A Mild Increase in Serum Creatinine after Surgery Is Associated with Increased Mortality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Definition and Classification of AKI
2.4. Clinical Outcomes
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Association between AKI Stage 1 and In-Hospital Mortality
3.3. Association between Stage 1 AKI and One-Year Mortality
3.4. Subgroup Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tie, H.-T.; Luo, M.-Z.; Luo, M.-J.; Zhang, M.; Wu, Q.-C.; Wan, J.-Y. Sodium Bicarbonate in the Prevention of Cardiac Surgery-Associated Acute Kidney Injury: A Systematic Review and Meta-Analysis. Crit. Care 2014, 18, 517. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, M.; Murashima, M.; Kokubu, M.; Matsui, M.; Eriguchi, M.; Samejima, K.-I.; Akai, Y.; Tsuruya, K. Pre-Operative Proteinuria and Post-Operative Acute Kidney Injury in Noncardiac Surgery: The NARA-Acute Kidney Injury Cohort Study. Nephrol. Dial. Transplant. 2020, 35, 2111–2116. [Google Scholar] [CrossRef] [PubMed]
- Corredor, C.; Thomson, R.; Al-Subaie, N. Long-Term Consequences of Acute Kidney Injury After Cardiac Surgery: A Systematic Review and Meta-Analysis. J. Cardiothorac. Vasc. Anesth. 2016, 30, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.; Ross, V.C.; Zealley, K.A.; Millar, F.; Isles, C. Management of Post-Operative Acute Kidney Injury. QJM 2017, 110, 695–700. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clin. Pract. 2012, 120, C179–C184. [Google Scholar] [CrossRef]
- Grams, M.E.; Sang, Y.; Coresh, J.; Ballew, S.; Matsushita, K.; Molnar, M.Z.; Szabo, Z.; Kalantar-Zadeh, K.; Kovesdy, C.P. Acute Kidney Injury after Major Surgery: A Retrospective Analysis of Veterans Health Administration Data. Am. J. Kidney Dis. 2016, 67, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Turan, A.; Cohen, B.; Adegboye, J.; Makarova, N.; Liu, L.; Mascha, E.J.; Qiu, Y.; Irefin, S.; Wakefield, B.J.; Ruetzler, K.; et al. Mild Acute Kidney Injury after Noncardiac Surgery Is Associated with Long-Term Renal Dysfunction: A Retrospective Cohort Study. Anesthesiology 2020, 132, 1053–1061. [Google Scholar] [CrossRef]
- Onal, O.; Chhabada, S.; Pu, X.; Liu, L.; Shimada, T.; Ruetzler, K.; Turan, A. Mild Acute Kidney Injury after Pediatric Surgery Is Not-Associated with Long-Term Renal Dysfunction: A Retrospective Cohort Study. J. Clin. Anesth. 2022, 83, 110985. [Google Scholar] [CrossRef] [PubMed]
- Elmistekawy, E.; McDonald, B.; Hudson, C.; Ruel, M.; Mesana, T.; Chan, V.; Boodhwani, M. Clinical Impact of Mild Acute Kidney Injury after Cardiac Surgery. Ann. Thorac. Surg. 2014, 98, 815–822. [Google Scholar] [CrossRef]
- Truche, A.-S.; Ragey, S.P.; Souweine, B.; Bailly, S.; Zafrani, L.; Bouadma, L.; Clec’h, C.; Garrouste-Orgeas, M.; Lacave, G.; Schwebel, C. ICU Survival and Need of Renal Replacement Therapy with Respect to AKI Duration in Critically Ill Patients. Ann. Intensive Care 2018, 8, 127. [Google Scholar] [CrossRef]
