The Association between Anthropometric Measurements and Body Composition with Hand Grip Strength among the Elderly Population in Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Measurements
2.3.1. Anthropometric
2.3.2. Body Composition
2.3.3. Hand Grip Strength
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Association between Anthropometric Measurement and Body Composition with Hand Grip Strength
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, S.; Bajorek, B. Defining “elderly” in clinical practice guidelines for pharmacotherapy. Pharm. Pract. 2014, 12, 489. [Google Scholar] [CrossRef]
- Trombetti, A.; Reid, K.F.; Hars, M.; Herrmann, F.R.; Pasha, E.; Phillips, E.M.; Fielding, R.A. Age-associated declines in muscle mass, strength, power, and physical performance: Impact on fear of falling and quality of life. Osteoporos. Int. 2016, 27, 463–471. [Google Scholar] [CrossRef]
- Riviati, N.; Indra, B. Relationship between muscle mass and muscle strength with physical performance in older adults: A systematic review. SAGE Open Med. 2023, 11, 20503121231214650. [Google Scholar] [CrossRef] [PubMed]
- Carbone, S.; Kirkman, D.L.; Garten, R.S.; Rodriguez-Miguelez, P.; Artero, E.G.; Lee, D.-C.; Lavie, C.J. Muscular Strength and Cardiovascular Disease. J. Cardiopulm. Rehabil. Prev. 2020, 40, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.C. Diabetes and Muscle Dysfunction in Older Adults. Ann. Geriatr. Med. Res. 2019, 23, 160–164. [Google Scholar] [CrossRef]
- Kim, Y.; Hwang, S.; Sharp, S.J.; Luo, S.; Au Yeung, S.L.; Teerlink, C.C. Genetic Risk, Muscle Strength, and Incident Stroke: Findings From the UK Biobank Study. Mayo Clin. Proc. 2021, 96, 1746–1757. [Google Scholar] [CrossRef]
- Takada, H.; Yamashita, K.; Osawa, L.; Komiyama, Y.; Muraoka, M.; Suzuki, Y.; Sato, M.; Kobayashi, S.; Yoshida, T.; Takano, S.; et al. Assessment of lower limb muscle strength can predict fall risk in patients with chronic liver disease. Sci. Rep. 2024, 14, 64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, W.; Wang, C.; Tao, W.; Dou, Q.; Yang, Y. Sarcopenia as a predictor of hospitalization among older people: A systematic review and meta-analysis. BMC Geriatr. 2018, 18, 188. [Google Scholar] [CrossRef]
- Li, R.; Xia, J.; Zhang, X.; Gathirua-Mwangi, W.G.; Guo, J.; Li, Y.; Mckenzie, S.; Song, Y. Associations of Muscle Mass and Strength with All-Cause Mortality among US Older Adults. Med. Sci. Sports Exerc. 2018, 50, 458–467. [Google Scholar] [CrossRef]
- Jenkins, N.D.; Buckner, S.L.; Bergstrom, H.C.; Cochrane, K.C.; Goldsmith, J.A.; Housh, T.J.; Johnson, G.O.; Schmidt, R.J.; Cramer, J.T. Reliability and relationships among handgrip strength, leg extensor strength and power, and balance in older men. Exp. Gerontol. 2014, 58, 47–50. [Google Scholar] [CrossRef]
- Savva, C.; Giakas, G.; Efstathiou, M.; Karagiannis, C. Test-Retest Reliability of Handgrip Strength Measurement Using a Hydraulic Hand Dynamometer in Patients With Cervical Radiculopathy. J. Manip. Physiol. Ther. 2014, 37, 206–210. [Google Scholar] [CrossRef]
