Prenatal Diagnosis of Cleft Lip and Palate: A Retrospective Study
Abstract
:1. Introduction
- -
- Cleft lip (CL): involves only the lip, generally the upper lip, and may range from a small notch to a complete separation extending into the nose.
- -
- Cleft lip and palate (CLP): involves both the lip and the palate. This is a more severe manifestation that significantly affects speech and eating, and is often associated with other dental and orthodontic issues.
- -
- Cleft palate (CP): affects only the palate, either hard, soft, or both. This type primarily impacts speech and swallowing.
2. Materials and Methods
- -
- Advanced ultrasound imaging using 3D/4D imaging technology provides detailed views of the fetal anatomy, allowing for the precise assessment of detected anomalies.
- -
- Genetic testing: amniocentesis is commonly performed to obtain a sample of amniotic fluid for fetal karyotyping. This procedure helps to identify chromosomal abnormalities.
- -
- Parental karyotyping and family tree: when an abnormal fetal karyotype is identified, parental karyotyping is recommended to determine if the chromosomal abnormality is inherited or de novo. This information is crucial for genetic counseling and future pregnancy planning.
- -
- Unilateral cleft lip (UCL), left (UCLL), and right (UCLR);
- -
- Bilateral cleft lip (BCL);
- -
- Cleft palate (CP);
- -
- Cleft palate with unilateral cleft lip (UCLP), left (UCLPL), and right (UCLPR);
- -
- Bilateral cleft lip and palate (BCLP).
3. Results
4. Discussion
5. Suggestions for Future Research
6. Limitation of the Study
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szyszka-Sommerfeld, L.; Woźniak, K.; Matthews-Brzozowska, T.; Kawala, B.; Mikulewicz, M.; Machoy, M. The electrical activity of the masticatory muscles in children with cleft lip and palate. Int. J. Paediatr. Dent. 2018, 28, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Albu, C.C.; Vasilache, A.; Stanciu, I.A.; Suciu, I.; Teodorescu, E.; Dragomirescu, A.O.; Albu, S.D.; Nada, E.S.; Albu, D.F.; Ionescu, E. De novo apparently balanced translocation with a novel abnormal phenotype: Review and case presentation. Rom. J. Leg. Med. 2021, 29, 196–204. [Google Scholar] [CrossRef]
- Mossey, P.A.; Little, J.; Munger, R.G.; Dixon, M.J.; Shaw, W.C. Cleft lip and palate. Lancet 2009, 374, 1773–1785. [Google Scholar] [CrossRef] [PubMed]
- Geneser, M.K.; Veerasathpurush, A. Cleft lip and palate. In Pediatric Dentistry, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 77–87. [Google Scholar]
- Salari, N.; Darvishi, N.; Heydari, M.; Bokaee, S.; Darvishi, F.; Mohammadi, M. Global prevalence of cleft palate, cleft lip and cleft palate and lip: A comprehensive systematic review and meta-analysis. J. Stomatol. Oral Maxillofac. Surg. 2022, 123, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Jiang, R. Mouse models in palate development and orofacial cleft research: Understanding the crucial role and regulation of epithelial integrity in facial and palate morphogenesis. Curr. Top. Dev. Biol. 2022, 148, 13–50. [Google Scholar] [CrossRef] [PubMed]