- Sparrow, H.G.; Swan, J.T.; Moore, L.W.; Gaber, A.O.; Suki, W.N. Disparate Outcomes Observed within Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Stage 1. Kidney Int. 2019, 95, 905–913. [Google Scholar] [CrossRef]
- Uhel, F.; Peters-Sengers, H.; Falahi, F.; Scicluna, B.P.; van Vught, L.A.; Bonten, M.J.; Cremer, O.L.; Schultz, M.J.; van Der Poll, T.; MARS consortium. Mortality and Host Response Aberrations Associated with Transient and Persistent Acute Kidney Injury in Critically Ill Patients with Sepsis: A Prospective Cohort Study. Intensive Care Med. 2020, 46, 1576–1589. [Google Scholar] [CrossRef] [PubMed]
- Perinel, S.; Vincent, F.; Lautrette, A.; Dellamonica, J.; Mariat, C.; Zeni, F.; Cohen, Y.; Tardy, B.; Souweine, B.; Darmon, M. Transient and Persistent Acute Kidney Injury and the Risk of Hospital Mortality in Critically Ill Patients: Results of a Multicenter Cohort Study. Crit. Care Med. 2015, 43, e269–e275. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.S.; Bae, E.H.; Ma, S.K.; Kweon, S.-S.; Kim, S.W. Impact of Transient and Persistent Acute Kidney Injury on Chronic Kidney Disease Progression and Mortality after Gastric Surgery for Gastric Cancer. PLoS ONE 2016, 11, e0168119. [Google Scholar] [CrossRef] [PubMed]
- Ozrazgat-Baslanti, T.; Loftus, T.J.; Ren, Y.; Adiyeke, E.; Miao, S.; Hashemighouchani, H.; Islam, R.; Mohandas, R.; Gopal, S.; Shenkman, E.A. Association of Persistent Acute Kidney Injury and Renal Recovery with Mortality in Hospitalised Patients. BMJ Health Care Inform. 2021, 28, e100458. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhao, M.; Wang, X. The Impact of Transient and Persistent Acute Kidney Injury on Short-Term Outcomes in Very Elderly Patients. Clin. Interv. Aging 2017, 2017, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.S.; Fidalgo, P.; Bagshaw, S.M.; Gottfried, M.; Tujios, S.; Olson, J.C.; Lee, W.M.; Karvellas, C.J.; US Acute Liver Failure Study Group. Persistent but Not Transient Acute Kidney Injury Was Associated with Lower Transplant-Free Survival in Patients with Acute Liver Failure: A Multicenter Cohort Study. Crit. Care Med. 2022, 50, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Gameiro, J.; Duarte, I.; Marques, F.; Fonseca, J.A.; Jorge, S.; Rosa, R.; Lopes, J.A. Transient and Persistent AKI and Outcomes in Patients Undergoing Major Abdominal Surgery. Nephron 2020, 144, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.E.W.; Bulgarelli, L.; Shen, L.; Gayles, A.; Shammout, A.; Horng, S.; Pollard, T.J.; Hao, S.; Moody, B.; Gow, B.; et al. MIMIC-IV, a Freely Accessible Electronic Health Record Dataset. Sci. Data 2023, 10, 1. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonca, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-Related Organ Failure Assessment) Score to Describe Organ Dysfunction/Failure. On Behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Hobson, C.; Ozrazgat-Baslanti, T.; Kuxhausen, A.; Thottakkara, P.; Efron, P.A.; Moore, F.A.; Moldawer, L.L.; Segal, M.S.; Bihorac, A. Cost and Mortality Associated with Postoperative Acute Kidney Injury. Ann. Surg. 2015, 261, 1207–1214. [Google Scholar] [CrossRef]
