuntla, K.S.; Estep, J.D. Acute Mechanical Circulatory Support for Cardiogenic Shock. Methodist. Debakey Cardiovasc. J. 2020, 16, 27–35. [Google Scholar] [CrossRef]
- Malik, A.; Basu, T.; VanAken, G.; Aggarwal, V.; Lee, R.; Abdul-Aziz, A.; Birati, E.Y.; Basir, M.B.; Nallamothu, B.K.; Shore, S. National Trends for Temporary Mechanical Circulatory Support Utilization in Patients with Cardiogenic Shock from Decompensated Chronic Heart Failure: Incidence, Predictors, Outcomes, and Cost. J. Soc. Cardiovasc. Angiogr. Interv. 2023, 2, 101177. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Neumann, F.-J.; Ferenc, M.; Olbrich, H.-G.; Hausleiter, J.; Richardt, G.; Hennersdorf, M.; Empen, K.; Fuernau, G.; et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Thelemann, N.; Neumann, F.-J.; Hausleiter, J.; Abdel-Wahab, M.; Meyer-Saraei, R.; Fuernau, G.; Eitel, I.; Hambrecht, R.; et al. Intraaortic Balloon Pump in Cardiogenic Shock Complicating Acute Myocardial Infarction: Long-Term 6-Year Outcome of the Randomized IABP-SHOCK II Trial. Circulation 2019, 139, 395–403. [Google Scholar] [CrossRef]
- Neumann, F.-J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, A.R.; Collet, J.-P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef]
- Tehrani, B.N.; Truesdell, A.G.; Psotka, M.A.; Rosner, C.; Singh, R.; Sinha, S.S.; Damluji, A.A.; Batchelor, W.B. A Standardized and Comprehensive Approach to the Management of Cardiogenic Shock. JACC Heart Fail. 2020, 8, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; He, J.; Cai, Z.; Zhang, R.; Song, C.; Qiao, Z.; Song, W.; Feng, L.; Dou, K. Intra-aortic balloon pump in cardiogenic shock: A propensity score matching analysis. Catheter. Cardiovasc. Interv. 2022, 99 (Suppl. S1), 1456–1464. [Google Scholar] [CrossRef] [PubMed]
- Zein, R.; Patel, C.; Mercado-Alamo, A.; Schreiber, T.; Kaki, A. A Review of the Impella Devices. Interv. Cardiol. 2022, 17, e05. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Han, Y.; Sun, S.; Zhang, C.; Liu, H.; Wang, B.; Wei, S. Mortality in cardiogenic shock patients receiving mechanical circulatory support: A network meta-analysis. BMC Cardiovasc. Disord. 2022, 22, 48. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.; Khalpey, Z.; Smith, R.; Burkhoff, D.; Kociol, R.D. Venoarterial Extracorporeal Membrane Oxygenation for Cardiogenic Shock and Cardiac Arrest. Circ. Heart Fail. 2018, 11, e004905. [Google Scholar] [CrossRef] [PubMed]
- Burkhoff, D.; Sayer, G.; Doshi, D.; Uriel, N. Hemodynamics of Mechanical Circulatory Support. J. Am. Coll. Cardiol. 2015, 66, 2663–2674. [Google Scholar] [CrossRef]
- Tsangaris, A.; Alexy, T.; Kalra, R.; Kosmopoulos, M.; Elliott, A.; Bartos, J.A.; Yannopoulos, D. Overview of Veno-Arterial Extracorporeal Membrane Oxygenation (VA-ECMO) Support for the Management of Cardiogenic Shock. Front. Cardiovasc. Med. 2021, 8, 686558. [Google Scholar] [CrossRef] [PubMed]
- Piechura, L.M.; Coppolino, A.; Mody, G.N.; Rinewalt, D.E.; Keshk, M.; Ogawa, M.; Seethala, R.; Bohula, E.A.; Morrow, D.A.; Singh, S.K.; et al. Left ventricle unloading strategies in ECMO: A single-center experience. J. Card. Surg. 2020, 35, 1514–1524. [Google Scholar] [CrossRef]