- Dixon, M.J.; Marazita, M.L.; Beaty, T.H.; Murray, J.C. Cleft lip and palate: Understanding genetic and environmental influences. Nat. Rev. Genet. 2011, 12, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Babai, A.; Irving, M. Orofacial Clefts: Genetics of Cleft Lip and Palate. Genes 2023, 14, 1603. [Google Scholar] [CrossRef] [PubMed]
- Clementi, M.; Tenconi, R.; Bianchi, F.; Stoll, C. Evaluation of prenatal diagnosis of cleft lip with or without cleft palate and cleft palate by ultrasound: Experience from 20 European registries. EUROSCAN study group. Prenat. Diagn. 2000, 20, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Salazar, T.A.; Rincón-Guio, C.; López, N.L.; Cáceres, J.; Charry, J.D. First trimester sonographic diagnosis of orofacial defects. Review of literature. J. Matern. Fetal. Neonatal. Med. 2020, 33, 3200–3206. [Google Scholar] [CrossRef]
- Zheng, W.; Li, B.; Zou, Y.; Lou, F. The prenatal diagnosis and classification of cleft palate: The role and value of magnetic resonance imaging. Eur. Radiol. 2019, 29, 5600–5606. [Google Scholar] [CrossRef] [PubMed]
- Divya, K.; Iyapparaja, P.; Raghavan, A.; Diwakar, M.P. Accuracy of Prenatal Ultrasound Scans for Screening Cleft Lip and Palate: A Systematic Review. J. Med. Ultrasound 2022, 30, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Requeijo, M.J.R.; Penoni, K.Z.; Ruano, R.; Bunduki, V.; Lopes, M.A.B.; Francisco, R.P.V.; Zugaib, M. Facial cleft diagnosed prenatally: Epidemiological, ultrasound and postnatal aspects. Rev. Ibero-Am. Humanidades Ciênc. Educ. 2024, 10, 650–668. [Google Scholar] [CrossRef]
- Jenkins, M.; Seasely, A.R.; Subramaniam, A. Prenatal genetic testing 2: Diagnostic tests. Curr. Opin. Pediatr. 2022, 34, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Albu, C.; Cilievici, S.E.; Albu, D.; Albu, S.; Patrascu, A.; Goganau, A.M. Impact of Maternal Serum Screening in Early Prenatal Diagnosis and Management of Congenital Anomalies. Rev. Chim. 2019, 70, 1534–1538. [Google Scholar] [CrossRef]
- Jabaz, D.; Jenkins, S.M. Sonography 2nd Trimester Assessment, Protocols, and Interpretation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK570574/ (accessed on 14 August 2024).
- Vibert, F.; Schmidt, G.; Löffler, K.; Gasiorek-Wiens, A.; Henrich, W.; Verlohren, S. Accuracy of prenatal detection of facial clefts and relation between facial clefts, additional malformations and chromosomal abnormalities: A large referral-center cohort. Arch. Gynecol. Obstet. 2024, 309, 1971–1980. [Google Scholar] [CrossRef] [PubMed]
- Baeza-Pagador, A.; Tejero-Martínez, A.; Salom-Alonso, L.; Camañes-Gonzalvo, S.; García-Sanz, V.; Paredes-Gallardo, V. Diagnostic Methods for the Prenatal Detection of Cleft Lip and Palate: A Systematic Review. J. Clin. Med. 2024, 13, 2090. [Google Scholar] [CrossRef]
- Maarse, W.; Pistorius, L.R.; Van Eeten, W.K.; Breugem, C.C.; Kon, M.; Van den Boogaard, M.J.; Mink van Der Molen, A.B. Prenatal ultrasound screening for orofacial clefts. Ultrasound Obstet. Gynecol. 2011, 38, 434–439. [Google Scholar] [CrossRef]
