Effect of Diflunisal in Patients with Transthyretin Cardiomyopathy: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Oversight
2.2. Patients
2.3. Trial Design
Basal and 12-Month Protocol Studies
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Diflunisal Tolerance
3.3. Changes in Biomarkers
3.4. Changes in Transthoracic Echocardiogram Parameters
3.5. Changes in Cardiac Magnetic Resonance Parameters
3.6. Functional Assessment
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Biomarker Determination
Appendix A.2. Image Acquisition Transthoracic Echocardiography
Appendix A.3. Cardiac Magnetic Resonance Protocol and Image Analysis
Appendix A.4. CMR Analysis
Appendix A.5. Functional Assessment. Six-Minute Walk Test (6MWT)
References
- Ruberg, F.L.; Berk, J.L. Transthyretin (TTR) Cardiac Amyloidosis. Circulation 2012, 126, 1286–1300. [Google Scholar] [CrossRef] [PubMed]
- González-López, E.; López-Sainz, Á.; Garcia-Pavia, P. Diagnóstico y tratamiento de la amiloidosis cardiaca por transtiretina. Progreso y esperanza. Rev. Esp. Cardiol. 2017, 70, 991–1004. [Google Scholar] [CrossRef]
- Jaiswal, V.; Agrawal, V.; Khulbe, Y.; Hanif, M.; Huang, H.; Hameed, M.; Shrestha, A.B.; Perone, F.; Parikh, C.; Gomez, S.I.; et al. Cardiac amyloidosis and aortic stenosis: A state-of-the-art review. Eur. Heart J. Open 2023, 3, oead106. [Google Scholar] [CrossRef]
- Devesa, A.; Blasco, A.C.; Lázaro, A.M.P.; Askari, E.; Lapeña, G.; Talavera, S.G.; Urquía, M.T.; Olleros, C.R.; Tuñón, J.; Ibáñez, B.; et al. Prevalence of transthyretin amyloidosis in patients with heart failure and no left ventricular hypertrophy. ESC Heart Fail. 2021, 8, 2856–2865. [Google Scholar] [CrossRef]
- Maurer, M.S.; Schwartz, J.H.; Gundapaneni, B.; Elliott, P.M.; Merlini, G.; Waddington-Cruz, M.; Kristen, A.V.; Grogan, M.; Witteles, R.; Damy, T. Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. N. Engl. J. Med. 2018, 379, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Sekijima, Y.; Dendle, M.A.; Kelly, J.W. Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid 2006, 13, 236–249. [Google Scholar] [CrossRef]
- Berk, J.L.; Suhr, O.B.; Obici, L.; Sekijima, Y.; Zeldenrust, S.R.; Yamashita, T.; Heneghan, M.A.; Gorevic, P.D.; Litchy, W.J.; Wiesman, J.F. Repurposing diflunisal for familial amyloid polyneuropathy: A randomized clinical trial. JAMA 2013, 310, 2658–2667. [Google Scholar] [CrossRef] [PubMed]
- Castaño, A.; Helmke, S.; Alvarez, J.; Delisle, S.; Maurer, M.S. Diflunisal for ATTR Cardiac Amyloidosis. Congest. Heart Fail. 2012, 18, 315–319. [Google Scholar] [CrossRef]
- Lohrmann, G.; Pipilas, A.; Mussinelli, R.; Gopal, D.M.; Berk, J.L.; Connors, L.H.; Vellanki, N.; Hellawell, J.; Siddiqi, O.K.; Fox, J.; et al. Stabilization of Cardiac Function with Diflunisal in Transthyretin (ATTR) Cardiac Amyloidosis. J. Card. Fail. 2019, 26, 753–759. [Google Scholar] [CrossRef]
- Koyama, J.; Minamisawa, M.; Sekijima, Y.; Ikeda, S.I.; Kozuka, A.; Ebisawa, S.; Miura, T.; Motoki, H.; Okada, A.; Izawa, A. Left ventricular deformation and torsion assessed by speckle-tracking echocardiography in patients with mutated transthyretin-associated cardiac amyloidosis and the effect of diflunisal on myocardial function. Int. J. Cardiol. Heart Vasc. 2015, 9, 1–10. [Google Scholar] [CrossRef]
- Ikram, A.; Donnelly, J.P.; Sperry, B.W.; Samaras, C.; Valent, J.; Hanna, M. Diflunisal tolerability in transthyretin cardiac amyloidosis: A single center’s experience. Amyloid 2018, 25, 197–202. [Google Scholar] [CrossRef]
- Sekijima, Y.; Tojo, K.; Morita, H.; Koyama, J.; Ikeda, S.-I. Safety and efficacy of long-term diflunisal administration in hereditary transthyretin (ATTR) amyloidosis. Amyloid 2014, 22, 79–83. [Google Scholar] [CrossRef]