- Gameiro, J.; Fonseca, J.A.; Neves, M.; Jorge, S.; Lopes, J.A. Acute Kidney Injury in Major Abdominal Surgery: Incidence, Risk Factors, Pathogenesis and Outcomes. Ann. Intensive Care 2018, 8, 22. [Google Scholar] [CrossRef]
- Schiefer, J.; Bernardi, M.H.; Lichtenegger, P.; Schak, G.; Atallah, L.; Ristl, R.; Ramazanova, D.; Faybik, P. Incidence and Outcomes of AKI in Postoperative Patients Admitted to ICU Using Full KDIGO Criteria—A Cohort Study. J. Clin. Anesth. 2023, 89, 111156. [Google Scholar] [CrossRef]
- Chatterjee, S.; LeMaire, S.A.; Amarasekara, H.S.; Green, S.Y.; Price, M.D.; Yanoff, M.S.; Zhang, Q.; Raghavan, R.; Preventza, O.; de la Cruz, K.I.; et al. Early-Stage Acute Kidney Injury Adversely Affects Thoracoabdominal Aortic Aneurysm Repair Outcomes. Ann. Thorac. Surg. 2019, 107, 1720–1726. [Google Scholar] [CrossRef]
- Kim, C.S.; Oak, C.Y.; Kim, H.Y.; Kang, Y.U.; Choi, J.S.; Bae, E.H.; Ma, S.K.; Kweon, S.-S.; Kim, S.W. Incidence, Predictive Factors, and Clinical Outcomes of Acute Kidney Injury after Gastric Surgery for Gastric Cancer. PLoS ONE 2013, 8, e82289. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ma, J. Mild AKI Is Associated with Mortality of Patients Who Underwent Cardiopulmonary Bypass Surgery. Exp. Ther. Med. 2020, 20, 2969–2974. [Google Scholar] [CrossRef]
- Testani, J.M.; McCauley, B.D.; Chen, J.; Shumski, M.; Shannon, R.P. Worsening Renal Function Defined as an Absolute Increase in Serum Creatinine Is a Biased Metric for the Study of Cardio-Renal Interactions. Cardiology 2010, 116, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Lafrance, J.-P.; Miller, D.R. Defining Acute Kidney Injury in Database Studies: The Effects of Varying the Baseline Kidney Function Assessment Period and Considering CKD Status. Am. J. Kidney Dis. 2010, 56, 651–660. [Google Scholar] [CrossRef]
- Kanic, V.; Kompara, G.; Suran, D.; Ekart, R.; Bevc, S.; Hojs, R. Impact of KDIGO-Defined Acute Kidney Injury on Mortality after Percutaneous Coronary Intervention for Acute Myocardial Infarction. Cardiorenal Med. 2018, 8, 332–339. [Google Scholar] [CrossRef]
- Long, T.E.; Helgason, D.; Helgadottir, S.; Sigurdsson, G.H.; Palsson, R.; Sigurdsson, M.I.; Indridason, O.S. Mild Stage 1 Post-Operative Acute Kidney Injury: Association with Chronic Kidney Disease and Long-Term Survival. Clin. Kidney J. 2021, 14, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Prowle, J.R.; Kirwan, C.J.; Bellomo, R. Fluid Management for the Prevention and Attenuation of Acute Kidney Injury. Nat. Rev. Nephrol. 