- Nicot, R.; Rotten, D.; Opdenakker, Y.; Kverneland, B.; Ferri, J.; Couly, G.; Levaillant, J.M. Fetal dental panorama on three-dimensional ultrasound imaging of cleft lip and palate and other facial anomalies. Clin. Oral Investig. 2019, 23, 1561–1568. [Google Scholar] [CrossRef]
- Shi, Z.; Wen, H.; Leng, J.; Wang, J.; Wang, Y.; Luo, D.; Chen, Z.; Qin, Y.; Liang, M.; Tan, Y.; et al. Cleft palate in fetuses: Feasibility of early diagnosis by Crystal and Realistic Vue rendering 3D ultrasound technology in the first trimester. Front. Pediatr. 2023, 11, 1199965. [Google Scholar] [CrossRef]
- Shao, X.; Liang, L.; Liu, Y.; Yan, J.; Ma, P. Comparison of diagnostic values between 2D three-section ultrasound and 3D tomographic ultrasound imaging for fetal cleft palate at 11–13+6 weeks. J. Radiat. Res. Appl. Sci. 2024, 17, 100808. [Google Scholar] [CrossRef]
- Văduva, C.C.; Constantinescu, C.; Ţenovici, M.; Văduva, A.R.; Niculescu, M.; DiŢescu, D.; Albu, C.C.; Albu, D.F. Delayed interval delivery in twin pregnancy—Case reports. Rom. J. Morphol. Embryol. 2016, 57, 1089–1098. [Google Scholar] [PubMed]
- Calzolari, E.; Pierini, A.; Astolfi, G.; Bianchi, F.; Neville, A.J.; Rivieri, F. Associated anomalies in multi-malformed infants with cleft lip and palate: An epidemiologic study of nearly 6 million births in 23 EUROCAT registries. Am. J. Med. Genet. A 2007, 143A, 528–537. [Google Scholar] [CrossRef]
- Sekhon, P.S.; Ethunandan, M.; Markus, A.F.; Krishnan, G.; Rao, C.B. Congenital anomalies associated with cleft lip and palate-an analysis of 1623 consecutive patients. Cleft Palate Craniofac. J. 2011, 48, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Satgé, D.; Nishi, M.; Sirvent, N.; Vekemans, M.; Chenard, M.P.; Barnes, A. A tumor profile in Patau syndrome (trisomy 13). Am. J. Med. Genet. A 2017, 173, 2088–2096. [Google Scholar] [CrossRef]
- Chen, C.P. Placental abnormalities and preeclampsia in trisomy 13 pregnancies. Taiwan J. Obstet. Gynecol. 2009, 48, 3–8. [Google Scholar] [CrossRef]
- Hook, E.B. Rates of 47, +13 and 46 translocation D/13 Patau syndrome in live births and comparison with rates in fetal deaths and at amniocentesis. Am. J. Hum. Genet. 1980, 32, 849–858. [Google Scholar]
- Cuckle, H.; Morris, J. Maternal age in the epidemiology of common autosomal trisomies. Prenat. Diagn. 2021, 41, 573–583. [Google Scholar] [CrossRef]
- Kaltsas, A.; Moustakli, E.; Zikopoulos, A.; Georgiou, I.; Dimitriadis, F.; Symeonidis, E.N.; Markou, E.; Michaelidis, T.M.; Tien, D.M.B.; Giannakis, I.; et al. Impact of Advanced Paternal Age on Fertility and Risks of Genetic Disorders in Offspring. Genes 2023, 14, 486. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, Y.; Peng, M.; Xu, J.; Fan, Z.; Liu, C.; Zhao, K.; Zhang, H. Effect of paternal age on offspring birth defects: A systematic review and meta-analysis. Aging 2020, 12, 25373–25394. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.T.K.; Robaire, B. Advanced Paternal Age and Future Generations. Front. Endocrinol. 2022, 13, 897101. [Google Scholar] [CrossRef]
- Hamood, N. Paternal Ages and Genetic Diseases and Congenital Anomalies. Pegasus Rev. UCF Undergrad. Res. J. 2022, 15, 1. Available online: https://stars.library.ucf.edu/urj/vol15/iss1/1 (accessed on 14 August 2024).
