Prognostic Significance of Disseminated Tumor Cells in Bone Marrow for Endometrial Carcinoma Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. DTC Detection
2.3. Molecular Classification
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Molecular Classification
3.3. Survival Analysis
3.4. Disease Progression Pattern
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiedswang, G.; Borgen, E.; Karesen, R.; Kvalheim, G.; Nesland, J.M.; Qvist, H.; Schlichting, E.; Sauer, T.; Janbu, J.; Harbitz, T.; et al. Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J. Clin. Oncol. 2003, 21, 3469–3478. [Google Scholar] [CrossRef] [PubMed]
- Hartkopf, A.D.; Brucker, S.Y.; Taran, F.A.; Harbeck, N.; von Au, A.; Naume, B.; Pierga, J.Y.; Hoffmann, O.; Beckmann, M.W.; Ryden, L.; et al. International pooled analysis of the prognostic impact of disseminated tumor cells from the bone marrow in early breast cancer: Results from the PADDY study. Cancer Res. 2019, 79, GS5-07. [Google Scholar] [CrossRef]
- Braun, S.; Vogl, F.D.; Naume, B.; Janni, W.; Osborne, M.P.; Coombes, R.C.; Schlimok, G.; Diel, I.J.; Gerber, B.; Gebauer, G.; et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 2005, 353, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Han, Y.; Kang, Y. Bone marrow niches in the regulation of bone metastasis. Br. J. Cancer 2021, 124, 1912–1920. [Google Scholar] [CrossRef] [PubMed]
- Pantel, K.; Alix-Panabieres, C. Bone marrow as a reservoir for disseminated tumor cells: A special source for liquid biopsy in cancer patients. Bonekey Rep. 2014, 3, 584. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Xiao, Z.; Li, X.; Wang, F.; Zhang, J.; Zhou, R.; Wang, J.; Liu, L. Prognostic role of circulating tumor cells and disseminated tumor cells in patients with prostate cancer: A systematic review and meta-analysis. Tumour Biol. 2014, 35, 5551–5560. [Google Scholar] [CrossRef] [PubMed]
- Lindemann, F.; Schlimok, G.; Dirschedl, P.; Witte, J.; Riethmuller, G. Prognostic significance of micrometastatic tumour cells in bone marrow of colorectal cancer patients. Lancet 1992, 340, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Pantel, K.; Izbicki, J.; Passlick, B.; Angstwurm, M.; Haussinger, K.; Thetter, O.; Riethmuller, G. Frequency and prognostic significance of isolated tumour cells in bone marrow of patients with non-small-cell lung cancer without overt metastases. Lancet 1996, 347, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Effenberger, K.E.; Schroeder, C.; Eulenburg, C.; Reeh, M.; Tachezy, M.; Riethdorf, S.; Vashist, Y.K.; Izbicki, J.R.; Pantel, K.; Bockhorn, M. Disseminated tumor cells in pancreatic cancer-an independent prognosticator of disease progression and survival. Int. J. Cancer 2012, 131, E475–E483. [Google Scholar] [CrossRef]
- Vashist, Y.K.; Effenberger, K.E.; Vettorazzi, E.; Riethdorf, S.; Yekebas, E.F.; Izbicki, J.R.; Pantel, K. Disseminated tumor cells in bone marrow and the natural course of resected esophageal cancer. Ann. Surg. 2012, 255, 1105–1112. [Google Scholar] [CrossRef]