- Ibrahim, M.; Croix, G.R.S.; Lacy, S.; Fattouh, M.; Barillas-Lara, M.I.; Behrooz, L.; Mechanic, O. The use of diflunisal for transthyretin cardiac amyloidosis: A review. Heart Fail. Rev. 2021, 27, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Gillmore, J. ATTRibute-CM: Acoramidis (AG10) in patients with transthyretin amyloid cardiomyopathy. In Proceedings of the ESC Congress 2023, Amsterdam, The Netherlands, 25–28 August 2023. [Google Scholar]
- Garcia-Pavia, P.; Rapezzi, C.; Adler, Y.; Arad, M.; Basso, C.; Brucato, A.; Burazor, I.; Caforio, A.L.P.; Damy, T.; Eriksson, U.; et al. Diagnosis and treatment of cardiac amyloidosis: A position statement of the ESC Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2021, 42, 1554–1568. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Pavia, P.; Bengel, F.; Brito, D.; Damy, T.; Duca, F.; Dorbala, S.; Nativi-Nicolau, J.; Obici, L.; Rapezzi, C.; Sekijima, Y.; et al. Expert consensus on the monitoring of transthyretin amyloid cardiomyopathy. Eur. J. Heart Fail. 2021, 23, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Dhore-Patil, A.; Modi, V.; Gabr, E.-M.; Bersali, A.; Darwish, A.; Shah, D. Cardiac magnetic resonance findings in cardiac amyloidosis. Curr. Opin. Cardiol. 2024, 39, 395–406. [Google Scholar] [CrossRef]
- Giblin, G.T.; Cuddy, S.A.; González-López, E.; Sewell, A.; Murphy, A.; Dorbala, S.; Falk, R.H. Effect of tafamidis on global longitudinal strain and myocardial work in transthyretin cardiac amyloidosis. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 1029–1039. [Google Scholar] [CrossRef]
- De Gregorio, C.; Trimarchi, G.; Faro, D.C.; De Gaetano, F.; Campisi, M.; Losi, V.; Zito, C.; Tamburino, C.; Di Bella, G.; Monte, I.P. Myocardial Work Appraisal in Transthyretin Cardiac Amyloidosis and Nonobstructive Hypertrophic Cardiomyopathy. Am. J. Cardiol. 2023, 208, 173–179. [Google Scholar] [CrossRef]
- Fontana, M.; Martinez-Naharro, A.; Chacko, L.; Rowczenio, D.; Gilbertson, J.A.; Whelan, C.J.; Strehina, S.; Lane, T.; Moon, J.; Hutt, D.F.; et al. Reduction in CMR Derived Extracellular Volume with Patisiran Indicates Cardiac Amyloid Regression. JACC Cardiovasc. Imaging 2020, 14, 189–199. [Google Scholar] [CrossRef]
- Rettl, R.; Mann, C.; Duca, F.; Dachs, T.-M.; Binder, C.; Ligios, L.C.; Schrutka, L.; Dalos, D.; Koschutnik, M.; Donà, C.; et al. Tafamidis treatment delays structural and functional changes of the left ventricle in patients with transthyretin amyloid cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 2021, 23, 767–780. [Google Scholar] [CrossRef]
- Chamling, B.; Bietenbeck, M.; Korthals, D.; Drakos, S.; Vehof, V.; Stalling, P.; Weil, M.; Meier, C.; Yilmaz, A. Therapeutic value of tafamidis in patients with wild-type transthyretin amyloidosis (ATTRwt) with cardiomyopathy based on cardiovascular magnetic resonance (CMR) imaging. Clin Res Cardiol. 2023, 112, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Gilad, A.; Joshi, T.; Mendelson, L.; Berk, J.; Sanchorawala, V.; Ruberg, F.; Siddiqi, O.; Gopal, D. Treating Transthyretin Amyloid Cardiomyopathy: A comparison of diflunisal and Tafamidis. J. Am. Coll. Cardiol. 2021, 77 (Suppl. S1), 3296. [Google Scholar] [CrossRef]
- Kazi, D.S.; Bellows, B.K.; Baron, S.J.; Shen, C.; Cohen, D.J.; Spertus, J.A.; Yeh, R.W.; Arnold, S.V.; Sperry, B.W.; Maurer, M.S. Cost-Effectiveness of Tafamidis Therapy for Transthyretin Amyloid Cardiomyopathy. Circulation 2020, 141, 1214–1224. [Google Scholar] [CrossRef]