- Venkatesh, R. Syndromes and anomalies associated with cleft. Indian J. Plast. Surg. 2009, 42, S51–S55. [Google Scholar] [CrossRef] [PubMed]
- Schutte, B.C.; Saal, H.M.; Goudy, S.; Leslie, E.J. IRF6-Related Disorders. In GeneReviews®; University of Washington: Seattle, WA, USA, 2021. [Google Scholar]
- Garrocho-Rangel, A.; Serrano-Aguilar, G.; Hernández-Molinar, Y.; Aranda-Romo, S.; Alejandri-Gamboa, V.; Pozos-Guillén, A. Oral management of children/adolescents with ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome: A scoping review. Spec. Care. Dentist. 2023, 43, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Awadh, W.; Kiukkonen, A.; Nieminen, P.; Arte, S.; Hurmerinta, K.; Rice, D.P. Blepharocheilodontic (BCD) syndrome: New insights on craniofacial and dental features. Am. J. Med. Genet. A 2017, 173, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Kroes, I.; Janssens, S.; Defoort, P. Ultrasound features in trisomy 13 (Patau syndrome) and trisomy 18 (Edwards syndrome) in a consecutive series of 47 cases. Facts Views Vis. Obgyn. 2014, 6, 245–249. [Google Scholar] [PubMed]
- Rosa, R.F.; Rosa, R.C.; Lorenzen, M.B.; Zen, P.R.; Graziadio, C.; Paskulin, G.A. Craniofacial abnormalities among patients with Edwards Syndrome. Rev. Paul Pediatr. 2013, 31, 293–298. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, D.A.; Phillips, A.J. Stickler Syndrome. Clin. Exp. Optom. 2021, 83, 330–332. [Google Scholar] [CrossRef] [PubMed]
- Lace, B.; Barkane, B.; Akota, I. The most common genetic syndromes and associated anomalies in Latvian patients with cleft lip with or without palate. Stomatologija 2006, 8, 57–60. [Google Scholar]
- Li, J.; Feng, D.; He, S.; Yang, H.; Su, Z.; Ye, H. Association of MTHFR 677C > T gene polymorphism with neonatal defects: A meta-analysis of 81444 subjects. J. Obstet. Gynaecol. 2022, 42, 1811–1822. [Google Scholar] [CrossRef]
- Albu, C.C.; Albu, D.; Albu, S.; Patrascu, A.; Musat, A.; Goganau, A.M. Early Prenatal Diagnosis of an Extremely Rare Association of Down Syndrome and Transposition of the Great Vessels. Rev. Chim. 2019, 70, 2574–2578. [Google Scholar] [CrossRef]
- León-Madero, L.F.; Fregoso-Ron, C.H.; De León-Carbajal, J.C.; Valdés-Miranda, J.M. Mexican patient with Ellis-van Creveld syndrome and cleft palate: Importance of functional hemizygosity and phenotype expansion. Mol. Genet. Genom. Med. 2024, 12, e2451. [Google Scholar] [CrossRef] [PubMed]
- Rich, M.; Schroeder, B.; Manning, C.; Abbott, M.A. Prenatal diagnosis of Hartsfield syndrome with a novel genetic variant. Prenat. Diagn. 2023, 43, 1671–1673. [Google Scholar] [CrossRef]
- Genetic Alliance; The New York-Mid-Atlantic Consortium for Genetic and Newborn Screening Services. Understanding Genetics: A New York, Mid-Atlantic Guide for Patients and Health Professionals; Genetic Alliance: Washington, DC, USA, 2009; Appendix H, Prenatal Screening and Testing. Available online: https://www.ncbi.nlm.nih.gov/books/NBK115544/ (accessed on 14 August 2024).