- Giannopoulou, L.; Kasimir-Bauer, S.; Lianidou, E.S. Liquid biopsy in ovarian cancer: Recent advances on circulating tumor cells and circulating tumor DNA. Clin. Chem. Lab. Med. 2018, 56, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Banys, M.; Solomayer, E.F.; Becker, S.; Krawczyk, N.; Gardanis, K.; Staebler, A.; Neubauer, H.; Wallwiener, D.; Fehm, T. Disseminated tumor cells in bone marrow may affect prognosis of patients with gynecologic malignancies. Int. J. Gynecol. Cancer 2009, 19, 948–952. [Google Scholar] [CrossRef] [PubMed]
- Walter, C.B.; Taran, F.A.; Wallwiener, M.; Rothmund, R.; Kraemer, B.; Krawczyk, N.; Blassl, C.; Melcher, C.; Wallwiener, D.; Fehm, T.; et al. Prevalence and prognostic value of disseminated tumor cells in primary endometrial, cervical and vulvar cancer patients. Future Oncol. 2014, 10, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Fehm, T.; Becker, S.; Bachmann, C.; Beck, V.; Gebauer, G.; Banys, M.; Wallwiener, D.; Solomayer, E.F. Detection of disseminated tumor cells in patients with gynecological cancers. Gynecol. Oncol. 2006, 103, 942–947. [Google Scholar] [CrossRef] [PubMed]
- Kommoss, S.; Hartkopf, A.D.; Kramer, B.; Bunz, A.K.; Grevenkamp, F.; Kommoss, F.; Pasternak, J.; Arbabi, S.M.; Wallwiener, M.; Staebler, A.; et al. Disseminated tumor cells are not associated with established risk factors, L1CAM immunoreactivity and outcome in endometrial carcinoma. J. Cancer Res. Clin. Oncol. 2017, 143, 2183–2188. [Google Scholar] [CrossRef] [PubMed]
- Coll-de la Rubia, E.; Martinez-Garcia, E.; Dittmar, G.; Gil-Moreno, A.; Cabrera, S.; Colas, E. Prognostic Biomarkers in Endometrial Cancer: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 1900. [Google Scholar] [CrossRef] [PubMed]
- Corrado, G.; Laquintana, V.; Loria, R.; Carosi, M.; de Salvo, L.; Sperduti, I.; Zampa, A.; Cicchillitti, L.; Piaggio, G.; Cutillo, G.; et al. Endometrial cancer prognosis correlates with the expression of L1CAM and miR34a biomarkers. J. Exp. Clin. Cancer Res. 2018, 37, 139. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research, N.; Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef]
- Piulats, J.M.; Guerra, E.; Gil-Martin, M.; Roman-Canal, B.; Gatius, S.; Sanz-Pamplona, R.; Velasco, A.; Vidal, A.; Matias-Guiu, X. Molecular approaches for classifying endometrial carcinoma. Gynecol. Oncol. 2017, 145, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Talhouk, A.; McConechy, M.K.; Leung, S.; Li-Chang, H.H.; Kwon, J.S.; Melnyk, N.; Yang, W.; Senz, J.; Boyd, N.; Karnezis, A.N.; et al. A clinically applicable molecular-based classification for endometrial cancers. Br. J. Cancer 2015, 113, 299–310. [Google Scholar] [CrossRef]
- Talhouk, A.; McConechy, M.K.; Leung, S.; Yang, W.; Lum, A.; Senz, J.; Boyd, N.; Pike, J.; Anglesio, M.; Kwon, J.S.; et al. Confirmation of ProMisE: A simple, genomics-based clinical classifier for endometrial cancer. Cancer 2017, 123, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Kommoss, S.; McConechy, M.K.; Kommoss, F.; Leung, S.; Bunz, A.; Magrill, J.; Britton, H.; Kommoss, F.; Grevenkamp, F.; Karnezis, A.; et al. Final validation of the ProMisE molecular classifier for endometrial carcinoma in a large population-based case series. Ann. Oncol. 2018, 29, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- van den Heerik, A.; Horeweg, N.; Nout, R.A.; Lutgens, L.; van der Steen-Banasik, E.M.; Westerveld, G.H.; van den Berg, H.A.; Slot, A.; Koppe, F.L.A.; Kommoss, S.; et al. PORTEC-4a: International randomized trial of molecular profile-based adjuvant treatment for women with high-intermediate risk endometrial cancer. Int. J. Gynecol. Cancer 2020, 30, 2002–2007. [Google Scholar] [CrossRef] [PubMed]
