Circulating Interleukin-22 in Patients with Acute Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Serum IL-22 Analysis
2.2. Statistical Analysis
2.3. Ethical Statement
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lloyd-Jones, D.; Adams, R.; Carnethon, M.; De Simone, G.; Ferguson, T.B.; Flegal, K.; Ford, E.; Furie, K.; Go, A.; Greenlund, K.; et al. Heart disease and stroke statistics -2009 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009, 119, e21–e181. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. Mechanisms of acute coronary syndromes and their implications for therapy. N. Engl. J. Med. 2013, 368, 2004–2013. [Google Scholar] [CrossRef] [PubMed]
- Pober, J.S.; Sessa, W.C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 2007, 7, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Vogel, B.; Claessen, B.E.; Arnold, S.V.; Chan, D.; Cohen, D.J.; Giannitsis, E.; Gibson, C.M.; Goto, S.; Katus, H.A.; Kerneis, M.; et al. ST-segment elevation myocardial infarction. Nat. Rev. Dis. Primers 2019, 5, 39. [Google Scholar] [CrossRef] [PubMed]
- Bergmark, B.A.; Mathenge, N.; Merlini, P.A.; Lawrence-Wright, M.B.; Giugliano, R.P. Acute coronary syndromes. Lancet 2022, 399, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Loh, J.P.; Tan, L.L.; Zheng, H.; Lau, Y.H.; Chan, S.P.; Tan, K.B.; Chua, T.; Tan, H.C.; Foo, D.; Lee, C.W.; et al. First Medical Contact-to-Device Time and Heart Failure Outcomes Among Patients Undergoing Primary Percutaneous Coronary Intervention. Circ. Cardiovasc. Qual. Outcomes 2018, 11, e004699. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.W.; Hu, Y.; Liu, J.; Yang, H.; Huang, P. Interleukin-22: A potential therapeutic target in atherosclerosis. Mol. Med. 2021, 27, 88. [Google Scholar] [CrossRef]
- Che, Y.; Su, Z.; Xia, L. Effects of IL-22 on cardiovascular diseases. Int. Immunopharmacol. 2020, 81, 106277. [Google Scholar] [CrossRef] [PubMed]
- Rutz, S.; Eidenschenk, C.; Ouyang, W. IL-22, not simply a Th17 cytokine. Immunol. Rev. 2013, 252, 116–132. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.C.; Logsdon, N.J.; Walter, M.R. Structure of IL-22 bound to its high-affinity IL-22R1 chain. Structure 2008, 16, 1333–1344. [Google Scholar] [CrossRef] [PubMed]
- Mühl, H.; Bachmann, M. IL-18/IL-18BP and IL-22/IL-22BP: Two interrelated couples with therapeutic potential. Cell. Signal. 2019, 63, 109388. [Google Scholar] [CrossRef] [PubMed]
- Camaré, C.; Pucelle, M.; Nègre-Salvayre, A.; Salvayre, R. Angiogenesis in the atherosclerotic plaque. Redox Biol. 2017, 12, 18–34. [Google Scholar] [CrossRef]
- Chen, Q.; Lv, J.; Yang, W.; Xu, B.; Wang, Z.; Yu, Z.; Wu, J.; Yang, Y.; Han, Y. Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis. Theranostics 2019, 9, 6424–6442. [Google Scholar] [CrossRef] [PubMed]
- Chesebro, J.H.; Knatterud, G.; Roberts, R.; Borer, J.; Cohen, L.S.; Dalen, J.; Dodge, H.T.; Francis, C.K.; Hillis, D.; Ludbrook, P. Thrombolysis in Myocardial Infarction (TIMI) Trial, Phase I: A comparison between intravenous tissue plasminogen activator and intravenous streptokinase. Clinical findings through hospital discharge. Circulation 1987, 76, 142–154. [Google Scholar] [CrossRef]
- Torquati, L.; Coombes, J.S.; Murray, L.; Hasnain, S.Z.; Mallard, A.R.; McGuckin, M.A.; Fassett, R.G.; Croci, I.; Ramos, J.S. Fibre Intake Is Independently Associated with Increased Circulating Interleukin-22 in Individuals with Metabolic Syndrome. Nutrients 2019, 11, 815. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Tang, R.; Lu, Y.; Wang, W.; Xiao, C.; Meng, T.; Ao, X.; Li, X.; Peng, L.; Kwadwo Nuro-Gyina, P.; et al. Irbesartan may relieve renal injury by suppressing Th22 cells chemotaxis and infiltration in Ang II-induced hypertension. Int. Immunopharmacol. 2020, 87, 106789. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, T.; Wang, X.Q.; Du, R.Z.; Zhang, K.N.; Liu, X.G.; Ma, D.X.; Yu, S.; Su, G.H.; Li, Z.H.; et al. Elevated frequencies of circulating Th22 cell in addition to Th17 cell and Th17/Th1 cell in patients with acute coronary syndrome. PLoS ONE 2013, 8, e71466. [Google Scholar] [CrossRef]