- Saldarriaga, W.; García-Perdomo, H.A.; Arango-Pineda, J.; Fonseca, J. Karyotype versus genomic hybridization for the prenatal diagnosis of chromosomal abnormalities: A metaanalysis. Am. J. Obstet. Gynecol. 2015, 212, e1–e10. [Google Scholar] [CrossRef]
- Sparks, T.N.; Dugoff, L. How to choose a test for prenatal genetic diagnosis: A practical overview. Am. J. Obstet. Gynecol. 2023, 228, 178–186. [Google Scholar] [CrossRef]
- Kong, C.W.; Leung, T.N.; Leung, T.Y.; Chan, L.W.; Sahota, D.S.; Fung, T.Y.; Lau, T.K. Risk factors for procedure-related fetal losses after mid-trimester genetic amniocentesis. Prenat. Diagn. 2006, 26, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Salomon, L.J.; Sotiriadis, A.; Wulff, C.B.; Odibo, A.; Akolekar, R. Risk of miscarriage following amniocentesis or chorionic villus sampling: Systematic review of literature and updated meta-analysis. Ultrasound Obstet. Gynecol. 2019, 54, 442–451. [Google Scholar] [CrossRef]
- Di Mascio, D.; Khalil, A.; Rizzo, G.; Buca, D.; Liberati, M.; Martellucci, C.A.; Flacco, M.E.; Manzoli, L.; D’Antonio, F. Risk of fetal loss following amniocentesis or chorionic villus sampling in twin pregnancy: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2020, 56, 647–655. [Google Scholar] [CrossRef]
- Nassr, A.A.; Hessami, K.; D’Alberti, E.; Giancotti, A.; Meshinchiasl, N.; Evans, M.I.; Di Mascio, D.; Shamshirsaz, A.A. Obstetrical outcomes following amniocentesis performed after 24weeks of gestation: A systematic review and meta-analysis. Prenat. Diagn. 2023, 43, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Steinfort, K.; Van Houtven, E.; Jacquemyn, Y.; Blaumeiser, B.; Loquet, P. Difference in Procedure-Related Risk of Miscarriage between Early and Mid-Trimester Amniocentesis: A Retrospective Cohort Study. Diagnostics 2021, 11, 1098. [Google Scholar] [CrossRef]
- Ciortea, R.; Malutan, A.M.; Bucuri, C.E.; Berceanu, C.; Rada, M.P.; Ormindean, C.M.; Mihu, D. Amniocentesis—When It Is Clear That It Is Not Clear. J. Clin. Med. 2023, 12, 454. [Google Scholar] [CrossRef]
- Zemet, R.; Maktabi, M.A.; Tinfow, A.; Giordano, J.L.; Heisler, T.M.; Yan, Q.; Plaschkes, R.; Stokes, J.; Walsh, J.M.; Corcoran, S.; et al. Amniocentesis in pregnancies at or beyond 24 weeks: An international multicenter study. Am. J. Obstet. Gynecol. 2024, S0002-9378, 00693–00698, Advance online publication. [Google Scholar] [CrossRef]
- Mc Goldrick, N.; Revie, G.; Groisman, B.; Hurtado-Villa, P.; Sipek, A.; Khoshnood, B.; Rissmann, A.; Dastgiri, S.; Landau, D.; Tagliabue, G.; et al. A multi-program analysis of cleft lip with cleft palate prevalence and mortality using data from 22 International Clearinghouse for Birth Defects Surveillance and Research programs, 1974–2014. Birth Defects Res. 2023, 115, 980–997. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, G.; El Hajj, J.; Ghassibe-Sabbagh, M. Orofacial clefts embryology, classification, epidemiology, and genetics. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108373. [Google Scholar] [CrossRef] [PubMed]
- Kohli, S.S.; Kohli, V.S. A comprehensive review of the genetic basis of cleft lip and palate. J. Oral Maxillofac Pathol. 2012, 16, 64–72. [Google Scholar] [CrossRef]