- Shen, J.; Tse, J.R.; Chan, F.; Fleischmann, D. CT Angiography of Venoarterial Extracorporeal Membrane Oxygenation. Radiographics 2022, 42, 23–37. [Google Scholar] [CrossRef]
- Keebler, M.E.; Haddad, E.V.; Choi, C.W.; McGrane, S.; Zalawadiya, S.; Schlendorf, K.H.; Brinkley, D.M.; Danter, M.R.; Wigger, M.; Menachem, J.N.; et al. Venoarterial Extracorporeal Membrane Oxygenation in Cardiogenic Shock. JACC Heart Fail. 2018, 6, 503–516. [Google Scholar] [CrossRef]
- Richardson, A.S.C.; Tonna, J.E.; Nanjayya, V.; Nixon, P.; Abrams, D.C.; Raman, L.; Bernard, S.; Finney, S.J.; Grunau, B.; Youngquist, S.T.; et al. Extracorporeal Cardiopulmonary Resuscitation in Adults. Interim Guideline Consensus Statement from the Extracorporeal Life Support Organization. ASAIO J. 2021, 67, 221–228. [Google Scholar] [CrossRef]
- Zeymer, U.; Freund, A.; Hochadel, M.; Ostadal, P.; Belohlavek, J.; Rokyta, R.; Massberg, S.; Brunner, S.; Lüsebrink, E.; Flather, M.; et al. Venoarterial extracorporeal membrane oxygenation in patients with infarct-related cardiogenic shock: An individual patient data meta-analysis of randomised trials. Lancet 2023, 402, 1338–1346. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Patnaik, S.; Patel, B.; Ram, P.; Garg, L.; Agarwal, M.; Agrawal, S.; Arora, S.; Patel, N.; Wald, J.; et al. Trends in mechanical circulatory support use and hospital mortality among patients with acute myocardial infarction and non-infarction related cardiogenic shock in the United States. Clin. Res. Cardiol. 2018, 107, 287–303. [Google Scholar] [CrossRef] [PubMed]
- El Sibai, R.; Bachir, R.; El Sayed, M. Outcomes in Cardiogenic Shock Patients with Extracorporeal Membrane Oxygenation Use: A Matched Cohort Study in Hospitals across the United States. BioMed Res. Int. 2018, 2018, 2428648. [Google Scholar] [CrossRef] [PubMed]
- García-Gigorro, R.; Renes-Carreño, E.; Pérez-Vela, J.; Marín-Mateos, H.; Gutiérrez, J.; Corrés-Peiretti, M.; Delgado, J.; la Sota, E.P.-D.; Cortina-Romero, J.; Montejo-González, J. Mechanical support with venoarterial extracorporeal membrane oxygenation (ECMO-VA): Short-term and long-term prognosis after a successful weaning. Med. Intensiv. 2017, 41, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Koerner, M.M.; Harper, M.D.; Gordon, C.K.; Horstmanshof, D.; Long, J.W.; Sasevich, M.J.; Neel, J.D.; El Banayosy, A. Adult cardiac veno-arterial extracorporeal life support (VA-ECMO): Prevention and management of acute complications. Ann. Cardiothorac. Surg. 2019, 8, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Krasivskyi, I.; Ivanov, B.; Vehrenberg, J.; Eghbalzadeh, K.; Gerfer, S.; Gaisendrees, C.; Kuhn, E.; Sabashnikov, A.; Mader, N.; Djordjevic, I.; et al. Sex-Related Differences in Short-Term Outcomes after Mobile VA-ECMO Implantation: Five-Year Experience of an ECMO Retrieval Program. Life 2022, 12, 1746. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.; Miao, G.; Zhao, X. Effects and safety of extracorporeal membrane oxygenation in the treatment of patients with ST-segment elevation myocardial infarction and cardiogenic shock: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2022, 9, 963002. [Google Scholar] [CrossRef] [PubMed]