- McGrath, R. Comparing absolute handgrip strength and handgrip strength normalized to body weight in aging adults. Aging Clin. Exp. Res. 2019, 31, 1851–1853. [Google Scholar] [CrossRef] [PubMed]
- Rijk, J.M.; Roos, P.R.; Deckx, L.; van den Akker, M.; Buntinx, F. Prognostic value of handgrip strength in people aged 60 years and older: A systematic review and meta-analysis. Geriatr. Gerontol. Int. 2016, 16, 5–20. [Google Scholar] [CrossRef]
- Abdalla, P.P.; Bohn, L.; Mota, J.; Machado, D.R.L. Allometrically adjusted handgrip strength and chair stand test cut points to identify sarcopenia in older Portuguese adults. Rev. Bras. Cineantropometria Desempenho Hum. 2022, 24, e84063. [Google Scholar] [CrossRef]
- Nevill, A.M.; Tomkinson, G.R.; Lang, J.J.; Wutz, W.; Myers, T.D. How Should Adult Handgrip Strength Be Normalized? Allometry Reveals New Insights and Associated Reference Curves. Med. Sci. Sports Exerc. 2022, 54, 162–168. [Google Scholar] [CrossRef]
- Neto, G.A.; Oliveira, A.J.; de Melo Pedreiro, R.C.; Pereira-Junior, P.P.; Machado, S.; Neto, S.M.; Farinatti, P.T. Normalizing handgrip strength in older adults: An allometric approach. Arch. Gerontol. Geriatr. 2017, 70, 230–234. [Google Scholar] [CrossRef]
- Kasović, M.; Sagat, P.; Kalčik, Z.; Štefan, L.; Hubinák, A.; Krška, P. Allometric normalization of handgrip strength in older adults: Which body size parameter is the most appropriate? BMC Sports Sci. Med. Rehabil. 2023, 15, 18. [Google Scholar] [CrossRef]
- Whitney, D.G.; Peterson, M.D. The Association Between Differing Grip Strength Measures and Mortality and Cerebrovascular Event in Older Adults: National Health and Aging Trends Study. Front. Physiol. 2019, 9, 1871. [Google Scholar] [CrossRef] [PubMed]
- Miranda, H.; Bentes, C.; Resende, M.; Netto, C.C.; Nasser, I.; Willardson, J.; Marinheiro, L. Association between handgrip strength and body composition, physical fitness, and biomarkers in postmenopausal women with metabolic syndrome. Rev. Assoc. Med. Bras. 2022, 68, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Casadei, K.; Kiel, J. Anthropometric Measurement; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Gavriilidou, N.N.; Pihlsgård, M.; Elmståhl, S. Anthropometric reference data for elderly Swedes and its disease-related pattern. Eur. J. Clin. Nutr. 2015, 69, 1066–1075. [Google Scholar] [CrossRef]
- Ostovar, A.; Heshmat, R.; Shafiee, G.; Keshtkar, A.A.; Sharifi, F.; Shadman, Z.; Nabipour, I.; Soltani, A.; Larijani, B. Appendicular Skeletal Muscle Mass Reference Values and the Peak Muscle Mass to Identify Sarcopenia among Iranian Healthy Population. Int. J. Prev. Med. 2018, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Lupton-Smith, A.; Fourie, K.; Mazinyo, A.; Mokone, M.; Nxaba, S.; Morrow, B. Measurement of hand grip strength: A cross-sectional study of two dynamometry devices. South Afr. J. Physiother. 2022, 78, 1768. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.M.; Choi, S.; Kim, K.; Kim, S.M.; Kim, S.; Park, S.M. Association among handgrip strength, body mass index and decline in cognitive function among the elderly women. BMC Geriatr. 2018, 18, 225. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Gong, H.S. Measurement and Interpretation of Handgrip Strength for Research on Sarcopenia and Osteoporosis. J. Bone Metab. 2020, 27, 85. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y. Handgrip Strength: An Irreplaceable Indicator of Muscle Function. Ann. Rehabil. Med. 2021, 45, 167–169. [Google Scholar] [CrossRef]
- Vaishya, R.; Misra, A.; Vaish, A.; Ursino, N.; D’Ambrosi, R. Hand grip strength as a proposed new vital sign of health: A narrative review of evidences. J. Health Popul. Nutr. 2024, 43, 7. [Google Scholar] [CrossRef]
- Peterson, M.D.; Duchowny, K.; Meng, Q.; Wang, Y.; Chen, X.; Zhao, Y. Low Normalized Grip Strength is a Biomarker for Cardiometabolic Disease and Physical Disabilities among U.S. and Chinese Adults. J. Gerontol. Ser. A 2017, 72, 1525–1531. [Google Scholar] [CrossRef] [PubMed]
- Lad, U.P. A Study on the Correlation Between the Body Mass Index (BMI), the Body Fat Percentage, the Handgrip Strength and the Handgrip Endurance in Underweight, Normal Weight and Overweight Adolescents. J. Clin. Diagn. Res. 2013, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- Hammed, A.I.; Obaseki, C.O. Interdependence of body mass index with handgrip strength and endurance among apparently healthy teenagers. Turk. J. Kinesiol. 2018, 4, 1–7. [Google Scholar] [CrossRef]
- Kim, C.R.; Jeon, Y.J.; Jeong, T. Risk factors associated with low handgrip strength in the older Korean population. PLoS ONE 2019, 14, e0214612. [Google Scholar] [CrossRef]
- Dhananjaya, J.R.; Veena, H.C.; Mamatha, B.S.; Sudarshan, C.R. Comparative study of body mass index, hand grip strength, and handgrip endurance in healthy individuals. Natl. J. Physiol. Pharm. Pharmacol. 2017, 1, 594. [Google Scholar]
- Koopman, J.J.E.; van Bodegom, D.; van Heemst, D.; Westendorp, R.G.J. Handgrip strength, ageing and mortality in rural Africa. Age Ageing 2015, 44, 465–470. [Google Scholar] [CrossRef]
- Norman, K.; Stobäus, N.; Gonzalez, M.C.; Schulzke, J.D.; Pirlich, M. Hand grip strength: Outcome predictor and marker of nutritional status. Clin. Nutr. 2011, 30, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Katzmarzyk, P.T. Validity of the body mass index as an indicator of the risk and presence of overweight in adolescents. Am. J. Clin. Nutr. 1999, 70, 131S–136S. [Google Scholar] [CrossRef]
- Kok, P.; Seidell, J.C.; Meinders, A.E. The value and limitations of the body mass index (BMI) in the assessment of the health risks of overweight and obesity. Ned. Tijdschr. Geneeskd. 2004, 148, 2379–2382. [Google Scholar]
- Steffl, M.; Bohannon, R.W.; Houdova, V.; Musalek, M.; Prajerova, K.; Cesak, P.; Petr, M.; Kohlikova, E.; Holmerova, I. Association between clinical measures of sarcopenia in a sample of community-dwelling women. Isokinet. Exerc. Sci. 2015, 23, 41–44. [Google Scholar] [CrossRef]