- Consortium, R.R. Refining adjuvant treatment in endometrial cancer based on molecular features: The RAINBO clinical trial program. Int. J. Gynecol. Cancer 2022, 33, 109–117. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, D.M.; Bariani, G.M.; Cassier, P.A.; Marabelle, A.; Hansen, A.R.; De Jesus Acosta, A.; Miller, W.H., Jr.; Safra, T.; Italiano, A.; Mileshkin, L.; et al. Pembrolizumab in Patients With Microsatellite Instability-High Advanced Endometrial Cancer: Results From the KEYNOTE-158 Study. J. Clin. Oncol. 2022, 40, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Mirza, M.R.; Chase, D.M.; Slomovitz, B.M.; dePont Christensen, R.; Novak, Z.; Black, D.; Gilbert, L.; Sharma, S.; Valabrega, G.; Landrum, L.M.; et al. Dostarlimab for Primary Advanced or Recurrent Endometrial Cancer. N. Engl. J. Med. 2023, 388, 2145–2158. [Google Scholar] [CrossRef] [PubMed]
- Concin, N.; Matias-Guiu, X.; Vergote, I.; Cibula, D.; Mirza, M.R.; Marnitz, S.; Ledermann, J.; Bosse, T.; Chargari, C.; Fagotti, A.; et al. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Radiother. Oncol. 2021, 154, 327–353. [Google Scholar] [CrossRef] [PubMed]
- Emons, G.; Erdogan, S.; Die, L. Neuerungen in der aktualisierten S3-Leitlinie Endometriumkarzinom. Forum 2022, 37, 439–440. [Google Scholar] [CrossRef]
- Colombo, N.; Creutzberg, C.; Amant, F.; Bosse, T.; Gonzalez-Martin, A.; Ledermann, J.; Marth, C.; Nout, R.; Querleu, D.; Mirza, M.R.; et al. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: Diagnosis, Treatment and Follow-up. Int. J. Gynecol. Cancer 2016, 26, 2–30. [Google Scholar] [CrossRef]
- Fehm, T.; Braun, S.; Muller, V.; Janni, W.; Gebauer, G.; Marth, C.; Schindlbeck, C.; Wallwiener, D.; Borgen, E.; Naume, B.; et al. A concept for the standardized detection of disseminated tumor cells in bone marrow from patients with primary breast cancer and its clinical implementation. Cancer 2006, 107, 885–892. [Google Scholar] [CrossRef]
- Volmer, L.; Koch, A.; Matovina, S.; Dannehl, D.; Weiss, M.; Welker, G.; Hahn, M.; Engler, T.; Wallwiener, M.; Walter, C.B.; et al. Neoadjuvant Chemotherapy of Patients with Early Breast Cancer Is Associated with Increased Detection of Disseminated Tumor Cells in the Bone Marrow. Cancers 2022, 14, 635. [Google Scholar] [CrossRef] [PubMed]
- McCluggage, W.G.; Singh, N.; Gilks, C.B. Key changes to the World Health Organization (WHO) classification of female genital tumours introduced in the 5th edition (2020). Histopathology 2022, 80, 762–778. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, A.; Huvila, J.; Chiu, D.; Thompson, E.F.; Scott, S.; Salvador, S.; Vicus, D.; Helpman, L.; Gotlieb, W.; Kean, S.; et al. Grade and Estrogen Receptor Expression Identify a Subset of No Specific Molecular Profile Endometrial Carcinomas at a Very Low Risk of Disease-Specific Death. Mod. Pathol. 2023, 36, 100085. [Google Scholar] [CrossRef] [PubMed]