- Senoner, T.; Treml, B.; Breitkopf, R.; Oezpeker, U.C.; Innerhofer, N.; Eckhardt, C.; Spurnic, A.R.; Rajsic, S. ECMO in Myocardial Infarction-Associated Cardiogenic Shock: Blood Biomarkers as Predictors of Mortality. Diagnostics 2023, 13, 3683. [Google Scholar] [CrossRef] [PubMed]
- Ostadal, P.; Rokyta, R.; Karasek, J.; Kruger, A.; Vondrakova, D.; Janotka, M.; Naar, J.; Smalcova, J.; Hubatova, M.; Hromadka, M.; et al. Extracorporeal Membrane Oxygenation in the Therapy of Cardiogenic Shock: Results of the ECMO-CS Randomized Clinical Trial. Circulation 2023, 147, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Zeymer, U.; Akin, I.; Behnes, M.; Rassaf, T.; Mahabadi, A.A.; Lehmann, R.; Eitel, I.; Graf, T.; Seidler, T.; et al. Extracorporeal Life Support in Infarct-Related Cardiogenic Shock. N. Engl. J. Med. 2023, 389, 1286–1297. [Google Scholar] [CrossRef]
- Paddock, S.; Meng, J.; Johnson, N.; Chattopadhyay, R.; Tsampasian, V.; Vassiliou, V. The impact of extracorporeal membrane oxygenation on mortality in patients with cardiogenic shock post-acute myocardial infarction: A systematic review and meta-analysis. Eur. Heart J. Open. 2024, 4, oeae003. [Google Scholar] [CrossRef]
- Burgos, L.; Seoane, L.; Diez, M.; Vila, R.B.; Furmento, J.; Vrancic, M.; Aissaoui, N. Multiparameters associated to successful weaning from VA ECMO in adult patients with cardiogenic shock or cardiac arrest: Systematic review and meta-analysis. Ann. Card. Anaesth. 2023, 26, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Henry, T.D.; Yannopoulos, D.; van Diepen, S. Extracorporeal Membrane Oxygenation for Cardiogenic Shock: When to Open the Parachute? Circulation 2023, 147, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Coco, V.L.; Lorusso, R.; Raffa, G.M.; Malvindi, P.G.; Pilato, M.; Martucci, G.; Arcadipane, A.; Zieliński, K.; Suwalski, P.; Kowalewski, M. Clinical complications during veno-arterial extracorporeal membrane oxigenation in post-cardiotomy and non post-cardiotomy shock: Still the achille’s heel. J. Thorac. Dis. 2018, 10, 6993–7004. [Google Scholar] [CrossRef] [PubMed]
- Geller, B.J.; Sinha, S.S.; Kapur, N.K.; Bakitas, M.; Balsam, L.B.; Chikwe, J.; Klein, D.G.; Kochar, A.; Masri, S.C.; Sims, D.B.; et al. Escalating and De-escalating Temporary Mechanical Circulatory Support in Cardiogenic Shock: A Scientific Statement From the American Heart Association. Circulation 2022, 146, e50–e68. [Google Scholar] [CrossRef] [PubMed]
- Møller, J.E.; Engstrøm, T.; Jensen, L.O.; Eiskjær, H.; Mangner, N.; Polzin, A.; Schulze, P.C.; Skurk, C.; Nordbeck, P.; Clemmensen, P.; et al. Microaxial Flow Pump or Standard Care in Infarct-Related Cardiogenic Shock. N. Engl. J. Med. 2024, 390, 1382–1393. [Google Scholar] [CrossRef]
- Hajjar, L.A.; Teboul, J.L. Mechanical Circulatory Support Devices for Cardiogenic Shock: State of the Art. Crit. Care. 2019, 23, 76. [Google Scholar] [CrossRef] [PubMed]