- Lim, J.P.; Chong, M.S.; Tay, L.; Yang, Y.X.; Leung, B.P.; Yeo, A.; Yew, S.; Tan, C.H.; Lim, W.S. Inter-muscular adipose tissue is associated with adipose tissue inflammation and poorer functional performance in central adiposity. Arch. Gerontol. Geriatr. 2019, 81, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Keevil, V.L.; Luben, R.; Dalzell, N.; Hayat, S.; Sayer, A.A.; Wareham, N.J.; Khaw, K.-T. Cross-sectional associations between different measures of obesity and muscle strength in men and women in a British cohort study. J. Nutr. Health Aging 2015, 19, 3–11. [Google Scholar] [CrossRef]
- Ling, C.H.Y.; Meskers, C.G.M.; Maier, A.B. Can anthropometric measures be used as proxies for body composition and physical function in geriatric outpatients? Arch. Gerontol. Geriatr. 2021, 94, 104379. [Google Scholar] [CrossRef]
- Wang, P.C.; Yeh, W.C.; Tsai, Y.W.; Chen, J.Y. Calf circumference has a positive correlation with physical performance among community-dwelling middle-aged, older women. Front. Public Health 2022, 10, 1038491. [Google Scholar] [CrossRef]
- Boshnjaku, A.; Bahtiri, A.; Feka, K.; Krasniqi, E.; Tschan, H.; Wessner, B. Impact of Using Population-Specific Cut-Points, Self-Reported Health, and Socio-Economic Parameters to Predict Sarcopenia: A Cross-Sectional Study in Community-Dwelling Kosovans Aged 60 Years and Older. J. Clin. Med. 2022, 11, 5579. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total Participants (n = 109) |
---|---|
Ages (years) | 66.2 ± 5.3 |
Sarcopenia (n) | 3 (2.8%) |
Rheumatology disease (n) | 21 (19.3%) |
Hypertension (n) | 31 (28.4%) |
Coronary heart disease (n) | 1 (0.9%) |
Diabetes mellitus (n) | 18 (16.5%) |
Chronic obstructive pulmonary disease (n) | 2 (1.8%) |
Gastrointestinal disease (n) | 8 (7.3%) |
Liver disease (n) | 2 (1.8%) |
Hypercholesterolemia (n) | 10 (9.2%) |
Hyperuricemia (n) | 6 (5.5%) |
Cerebrovascular disease (n) | 3 (2.7%) |
Glaucoma (n) | 1 (0.9%) |
Vertigo (n) | 2 (1.8%) |
Hernia nucleus pulposus (n) | 2 (1.8%) |
Cancer (n) | 1 (0.9%) |
Variables | Measurement | Total Participants (n = 109) |
---|---|---|
Anthropometric Measurement | Body weight (kg) | 58.1 ± 9.9 |
Height (cm) | 152.0 ± 7.4 | |
Body mass index (kg/m2) | 25.1 ± 3.7 | |
Underweight (n) | 4 (3.7%) | |
Normoweight (n) | 46 (42.2%) | |
Overweight (n) | 49 (45.0%) | |
Obesity (n) | 10 (9.2%) | |
Mid-upper arm circumference (cm) | 27.1 ± 4.1 | |
Calf circumference (cm) | 33.1 ± 3.4 | |
Waist circumference (cm) | 95.0 ± 12.5 | |
Body Composition | Fat mass (kg) | 20.8 ± 8.1 |
Fat-free mass (kg) | 37.1 ± 6.1 | |
Muscle mass (kg) | 35.3 ± 5.8 | |
Skeletal muscle mass (kg) | 20.1 ± 3.6 | |
Left arm muscle mass (kg) | 1.7 ± 0.4 | |
Right arm muscle mass (kg) | 1.8 ± 0.4 | |
Left leg muscle mass (kg) | 6.3 ± 1.3 | |
Right leg muscle mass (kg) | 6.3 ± 1.3 | |
Appendicular skeletal muscle index (kg/m2) | 6.9 ± 0.9 | |
Hand Grip Strength | Mean value (kg) | 19.7 ± 6.4 |
Maximal value (kg) | 21.1 ± 6.7 |
Variables | Mean HGS | Maximum HGS | |||
---|---|---|---|---|---|
r | p * | r | p * | ||