- Hartkopf, A.D.; Brucker, S.Y.; Taran, F.A.; Harbeck, N.; von Au, A.; Naume, B.; Pierga, J.Y.; Hoffmann, O.; Beckmann, M.W.; Ryden, L.; et al. Disseminated tumour cells from the bone marrow of early breast cancer patients: Results from an international pooled analysis. Eur. J. Cancer 2021, 154, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Kiss, I.; Kolostova, K.; Matkowski, R.; Jedryka, M.; Czekanski, A.; Pavlasek, J.; Bobek, V. Correlation Between Disease Stage and the Presence of Viable Circulating Tumor Cells in Endometrial Cancer. Anticancer. Res. 2018, 38, 2983–2987. [Google Scholar] [CrossRef] [PubMed]
- Bogani, G.; Liu, M.C.; Dowdy, S.C.; Cliby, W.A.; Kerr, S.E.; Kalli, K.R.; Kipp, B.R.; Halling, K.C.; Campion, M.B.; Mariani, A. Detection of circulating tumor cells in high-risk endometrial cancer. Anticancer. Res. 2015, 35, 683–687. [Google Scholar] [PubMed]
- Klein, A.; Fishman, A.; Zemer, R.; Zimlichman, S.; Altaras, M.M. Detection of tumor circulating cells by cytokeratin 20 in the blood of patients with endometrial carcinoma. Gynecol. Oncol. 2000, 78, 352–355. [Google Scholar] [CrossRef]
- van Gool, I.C.; Eggink, F.A.; Freeman-Mills, L.; Stelloo, E.; Marchi, E.; de Bruyn, M.; Palles, C.; Nout, R.A.; de Kroon, C.D.; Osse, E.M.; et al. POLE Proofreading Mutations Elicit an Antitumor Immune Response in Endometrial Cancer. Clin. Cancer Res. 2015, 21, 3347–3355. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, T.; Nanjyo, H.; Fukuda, J.; Nakamura, A.; Mizunuma, H.; Yaegashi, N.; Sugiyama, T.; Kurachi, H.; Sato, A.; Tanaka, T. Endometrioid uterine cancer: Histopathological risk factors of local and distant recurrence. Gynecol. Oncol. 2009, 112, 342–347. [Google Scholar] [CrossRef]
- Creutzberg, C.L.; van Putten, W.L.; Koper, P.C.; Lybeert, M.L.; Jobsen, J.J.; Warlam-Rodenhuis, C.C.; De Winter, K.A.; Lutgens, L.C.; van den Bergh, A.C.; van der Steen-Banasik, E.; et al. Survival after relapse in patients with endometrial cancer: Results from a randomized trial. Gynecol. Oncol. 2003, 89, 201–209. [Google Scholar] [CrossRef]
- Kurra, V.; Krajewski, K.M.; Jagannathan, J.; Giardino, A.; Berlin, S.; Ramaiya, N. Typical and atypical metastatic sites of recurrent endometrial carcinoma. Cancer Imaging 2013, 13, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Kiss, I.; Kolostova, K.; Pawlak, I.; Bobek, V. Circulating tumor cells in gynaecological malignancies. J. BUON 2020, 25, 40–50. [Google Scholar] [PubMed]
- Wu, P.; Tang, R.N.; Zou, J.H.; Wang, F.C. The prognostic role of disseminated tumor cells detected in peripheral blood and bone marrow of colorectal cancer. Hepatogastroenterology 2012, 59, 2164–2167. [Google Scholar] [CrossRef] [PubMed]
- Ni, T.; Sun, X.; Shan, B.; Wang, J.; Liu, Y.; Gu, S.L.; Wang, Y.D. Detection of circulating tumour cells may add value in endometrial cancer management. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 207, 1–4. [Google Scholar] [CrossRef]
- Pillai, S.G.; Siddappa, C.M.; Ma, C.; Snider, J.; Kaushal, M.; Watson, M.A.; Aft, R. A microfluidic-based filtration system to enrich for bone marrow disseminated tumor cells from breast cancer patients. PLoS ONE 2021, 16, e0246139. [Google Scholar] [CrossRef]
Total | DTC-Positive | DTC-Negative | p-Value * | |
---|---|---|---|---|
n | n (%) | n (%) | ||
Total | 402 | 71 (17.7) | 331 (82.3) | |
FIGO stage (2018) | ||||
IA | 251 | 44 (17.5) | 207 (82.5) | 0.501 |
IB | 76 | 12 (15.8) | 64 (84.2) | |