- Demeer, B.; Revencu, N.; Helaers, R.; Gbaguidi, C.; Dakpe, S.; François, G.; Devauchelle, B.; Bayet, B.; Vikkula, M. Likely Pathogenic Variants in One Third of Non-Syndromic Discontinuous Cleft Lip and Palate Patients. Genes 2019, 10, 833. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.; Feingold, E.; Moreno-Uribe, L.; Wehby, G.; Valencia-Ramirez, L.C.; Restrepo Muñeton, C.P.; Padilla, C.; Deleyiannis, F.; Christensen, K.; Poletta, F.A.; et al. Genome-wide association study of multiethnic nonsyndromic orofacial cleft families identifies novel loci specific to family and phenotypic subtypes. Genet. Epidemiol. 2022, 46, 182–198. [Google Scholar] [CrossRef]
- Silva, C.M.; Pereira, M.C.M.; Queiroz, T.B.; Neves, L.T.D. Family history in non-syndromic orofacial clefts: Is there a pattern? Oral Dis. 2022, 28, 2194–2203. [Google Scholar] [CrossRef]
- Bartzela, T.; Theuerkauf, B.; Reichardt, E.; Spielmann, M.; Opitz, C. Clinical characterization of 266 patients and family members with cleft lip and/or palate with associated malformations and syndromes. Clin. Oral Investig. 2021, 25, 5531–5540. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.; Mezzasalma, L.; Coi, A.; Pierini, A. Orofacial Clefts and Maternal Risk Factors: A Population-Based Case—Control Study. Children 2024, 11, 819. [Google Scholar] [CrossRef]
- Vieira, A.R.; Orioli, I.M.; Murray, J.C. Maternal age and oral clefts: A reappraisal. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2002, 94, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Bille, C.; Skytthe, A.; Vach, W.; Knudsen, L.B.; Andersen, A.M.; Murray, J.C.; Christensen, K. Parent’s age and the risk of oral clefts. Epidemiology 2005, 16, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Hermann, N.V.; Darvann, T.A.; Munch, A.; Kreiborg, S. Parental age in relation to the severity of cleft lip and/or palate. Orthod. Craniofac. Res. 2018, 21, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Alrbata, R.H.; Almaaiteh, H.Y.; Albdour, M.N.; Alshammout, R.W. A Retrospective Cohort Study to Evaluate the Association Between Types of Nonsyndromic Oral Clefts and a Child’s Gender and Maternal Age. J. Int. Soc. Prev. Community Dent. 2021, 11, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Mikwar, M.; MacFarlane, A.J.; Marchetti, F. Mechanisms of oocyte aneuploidy associated with advanced maternal age. Mutat. Res. Rev. Mutat. Res. 2020, 785, 108320. [Google Scholar] [CrossRef]
- Albu, C.-C.; Bencze, M.-A.; Dragomirescu, A.-O.; Suciu, I.; Tănase, M.; Albu, Ş.-D.; Russu, E.-A.; Ionescu, E. Folic Acid and Its Role in Oral Health: A Narrative Review. Processes 2023, 11, 1994. [Google Scholar] [CrossRef]
No. | Maternal Age | Paternal Age | History | Ultrasonography | CLP | Weeks of Pregnancy | Fetal Karyotype | CLP Heterogenity Linked to Fetal Karyotype and Pedigree Analysis | Genetic Component of CLPs | Observation |
---|---|---|---|---|---|---|---|---|---|---|
1. | 24 | 26 | first pregnancy | female monofetal pregnancy | UCLR | 31.3 | 46, XX | isolated, sporadic, non-hereditary case | non-syndromic case | second opinion confirmed postnatally |
2. | 26 | 30 | first pregnancy | male monofetal pregnancy intrauterine growth restriction, left equinovarus | UCLPL | 23.1 | 46 XY, t(7;16) (p14;p11.) | isolated, sporadic, syndromic, non-hereditary case | translocation syndrome | termination of pregnancy, confirmed by fetal autopsy |