- Ouweneel, D.M.; Schotborgh, J.V.; Limpens, J.; Sjauw, K.D.; Engström, A.E.; Lagrand, W.K.; Cherpanath, T.G.V.; Driessen, A.H.G.; de Mol, B.A.J.M.; Henriques, J.P.S. Extracorporeal life support during cardiac arrest and cardiogenic shock: A systematic review and meta-analysis. Intensive Care Med. 2016, 42, 1922–1934. [Google Scholar] [CrossRef]
- Jeong, J.H.; Kook, H.; Lee, S.H.; Joo, H.J.; Park, J.H.; Hong, S.J.; Kim, M.; Park, S.; Jung, J.S.; Yang, J.H.; et al. Prediction of In-Hospital Mortality for Ischemic Cardiogenic Shock Requiring Venoarterial Extracorporeal Membrane Oxygenation. J. Am. Heart Assoc. 2024, 13, e032701. [Google Scholar] [CrossRef]
Cardiogenic Shock | No ECMO | ECMO | ECMO, No Balloon Pump | p-Value | |
---|---|---|---|---|---|
Age N (Mean ± SD) | 796,585 (66.57 ± 14.40) | 779,225 (66.83 ± 14.28) | 17,360 (54.87 ± 15.40) | 13,160 (53.72 ± 15.43) | <0.001 |
Mortality | 33.07% | 32.74% | 47.91% | 49.05% | <0.001 |
Gender % | <0.001 | ||||
Male | 62.00% | 61.91% | 66.16% | 64.29% | |
Female | 38.00% | 38.09% | 33.84% | 35.71% | |
Race % | <0.001 | ||||
White | 67.40% | 67.46% | 64.27% | 63.34% | |
Black | 16.40% | 16.39% | 17.01% | 17.80% | |
Hipanic | 8.99% | 9.00% | 8.74% | 8.80% | |
Asian/Pac Isl | 3.32% | 3.31% | 3.70% | 3.58% | |
Native American | 0.67% | 0.67% | 0.91% | 1.07% | |
Others | 3.22% | 3.17% | 5.37% | 5.41% | |
Smoking | 23.11% | 23.30% | 14.92% | 15.05% | <0.001 |
Peripheral Vascular Diseases | 5.27% | 5.31% | 3.08% | 2.96% | <0.001 |
Cardiomyopathy | 41.98% | 42.17% | 33.41% | 29.86% | <0.001 |
Diabetes | 39.48% | 39.77% | 26.56% | 25.87% | <0.001 |
CKD | 39.78% | 40.15% | 22.96% | 21.39% | <0.001 |
Systolic Heart Failure | 52.81% | 52.93% | 47.35% | 43.84% | <0.001 |
Three-Vessel PCI | 0.56% | 0.55% | 1.18% | 0.80% | <0.001 |
Left main STEMI | 0.12% | 0.11% | 0.52% | 0.46% | 0.56 |
STEMI | 20.46% | 20.42% | 22.09% | 18.73% | <0.001 |
Non-STEMI | 18.35% | 18.52% | 10.92% | 9.19% | <0.001 |
Anterior Wall STEMI | 5.89% | 5.82% | 9.27% | 7.56% | <0.001 |
History of MI | 12.03% | 12.17% | 5.88% | 5.32% | <0.001 |
Cachexia | 2.62% | 2.64% | 1.84% | 1.98% | 0.005 |
Morbid Obesity | 8.29% | 8.27% | 8.99% | 9.80% | <0.001 |
Obesity | 8.42% | 8.42% | 8.24% | 8.13% | <0.001 |
Chronic Liver Disease | 19.18% | 18.74% | 38.88% | 39.06% | <0.001 |
Atrial Fibrillation/Flutter | 43.54% | 43.76% | 33.87% | 32.60% | <0.001 |
COPD | 23.46% | 23.73% | 11.18% | 11.06% | <0.001 |
All Valvular Heart Disease | 22.73% | 22.88% | 20.54% | 18.35% | <0.001 |
History of Stroke | 2.02% | 2.05% | 0.86% | 0.80% | 0.006 |
Acute Lactic Acidosis | 36.93% | 36.68% | 48.30% | 48.44% | <0.001 |
Cardiac Arrest | 9.57% | 9.49% | 13.10% | 13.34% | <0.001 |
Mechanical Ventilation | 45.96% | 45.47% | 68.23% | 69.83% | <0.001 |
Renal Replacement Therapy | 12.41% | 12.11% | 26.04% | 26.75% | <0.001 |
Heart Failure | 70.37% | 70.44% | 67.25% | 64.67% | <0.001 |
Presence of Coronary Angioplasty and Graft | 9.17% | 9.22% | 6.94% | 6.00% | <0.001 |
Presence of Aortocoronary Bypass Graft | 7.83% | 7.91% | 4.35% | 4.48% | 0.1 |
Presence of Cardiac Pacemaker | 3.14% | 3.18% | 1.24% | 1.03% | 0.04 |
Prosthetic Heart Valve | 2.72% | 2.73% | 2.42% | 2.51% | <0.001 |