2014, 10, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Coca, S.G.; King, J.T., Jr.; Rosenthal, R.A.; Perkal, M.F.; Parikh, C.R. The Duration of Postoperative Acute Kidney Injury Is an Additional Parameter Predicting Long-Term Survival in Diabetic Veterans. Kidney Int. 2010, 78, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Choe, S.H.; Cho, H.; Bae, J.; Ji, S.-H.; Yoon, H.-K.; Lee, H.-J.; Lee, J.-H.; Kim, J.-T.; Kim, W.H. Severity and Duration of Acute Kidney Injury and Chronic Kidney Disease after Cardiac Surgery. J. Clin. Med. 2021, 10, 1556. [Google Scholar] [CrossRef] [PubMed]
Variable | All Patients | Non-AKI | Stage 1 AKI | Stage 2 or 3 AKI | p Value * |
---|---|---|---|---|---|
N = 49,928 | N = 40,173 | N = 7659 | N = 2096 | ||
Age (y) | 65.0 (53.0, 75.0) | 64.0 (52.0, 74.0) | 70.0 (60.0, 79.0) | 66.0 (55.0, 76.0) | <0.001 |
Male, n (%) | 26,855 (53.8) | 20,844 (51.9) | 4774 (62.3) | 1237 (59.0) | <0.001 |
Race, n (%) | <0.001 | ||||
White | 35,555 (71.2) | 28,760 (71.6) | 5375 (70.2) | 1420 (67.7) | |
Black | 4573 (9.2) | 3721 (9.3) | 648 (8.5) | 204 (9.7) | |
Others | 9800 (19.6) | 7692 (19.1) | 1636 (21.4) | 472 (22.5) | |
ICU, n (%) | 21,463 (43.0) | 14, 574 (36.3) | 5307 (69.3) | 1582 (75.5) | <0.001 |
Surgery, n (%) | <0.001 | ||||
Cardiac | 7855 (15.7) | 4617 (11.5) | 2767 (36.1) | 471 (22.5) | |
Thoracic | 4818 (9.6) | 3998 (10.0) | 584 (7.6) | 236 (11.3) | |
General | 9219 (18.5) | 7741 (19.3) | 1068 (13.9) | 410 (19.6) | |
Genitourinary | 2542 (5.1) | 2186 (5.4) | 255 (3.3) | 101 (4.8) | |
Orthopedic | 10,359 (20.7) | 9151 (22.8) | 967 (12.6) | 241 (11.5) | |
Neurologic | 6166 (12.3) | 5368 (13.4) | 629 (8.2) | 169 (8.1) | |
Vascular | 8316 (16.7) | 6539 (16.3) | 1333 (17.4) | 444 (21.2) | |
Other | 653 (1.3) | 573 (1.4) | 56 (0.7) | 24 (1.1) | |
Comorbidities, n (%) | |||||
Hypertension | 23,188 (46.4) | 18,798 (46.8) | 3595 (46.9) | 795 (37.9) | 0.815 |
Diabetes | 12,783 (25.6) | 9285 (23.1) | 2727 (35.6) | 771 (36.8) | <0.001 |
Heart failure | 6086 (12.2) | 3881 (9.7) | 1724 (22.5) | 481 (22.9) | <0.001 |
Coronary heart disease | 14,988 (30.0) | 10,604 (26.4) | 3596 (47.0) | 788 (37.6) | <0.001 |
Cerebrovascular disease | 4957 (9.9) | 3787 (9.4) | 927 (12.1) | 243 (11.6) | <0.001 |
Chronic pulmonary disease | 10,274 (20.6) | 7840 (19.5) | 1876 (24.5) | 558 (26.6) | <0.001 |
Chronic liver disease | 1455 (2.9) | 909 (2.3) | 342 (4.5) | 204 (9.7) | <0.001 |
Tumor | 8543 (17.1) | 6939 (17.3) | 1164 (15.2) | 440 (21.0) | <0.001 |
Kidney function | |||||
Baseline SCr (mg/dL) | 0.7 (0.6, 0.9) | 0.7 (0.6, 0.9) | 0.8 (0.7, 1.1) | 0.9 (0.6, 1.3) | <0.001 |
Baseline eGFR (ml/min/1.73 m2) | 88.3 (65.7, 102.1) | 99.4 (85.9, 110.7) | 88.0 (61.9, 101.3) | 84.1 (51.7, 104.0) | <0.001 |
Preoperative laboratory test | |||||
WBC (109/L) | 7.7 (6.0, 10.0) | 7.7 (6.0, 10.0) | 7.6 (6.0, 9.8) | 8.0 (6.1, 10.8) | <0.001 |
Hb (g/dL) | 12.5 (10.9, 13.8) | 12.6 (11.1, 13.9) | 12.0 (10.4, 13.5) | 11.0 (9.2, 12.9) | <0.001 |