3. | 31 | 51 | first pregnancy | male monofetal pregnancy, nuchal translucency, spina bifida, and congenital heart anomaly with moderate regurgitation of the tricuspid valve | UCPLR | 17 | 46, XY | isolated, sporadic, non-hereditary case | non-syndromic case | termination of pregnancy, confirmed by fetal autopsy |
4. | 26 | 32 | first pregnancy | male monofetal pregnancy, oligohydramnios, hypoplastic nasal bone, bilateral polycystic kidney and intrauterine growth restriction | BCLP | 20 | 46, XY/47, XY, +13 | isolated, sporadic, syndromic, non-hereditary case | Patau syndrome, mosaic trisomy 13 | termination of pregnancy, confirmed by fetal autopsy |
5. | 31 | 37 | second pregnancy | male monofetal pregnancy, ventricular septal defect | UCLPR | 20 | 47, XY, +13 | isolated, sporadic, syndromic, non-hereditary case | Patau syndrome, trisomy 13 | termination of pregnancy, confirmed by fetal autopsy |
6. | 29 | 27 | first pregnancy | female monofetal pregnancy, ocular hypertelorism, polycystic kidney and polydactyly | UCLPR | 25 | 46, XX/47, XX, +13 | isolated, sporadic, syndromic, non-hereditary case | Patau syndrome, mosaic trisomy 13 | termination of pregnancy confirmed by fetal autopsy |
7. | 39 | 45 | first pregnancy | male monofetal pregnancy, hypoplastic nasal bone, agenesis of the corpus callosum and ventriculomegaly | UCLPL | 19 | 46, XY | isolated, sporadic, non-hereditary case | non-syndromic case | termination of pregnancy confirmed by fetal autopsy |
8. | 31 | 34 | first pregnancy | female monofetal | UCLR | 31.6 | 46, XX | isolated, sporadic, non-hereditary case | non-syndromic case | second opinion, confirmed postnatally |
9. | 27 | 30 | second pregnancy | female monofetal pregnancy, microcephaly | UCLPR | 19 | 46, XX/47, XX, +13 | isolated, sporadic, syndromic, non-hereditary case | Patau syndrome, mosaic trisomy 13 | termination of pregnancy, confirmed by fetal autopsy |
10. | 29 | 33 | second pregnancy | male monofetal pregnancy, equinovarus | UCLPR | 20 | 46, XY | isolated, sporadic, non-hereditary case | non-syndromic case | termination of pregnancy, confirmed by fetal autopsy |
11. | 38 | 45 | first pregnancy | male monofetal pregnancy, lax nuchal cord | UCLL | 20 | 46, XY | isolated, sporadic, non-hereditary case | non-syndromic case | termination of pregnancy confirmed by fetal autopsy |
12. | 24 | 30 | first pregnancy | female monofetal pregnancy, moderate gastric distension | UCLL | 23 | 46, XX | isolated, sporadic, non-hereditary case | non-syndromic case | second opinion, confirmed postnatally |
13. | 36 | 42 | first pregnancy | male monofetal pregnancy, ventriculomegaly | UCLPR | 18 | 47, XY, +13 | isolated, sporadic, syndromic, non-hereditary case | Patau syndrome, trisomy 13 | termination of pregnancy confirmed by fetal autopsy |
14. | 26 | 32 | first pregnancy | male monofetal pregnancy, ventriculomegaly | UCLPL | 19 | 47, XY, +13 | isolated, sporadic, syndromic, non-hereditary case | Patau syndrome, trisomy 13 | termination of pregnancy confirmed by fetal autopsy |
15. | 41 | 50 | second pregnancy | male monofetal pregnancy, retrognathia, moderate micrognathia, hemi ventriculomegaly, suspicion of lissencephaly | UCLPR | 18 | 46, XY/47, XY, +18 | isolated, sporadic, syndromic, non-hereditary case | Edwards syndrome, mosaic trisomy 18 | termination of pregnancy confirmed by fetal autopsy |
16. | 28 | 40 | first pregnancy | female monofetal pregnancy, coarctation of the aorta | UCLPL | 17 | 46, XX | isolated, sporadic, non-hereditary case | non-syndromic case | termination of pregnancy confirmed by fetal autopsy |