Presence of Automatic (Implantable) Cardiac Defibrillator | 8.27% | 8.37% | 4.03% | 3.76% | 0.002 |
Coronary Angioplasty Status | 1.04% | 1.04% | 0.86% | 0.80% | 0.24 |
Right Ventricular Infarction | 1.35% | 1.34% | 1.73% | 1.14% | <0.001 |
Rotational Atherectomy | 0.10% | 0.10% | 0.14% | 0.11% | 0.09 |
Mortality | ECMO, No Balloon Pump | Risk Ratio (CI) | p-Value |
---|---|---|---|
Age < 50 | 41.24% | 2.73 (2.40–3.11) | <0.001 |
Age ≥ 50 | 53.48% | 2.11 (2.00–2.22) | |
Male | 48.23% | 2.12 (2.00–2.25) | <0.001 |
Female | 50.53% | 1.81 (1.68–1.95) | |
Diabetes | 52.72% | 2.07 (1.91–2.24) | 0.73 |
No Diabetes | 47.77% | 2.03 (1.92–2.15) | |
STEMI | 54.56% | 1.95 (1.79–2.12) | 0.009 |
No STEMI | 47.78% | 2.24 (2.11–2.37) | |
Non-STEMI | 50.83% | 2.20 (1.92–2.51) | 0.13 |
No Non-STEMI | 48.87% | 1.97 (1.87–2.07) | |
Left main STEMI | 66.67% | 2.94 (1.73–5.02) | 0.16 |
No Left main STEMI | 48.97% | 2.01 (1.92–2.10) | |
Anterior Wall STEMI | 51.76% | 2.04 (1.76–2.35) | 0.95 |
No Anterior Wall STEMI | 48.83% | 2.03 (1.93–2.13) | |
Three-Vessel PCI | 47.62% | 1.92 (1.19–3.10) | 0.84 |
No Three-Vessel PCI | 49.06% | 2.01 (1.92–2.11) | |
Cardiac Arrest | 56.13% | 1.15 (1.04–1.28) | <0.001 |
No Cardiac Arrest | 47.96% | 2.17 (2.07–2.29) | |
Acute Lactic Acidosis | 56.47% | 1.44 (1.36–1.53) | <0.001 |
No Acute Lactic Acidosis | 42.08% | 2.37 (2.21–2.55) | |
Peripheral Vascular Diseases | 57.69% | 1.95 (1.58–2.41) | 0.74 |
No Peripheral Vascular Diseases | 48.79% | 2.03 (1.93–2.12) | |
Obesity | 52.34% | 2.59 (2.22–3.01) | <0.001 |
No Obesity | 48.76% | 1.96 (1.87–2.06) | |
Smoking | 50.76% | 2.13 (1.91–2.38) | 0.24 |
No Smoking | 48.75% | 1.99 (1.89–2.09) | |
Hypertension | 50.51% | 2.12 (2.00–2.25) | <0.001 |
No Hypertension | 47.22% | 1.80 (1.66–1.94) |
Complications | Balloon Pump, No ECMO | ECMO, No Balloon Pump | p-Value | Odds Ratio (CI) |
---|---|---|---|---|
Pericardial effusion | 3.72% | 7.79% | <0.001 | 2.19 (1.84–2.60) |
Cardiac tamponade | 1.90% | 6.19% | <0.001 | 3.40 (2.80–4.13) |
Postprocedural acute kidney failure | 0.42% | 0.34% | 0.59 | 0.81 (0.39–1.71) |
Acute posthemorrhagic anemia | 28.90% | 54.33% | <0.001 | 2.93 (2.65–3.23) |
Acquired hemolytic anemia | 0.07% | 0.49% | <0.001 | 6.92 (3.08–15.56) |
Postprocedural hemorrhage | 0.96% | 5.09% | <0.001 | 5.55 (4.42–6.97) |
Acute postprocedural respiratory failure | 4.49% | 5.47% | 0.02 | 1.23 (1.03–1.48) |
Disseminated intravascular coagulation | 1.58% | 8.89% | <0.001 | 6.07 (5.13–7.19) |
Cardiac perforation (accidental puncture and laceration of a circulatory system organ) | 0.87% | 2.20% | <0.001 | 2.58 (1.94–3.44) |
Procedural bleeding | 0.10% | 1.18% | <0.001 | 11.63 (6.60–20.49) |
Intraoperative cardiac functional disturbances | 0.33% | 1.33% | <0.001 | 4.04 (2.66–6.14) |
Postprocedural cerebrovascular infarction | 0.07% | 0.15% | 0.18 | 2.12 (0.70–6.45) |
Amputation of limb | 0.06% | 0.15% | 0.09 | 2.70 (0.86–8.49) |
Hemopericardium as current complication following acute myocardial infarction | 0.11% | 0.04% | 0.29 | 0.34 (0.05–2.49) |
Ventricular septal defect as current complication following acute myocardial infarction | 0.65% | 0.61% | 0.82 | 0.94 (0.56–1.59) |