- Yamamoto, M.; Yasukawa, H.; Takahashi, J.; Nohara, S.; Sasaki, T.; Shibao, K.; Akagaki, D.; Okabe, K.; Yanai, T.; Shibata, T.; et al. Endogenous interleukin-22 prevents cardiac rupture after myocardial infarction in mice. PLoS ONE 2023, 18, e0286907. [Google Scholar] [CrossRef]
- Tang, T.T.; Li, Y.Y.; Li, J.J.; Wang, K.; Han, Y.; Dong, W.Y.; Zhu, Z.F.; Xia, N.; Nie, S.F.; Zhang, M.; et al. Liver-heart crosstalk controls IL-22 activity in cardiac protection after myocardial infarction. Theranostics 2018, 8, 4552–4562. [Google Scholar] [CrossRef]
- Linton, M.F.; Moslehi, J.J.; Babaev, V.R. Akt Signaling in Macrophage Polarization, Survival, and Atherosclerosis. Int. J. Mol. Sci. 2019, 20, 2703. [Google Scholar] [CrossRef]
- Fazel, R.; Joseph, T.I.; Sankardas, M.A.; Pinto, D.S.; Yeh, R.W.; Kumbhani, D.J.; Nallamothu, B.K. Comparison of Reperfusion Strategies for ST-Segment-Elevation Myocardial Infarction: A Multivariate Network Meta-analysis. J. Am. Heart Assoc. 2020, 9, e015186. [Google Scholar] [CrossRef] [PubMed]
- Park, D.W.; Clare, R.M.; Schulte, P.J.; Pieper, K.S.; Shaw, L.K.; Califf, R.M.; Ohman, E.M.; Van de Werf, F.; Hirji, S.; Harrington, R.A.; et al. Extent, location, and clinical significance of non-infarct-related coronary artery disease among patients with ST-elevation myocardial infarction. JAMA 2014, 312, 2019–2027. [Google Scholar] [CrossRef] [PubMed]
- Faludi, A.A.; Izar, M.C.O.; Saraiva, J.F.K.; Chacra, A.P.M.; Bianco, H.T.; Afiune, A.; Neto, A.A.; Bertolami, A.; Pereira, A.C.; Lottenberg, A.M.; et al. Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose—2017. Arq. Bras. Cardiol. 2017, 109 (Suppl. S1), 1–76. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Zhang, Q.; Liu, K.; Wang, S.; Yan, Y.; Zhang, B.; Zhao, L. The association between interleukin family and diabetes mellitus and its complications: An overview of systematic reviews and meta-analyses. Diabetes Res. Clin. Pract. 2024, 210, 111615. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.G.; Ko, H.J.; Cho, Y.R.; Kim, H.J.; Ma, Z.; Yu, T.Y.; Friedline, R.H.; Kurt-Jones, E.; Finberg, R.; Fischer, M.A.; et al. Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes 2009, 58, 2525–2535. [Google Scholar] [CrossRef] [PubMed]
Variables | Patients = 210 (100.0) |
---|---|
Male, n (%) | 134 (63.8) |
Female, n (%) | 76 (36.2) |
Hypertension, n (%) | 160 (76.2) |
DM, n (%) | 80 (38.1) |
Smoking, n (%) | 116 (55.2) |
DLP, n (%) | 54 (25.7) |
Previous AMI, n (%) | 37 (17.6) |
Previous PCI, n (%) | 17 (8.1) |
Stroke, n (%) | 8 (3.8) |
CKD | 7 (3.3) |
Patients | 210 (100.0%) |
---|---|
DBT | |
≤60 min, n (%) | 35 (16.7) |
60 min, n (%) | 175 (83.3) |
Culprit artery | |
LCX, n (%) | 37 (17.6) |
LAD, n (%) | 113 (53.8) |
RCA, n (%) | 60 (28.6) |
Angiographic success | |
No, n (%) | 32 (15.2) |
Yes, n (%) | 178 (84.8) |
CAD extension | |
Multivessel, n (%) | 150 (71.4) |
Single-vessel, n (%) | 60 (28.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, A.F.; Oliveira, C.G.C.d.; Oliveira, D.C.d., Jr.; Pereira, M.C.; Carvalho, F.A.; Martins, E.C.C.; Oliveira, D.C.d. Circulating Interleukin-22 in Patients with Acute Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. J. Clin. Med. 2024, 13, 4971. https://doi.org/10.3390/jcm13174971
Correia AF, Oliveira CGCd, Oliveira DCd Jr., Pereira MC, Carvalho FA, Martins ECC, Oliveira DCd. Circulating Interleukin-22 in Patients with Acute Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Journal of Clinical Medicine. 2024; 13(17):4971. https://doi.org/10.3390/jcm13174971
Chicago/Turabian StyleCorreia, Augusto Ferreira, Carolina Gomes Cavalcanti de Oliveira, Dinaldo Cavalcanti de Oliveira, Jr., Michelly Cristina Pereira, Flavio Alisson Carvalho, Estevão Campos Carvalho Martins, and Dinaldo Cavalcanti de Oliveira. 2024. "Circulating Interleukin-22 in Patients with Acute Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention" Journal of Clinical Medicine 13, no. 17: 4971. https://doi.org/10.3390/jcm13174971
APA StyleCorreia, A. F., Oliveira, C. G. C. d., Oliveira, D. C. d., Jr., Pereira, M. C., Carvalho, F. A., Martins, E. C. C., & Oliveira, D. C. d. (2024). Circulating Interleukin-22 in Patients with Acute Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Journal of Clinical Medicine, 13(17), 4971. https://doi.org/10.3390/jcm13174971