Anthropometric Measurement | Body mass index (kg/m2) | −0.02 | 0.83 | −0.02 | 0.83 |
Mid-upper arm circumference (cm) | 0.08 | 0.43 | 0.97 | 0.32 | |
Calf circumference (cm) | 0.18 | 0.04 * | 0.19 | 0.04 * | |
Waist circumference (cm) | 0.03 | 0.74 | 0.20 | 0.84 | |
Body Composition | Fat mass (kg) | −0.17 | 0.08 | −0.17 | 0.08 |
Fat-free mass (kg) | 0.65 | 0.00 * | 0.66 | 0.00 * | |
Muscle mass (kg) | 0.61 | 0.00 * | 0.63 | 0.00 * | |
Skeletal muscle mass (kg) | 0.61 | 0.00 * | 0.62 | 0.00 * | |
Left arm muscle mass (kg) | 0.58 | 0.00 * | 0.58 | 0.00 * | |
Right arm muscle mass (kg) | 0.54 | 0.00 * | 0.55 | 0.00 * | |
Left leg muscle mass (kg) | 0.55 | 0.00 * | 0.56 | 0.00 * | |
Right leg muscle mass (kg) | 0.58 | 0.00 * | 0.59 | 0.00 * | |
Appendicular skeletal muscle index (kg/m2) | 0.46 | 0.00 * | 0.46 | 0.00 * |
Classification | Mean HGS | Max HGS | |||||
---|---|---|---|---|---|---|---|
Mean ± SD | F Value | p-Value | Mean ± SD | F Value | p-Value | ||
Total (n = 109) | Underweight (n = 4) | 2.7 | 2.27 | 0.08 | 1.9 | 2.42 | 0.07 |
Normoweight (n = 46) | 6.8 | 7.3 | |||||
Overweight (n = 49) | 6.1 | 6.5 | |||||
Obesity (n = 10) | 4.7 | 4.0 | |||||
Female (n = 85) | Underweight (n = 4) | 2.7 | 2.07 | 0.11 | 1.9 | 2.33 | 0.08 |
Normoweight (n = 29) | 3.9 | 3.9 | |||||
Overweight (n = 43) | 4.6 | 5.0 | |||||
Obesity (n = 9) | 4.5 | 3.8 | |||||
Male (n = 24) | Underweight (n = 0) | 0.09 | 0.91 | 0.13 | 0.88 | ||
Normoweight (n = 17) | 7.3 | 7.8 | |||||
Overweight (n = 6) | 9.1 | 9.2 | |||||
Obesity (n = 1) | 0.0 | 0.0 |
Dependent Variable | Independent Variables | β | SE | p-Value | 95% CI for B |
---|---|---|---|---|---|
Mean HGS | Calf circumference | −0.32 | 0.16 | 0.05 * | −0.63–−0.01 |
Fat-free mass | 0.76 | 0.09 | 0.01 * | 0.59–0.93 | |
Maximum HGS | Calf circumference | −0.32 | 0.16 | 0.05 * | −0.64–0.01 |
Fat-free mass | 0.80 | 0.09 | 0.01 * | 0.63–0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kemala Sari, N.; Stepvia, S.; Ilyas, M.F. The Association between Anthropometric Measurements and Body Composition with Hand Grip Strength among the Elderly Population in Indonesia. J. Clin. Med. 2024, 13, 4697. https://doi.org/10.3390/jcm13164697
Kemala Sari N, Stepvia S, Ilyas MF. The Association between Anthropometric Measurements and Body Composition with Hand Grip Strength among the Elderly Population in Indonesia. Journal of Clinical Medicine. 2024; 13(16):4697. https://doi.org/10.3390/jcm13164697
Chicago/Turabian StyleKemala Sari, Nina, Stepvia Stepvia, and Muhana Fawwazy Ilyas. 2024. "The Association between Anthropometric Measurements and Body Composition with Hand Grip Strength among the Elderly Population in Indonesia" Journal of Clinical Medicine 13, no. 16: 4697. https://doi.org/10.3390/jcm13164697
APA StyleKemala Sari, N., Stepvia, S., & Ilyas, M. F. (2024). The Association between Anthropometric Measurements and Body Composition with Hand Grip Strength among the Elderly Population in Indonesia. Journal of Clinical Medicine, 13(16), 4697. https://doi.org/10.3390/jcm13164697