Rupture of cardiac wall without hemopericardium as current complication following acute myocardial infarction | 0.15% | 0.11% | 0.66 | 0.77 (0.23–2.52) |
Rupture of chordae tendineae as current complication following acute myocardial infarction | 0.32% | 0.46% | 0.27 | 1.42 (0.76–2.63) |
Other current complications following acute myocardial infarction | 0.09% | 0.08% | 0.8 | 0.82 (0.19–3.56) |
p-Value | Odds Ratio | 95% CI for OR | ||
---|---|---|---|---|
Lower | Upper | |||
Pericardial effusion | 0.12 | 0.8 | 0.61 | 1.06 |
Cardiac tamponade | 0.38 | 1.14 | 0.85 | 1.52 |
Postprocedural acute kidney failure | 0.97 | 0.98 | 0.32 | 3.02 |
Acute posthemorrhagic anemia | <0.001 | 0.73 | 0.63 | 0.84 |
Acquired hemolytic anemia | 0.26 | 1.79 | 0.65 | 4.97 |
Postprocedural hemorrhage | 0.013 | 1.45 | 1.08 | 1.96 |
Acute postprocedural respiratory failure | 0.45 | 1.12 | 0.83 | 1.5 |
Disseminated intravascular coagulation | <0.001 | 3.06 | 2.32 | 4.03 |
Cardiac perforation (accidental puncture and laceration of a circulatory system organ) | 0.21 | 1.36 | 0.84 | 2.19 |
Procedural bleeding | 0.15 | 1.68 | 0.84 | 3.36 |
Intraoperative cardiac functional disturbances | 0.71 | 1.12 | 0.61 | 2.08 |
Postprocedural cerebrovascular infarction | 0.45 | 0.37 | 0.03 | 4.76 |
Amputation of limb | 0.44 | 0.41 | 0.04 | 4.02 |
Hemopericardium as current complication following acute myocardial infarction | NA | 1 | ||
Ventricular septal defect as current complication following acute myocardial infarction | 0.003 | 2.89 | 1.45 | 5.78 |
Rupture of cardiac wall without hemopericardium as current complication following acute myocardial infarction | 0.35 | 2.86 | 0.32 | 25.53 |
Rupture of chordae tendineae as current complication following acute myocardial infarction | 0.39 | 0.68 | 0.28 | 1.63 |
Other current complications following acute myocardial infarction | 0.81 | 1.42 | 0.09 | 22.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Movahed, M.R.; Soltani Moghadam, A.; Hashemzadeh, M. In Patients with Cardiogenic Shock, Extracorporeal Membrane Oxygenation Is Associated with Very High All-Cause Inpatient Mortality Rate. J. Clin. Med. 2024, 13, 3607. https://doi.org/10.3390/jcm13123607
Movahed MR, Soltani Moghadam A, Hashemzadeh M. In Patients with Cardiogenic Shock, Extracorporeal Membrane Oxygenation Is Associated with Very High All-Cause Inpatient Mortality Rate. Journal of Clinical Medicine. 2024; 13(12):3607. https://doi.org/10.3390/jcm13123607
Chicago/Turabian StyleMovahed, Mohammad Reza, Arman Soltani Moghadam, and Mehrtash Hashemzadeh. 2024. "In Patients with Cardiogenic Shock, Extracorporeal Membrane Oxygenation Is Associated with Very High All-Cause Inpatient Mortality Rate" Journal of Clinical Medicine 13, no. 12: 3607. https://doi.org/10.3390/jcm13123607
APA StyleMovahed, M. R., Soltani Moghadam, A., & Hashemzadeh, M. (2024). In Patients with Cardiogenic Shock, Extracorporeal Membrane Oxygenation Is Associated with Very High All-Cause Inpatient Mortality Rate. Journal of Clinical Medicine, 13(12), 3607. https://doi.org/10.3390/jcm13123607