17 | 23 | 31 | first pregnancy | male monofetal pregnancy, Spalding sign, double cranial contour, developmental arrest | UCLPL | 19 | 47, XY, +13 | isolated, sporadic, syndromic, non-hereditary case | Patau syndrome, trisomy 13 | termination of pregnancy confirmed by fetal autopsy |
Cases without Associated Anomalies | Bone Anomalies | Brain Anomalies | Cardio-Vascular Anomalies | Cranio-Facial Bones Anomalies | Digestive Anomalies | Limb Anomalies | Ocular Anomalies | Renal Anomalies | Intrauterine Growth Restriction | Other |
---|---|---|---|---|---|---|---|---|---|---|
2 (11.76%) | 1 (5.88%) | 3 (17.65%) | 7 (41.18%) | 4 (23.53%) | 1 (5.88%) | 3 (17.65%) | 1 (5.88%) | 2 (11.76%) | 3 (17.65%) | 3 (17.57%) |
spina bifida | agenesis of the corpus callosum, lissencephaly, microcephaly | coarctation of the aorta, regurgitation of the tricuspid valve, ventriculomegaly, ventricular septal defect | hypoplastic nasal bone, retrognathia with micrognathia, Spalding sign | moderate gastric distension | equinovarus, polydactyly | hypertelorism | polycystic kidney | lax nuchal cord, oligohydramnios, nuchal translucency |
Type of CLPs | Non-Syndromic Cases | Syndromic Cases | Total |
---|---|---|---|
Unilateral cleft lip (UCL) | 4 (23.52%) | 0 (0.00%) | 4 (23.52%) |
Bilateral cleft lip and palate (BCLP) | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) |
Cleft palate (CP) | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) |
Cleft palate with unilateral cleft lip (UCLP) | 4 (23.52%) | 8 (47.06%) | 12 (70.59%) |
Bilateral cleft lip and palate (BCLP) | 0 (0.00%) | 1 (5.88%) | 1 (5.88%) |
Total | 8 (47.06%) | 9 (52.94%) | 17 (100%) |
Maternal Age | 20–29 | 30–34 | Over 35 |
---|---|---|---|
Non-syndromic cases | 4 | 2 | 2 |
Syndromic cases | 6 | 1 | 2 |
Total | 10 | 3 | 4 |
Paternal Age | <40 | 40–49 | 50–59 |
---|---|---|---|
Non-syndromic cases | 4 | 3 | 1 |
Syndromic cases | 7 | 1 | 1 |
Total | 11 | 4 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brăila, A.D.; Damian, C.M.; Albu, C.-C.; Botoacă, O.; Dȋră, L.M.; Albu, Ş.-D.; Brăila, M.G.; Bănățeanu, A.-M.; Poalelungi, C.-V.; Bogdan-Andreescu, C.F. Prenatal Diagnosis of Cleft Lip and Palate: A Retrospective Study. J. Clin. Med. 2024, 13, 4804. https://doi.org/10.3390/jcm13164804
Brăila AD, Damian CM, Albu C-C, Botoacă O, Dȋră LM, Albu Ş-D, Brăila MG, Bănățeanu A-M, Poalelungi C-V, Bogdan-Andreescu CF. Prenatal Diagnosis of Cleft Lip and Palate: A Retrospective Study. Journal of Clinical Medicine. 2024; 13(16):4804. https://doi.org/10.3390/jcm13164804
Chicago/Turabian StyleBrăila, Anca Daniela, Constantin Marian Damian, Cristina-Crenguţa Albu, Oana Botoacă, Laurențiu Mihai Dȋră, Ştefan-Dimitrie Albu, Matei Georgian Brăila, Andreea-Mariana Bănățeanu, Cristian-Viorel Poalelungi, and Claudia Florina Bogdan-Andreescu. 2024. "Prenatal Diagnosis of Cleft Lip and Palate: A Retrospective Study" Journal of Clinical Medicine 13, no. 16: 4804. https://doi.org/10.3390/jcm13164804
APA StyleBrăila, A. D., Damian, C. M., Albu, C. -C., Botoacă, O., Dȋră, L. M., Albu, Ş. -D., Brăila, M. G., Bănățeanu, A. -M., Poalelungi, C. -V., & Bogdan-Andreescu, C. F. (2024). Prenatal Diagnosis of Cleft Lip and Palate: A Retrospective Study. Journal of Clinical Medicine, 13(16), 4804. https://doi.org/10.3390/jcm13164804