II | 21 | 3 (14.3) | 18 (85.7) | |
III | 47 | 10 (21.3) | 37 (78.7) | |
IV | 7 | 2 (28.6) | 5 (71.4) | |
Type | ||||
I | 339 | 59 (17.4) | 280 (82.6) | 0.516 |
II | 63 | 12 (19.0) | 51 (81.0) | |
Grade | ||||
G1 | 243 | 43 (17.7) | 200 (82.3) | 0.933 |
G2 | 68 | 11 (16.2) | 57 (13.8) | |
G3 | 91 | 17 (18.7) | 74 (81.3) | |
Myoinvasion | ||||
no | 100 | 22 (22.0) | 78 (78.0) | 0.557 |
<50% | 161 | 27 (16.8) | 134 (83.2) | |
>50% | 125 | 22 (17.6) | 103 (82.4) | |
Lymph nodes | ||||
Positive | 41 | 7 (17.0) | 34 (82.9) | 0.797 |
Negative | 326 | 61 (18.7) | 265 (81.3) | |
BMI | ||||
<25 | 133 | 22 (16.5) | 111 (83.5) | 0.667 |
≥25 | 257 | 47 (18.3) | 210 (81.7) | |
Median age | - | 67.3 | 64.2 | 0.115 |
ESMO 2020 risk group | ||||
Low | 211 | 44 (20.9) | 167 (79.1) | 0.349 |
Intermediate | 64 | 7 (10.9) | 57 (89.1) | |
High-intermediate | 30 | 4 (13.3) | 26 (86.7) | |
High | 59 | 11 (18.6) | 48 (81.4) | |
Advanced metastatic | 6 | 2 (33.3) | 4 (66.7) |
Total | DTC-Positive n (%) | p-Value * | ≥2 DTCs/1.5 × 106 Cells n (%) | p-Value * | |
---|---|---|---|---|---|
All patients | 402 | 71 (17.7) | 9 (2.2) | ||
Molecular subtype | 0.651 | 0.423 | |||
POLEmut | 40 | 7 (17.5) | 1 (2.5) | ||
p53abn | 52 | 11 (21.2) | 3 (5.8) | ||
MMRd | 103 | 21 (20.4) | 2 (1.9) | ||
NSMP | 207 | 32 (15.5) | 3 (1.5) |
Total | Distant Recurrence n (%) | Locoregional Recurrence n (%) | p-Value * | |
---|---|---|---|---|
All patients | 43 | 27 (62.8) | 16 (37.2) | |
Molecular subtype | 0.123 | |||
POLEmut | 1 | 1 (100.0) | 0 (0.0) | |
p53abn | 12 | 10 (83.3) | 2 (16.7) | |
MMRd | 14 | 9 (64.3) | 5 (35.7) | |
NSMP | 16 | 7 (43.8) | 9 (56.2) |
Total | DTC-Positive n (%) | DTC-Negative n (%) | p-Value * | |
---|---|---|---|---|
All patients | 43 | 13 (30.2) | 30 (69.7) | |
Disease progression | 0.042 | |||
Locoregional | 16 | 2 (12.5) | 14 (87.5) | |
Distant | 27 | 11 (40.7) | 16 (59.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volmer, L.L.; Grube, M.; Rohner, A.; McAlpine, J.N.; Talhouk, A.; Lum, A.; Matovina, S.; Kommoss, S.; Staebler, A.; Brucker, S.Y.; et al. Prognostic Significance of Disseminated Tumor Cells in Bone Marrow for Endometrial Carcinoma Patients. J. Clin. Med. 2024, 13, 4489. https://doi.org/10.3390/jcm13154489
Volmer LL, Grube M, Rohner A, McAlpine JN, Talhouk A, Lum A, Matovina S, Kommoss S, Staebler A, Brucker SY, et al. Prognostic Significance of Disseminated Tumor Cells in Bone Marrow for Endometrial Carcinoma Patients. Journal of Clinical Medicine. 2024; 13(15):4489. https://doi.org/10.3390/jcm13154489
Chicago/Turabian StyleVolmer, Léa Louise, Marcel Grube, Annika Rohner, Jessica Nell McAlpine, Aline Talhouk, Amy Lum, Sabine Matovina, Stefan Kommoss, Annette Staebler, Sara Yvonne Brucker, and et al. 2024. "Prognostic Significance of Disseminated Tumor Cells in Bone Marrow for Endometrial Carcinoma Patients" Journal of Clinical Medicine 13, no. 15: 4489. https://doi.org/10.3390/jcm13154489
APA StyleVolmer, L. L., Grube, M., Rohner, A., McAlpine, J. N., Talhouk, A., Lum, A., Matovina, S., Kommoss, S., Staebler, A., Brucker, S. Y., & Walter, C. B. (2024). Prognostic Significance of Disseminated Tumor Cells in Bone Marrow for Endometrial Carcinoma Patients. Journal of Clinical Medicine, 13(15), 4489. https://doi.org/10.3390/jcm13154489