PLT (109/L) | 232.0 (183.0, 294.0) | 236.0 (187.0, 297.0) | 214.0 (168.0, 273.0) | 211.0 (149.0, 289.0) | <0.001 |
Alb (g/dL) | 4.0 (3.5, 4.4) | 4.0 (3.6, 4.4) | 3.9 (3.5, 4.3) | 3.5 (2.9, 4.0) | <0.001 |
BUN (mg/dL) | 17.0 (12.0, 23.0) | 16.0 (12.0, 21.0) | 21.0 (16.0, 30.0) | 20.0 (13.0, 32.0) | <0.001 |
Acute illness state, n (%) | |||||
Mechanical ventilation | 3411 (6.8) | 1766 (4.4) | 1057 (13.8) | 588 (28.1) | <0.001 |
SOFA score | 0 (0, 1) | 0 (0, 1) | 1 (0, 3) | 2 (0, 4) | <0.001 |
Outcome | No. of Patients with Events n (%) | Hazard Ratio (95% Confidence Interval) | |||||
---|---|---|---|---|---|---|---|
Stage 1 AKI | Non-AKI | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |
Primary outcome | |||||||
In-hospital mortality | 467 (6.1) | 473 (1.2) | 5.29 (4.66, 6.01) | 4.62 (4.05, 5.26) | 4.54 (3.97, 5.19) | 3.92 (3.32, 4.63) | 2.73 (2.29, 3.26) |
Secondary outcome | |||||||
One-year mortality | 1453 (19.0) | 4035 (10.0) | 2.01 (1.89, 2.13) | 1.65 (1.55, 1.75) | 1.67 (1.57, 1.78) | 1.41 (1.31, 1.51) | 1.25 (1.16, 1.34) |
Sensitivity Analysis | No. of Patients with In-Hospital Mortality (%) | Hazard Ratio (95% Confidence Interval) | |||||
---|---|---|---|---|---|---|---|
Alive n (%) | Death n (%) | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |
Non-AKI | 39,700 (98.8) | 473 (1.2) | Reference | Reference | Reference | Reference | Reference |
Stage 1a AKI | 2112 (96.7) | 73 (3.3) | 2.87 (2.24, 3.67) | 2.44 (1.90, 3.14) | 2.30 (1.75, 3.01) | 2.17 (1.64, 2.85) | 1.01 (0.68, 1.51) |
Stage 1b AKI | 5080 (92.8) | 394 (7.2) | 6.27 (5.49, 7.17) | 5.42 (4.73, 6.21) | 5.35 (4.67, 6.13) | 4.89 (4.25, 5.62) | 3.06 (2.56, 3.66) |
Transient stage 1 AKI | 1871 (96.8) | 61 (3.2) | 2.69 (2.06, 3.51) | 2.25 (1.72, 2.95) | 2.28 (1.74, 2.99) | 2.04 (1.55, 2.68) | 1.11 (0.79, 1.57) |
Persistent stage 1 AKI | 3004 (94.0) | 191 (6.0) | 5.14 (4.34, 6.08) | 4.35 (3.67, 5.16) | 4.39 (3.69, 5.23) | 3.77 (3.15, 4.51) | 2.03 (1.61, 2.57) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Tang, L.; Zheng, X.; Yang, L. A Mild Increase in Serum Creatinine after Surgery Is Associated with Increased Mortality. J. Clin. Med. 2024, 13, 4905. https://doi.org/10.3390/jcm13164905
Xu L, Tang L, Zheng X, Yang L. A Mild Increase in Serum Creatinine after Surgery Is Associated with Increased Mortality. Journal of Clinical Medicine. 2024; 13(16):4905. https://doi.org/10.3390/jcm13164905
Chicago/Turabian StyleXu, Lingyi, Linger Tang, Xizi Zheng, and Li Yang. 2024. "A Mild Increase in Serum Creatinine after Surgery Is Associated with Increased Mortality" Journal of Clinical Medicine 13, no. 16: 4905. https://doi.org/10.3390/jcm13164905
APA StyleXu, L., Tang, L., Zheng, X., & Yang, L. (2024). A Mild Increase in Serum Creatinine after Surgery Is Associated with Increased Mortality. Journal of Clinical Medicine, 13(16), 4905. https://doi.org/10.3390/jcm13164905