- Gurwitz, J.H.; Maurer, M.S. Tafamidis—A Pricey Therapy for a Not-So-Rare Condition. JAMA Cardiol. 2020, 5, 247–248. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, T.; Martinez-Naharro, A.; Treibel, T.A.; Francis, R.; Nordin, S.; Abdel-Gadir, A.; Knight, D.S.; Zumbo, G.; Rosmini, S.; Maestrini, V.; et al. Myocardial Edema and Prognosis in Amyloidosis. J. Am. Coll. Cardiol. 2018, 71, 2919–2931. [Google Scholar] [CrossRef] [PubMed]
- Tojo, K.; Sekijima, Y.; Kelly, J.W.; Ikeda, S.-I. Diflunisal stabilizes familial amyloid polyneuropathy-associated transthyretin variant tetramers in serum against dissociation required for amyloidogenesis. Neurosci. Res. 2006, 56, 441–449. [Google Scholar] [CrossRef]
- Tsai, F.J.; Nelson, L.T.; Kline, G.M.; Jäger, M.; Berk, J.L.; Sekijima, Y.; Powers, E.T.; Kelly, J.W. Characterising diflunisal as a transthyretin kinetic stabilizer at relevant concentrations in human plasma using subunit exchange. Amyloid 2022, 30, 220–224. [Google Scholar] [CrossRef]
- Maurer, M.S. Overview of Current and Emerging Therapies for Amyloid Transthyretin Cardiomyopathy. Am. J. Cardiol. 2022, 185, S23–S34. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, P.N.; Ando, Y.; Dispenzeri, A.; Gonzalez-Duarte, A.; Adams, D.; Suhr, O.B. Evolving landscape in the management of transthyretin amyloidosis. Ann. Med. 2015, 47, 625–638. [Google Scholar] [CrossRef]
- Cardoso, I.; Brito, M.; Saraiva, M. Extracellular Matrix Markers for Disease Progression and Follow-Up of Therapies in Familial Amyloid Polyneuropathy V30M TTR-Related. Dis. Markers 2008, 25, 37–47. [Google Scholar] [CrossRef]
- Snetkov, P.; Morozkina, S.; Olekhnovich, R.; Uspenskaya, M. Diflunisal Targeted Delivery Systems: A Review. Materials 2021, 14, 6687. [Google Scholar] [CrossRef]
- De Leo, F.; Quilici, G.; Tirone, M.; De Marchis, F.; Mannella, V.; Zucchelli, C.; Preti, A.; Gori, A.; Casalgrandi, M.; Mezzapelle, R. Diflunisal targets the HMGB1/CXCL12 heterocomplex and blocks immune cell recruitment. EMBO Rep 2019, 20, e47788. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.; Torlapati, P.G.; La Fazia, V.M.; Kurt, M.; Gianni, C.; MacDonald, B.; Mayedo, A.; Allison, J.; Bassiouny, M.; Gallinghouse, G.J.; et al. Best anticoagulation strategy with and without appendage occlusion for stroke-prophylaxis in postablation atrial fibrillation patients with cardiac amyloidosis. J. Cardiovasc. Electrophysiol. 2024, 35, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
- Asher, C.; Guilder, A.; Finocchiaro, G.; Carr-White, G.; Rodríguez-Guadarrama, Y. Healthcare resource use associated with the diagnosis of transthyretin amyloidosis cardiomyopathy. Heal. Sci. Rep. 2022, 5, e466. [Google Scholar] [CrossRef] [PubMed]
- Galan, L.; Gonzalez-Moreno, J.; Martínez-Sesmero, J.M.; Muñoz-Beamud, F.; Santos-Rubio, M.D.; Tran, D.; Lebeau, P.; Stewart, M.; Mallaina, P.; Tarilonte, P.; et al. Estimating the annual economic burden for the management of patients with transthyretin amyloid polyneuropathy in Spain. Expert Rev. Pharmacoeconomics Outcomes Res. 2021, 21, 967–973. [Google Scholar] [CrossRef]
- Garcia-Pavia, P.; Aus dem Siepen, F.; Donal, E.; Lairez, O.; Van Der Meer, P.; Kristen, A.V.; Mercuri, M.F.; Michalon, A.; Frost, R.J.A.; Grimm, J. Phase 1 Trial of Antibody NI006 for Depletion of Cardiac Transthyretin Amyloid. N. Engl. J. Med. 2023, 389, 239–250. [Google Scholar] [CrossRef]
VARIABLE | Patients Treated with Diflunisal n = 16 |
---|---|
Age (years, IQR) | 82.2 (78.5–87.0) |
Male/Female | 13/3 |
ATTRm/ATTRwt | 2/14 |
Comorbidities | |
Smoker (%) | 37.5 |
Hypertension (%) | 75.0 |
Diabetes mellitus (%) | 12.5 |
Dyslipidemia (%) | 75.0 |
Obesity (%) | 18.8 |
Coronary artery disease (%) | 11.1 |
Cerebrovascular disease (%) | 6.3 |
Previous heart failure (%) | 37.5 |
Atrial fibrillation (%) | 50 |
Chronic kidney disease (%) | 50.0 |
Carpal tunnel syndrome (%) | 18.8 |
Lumbar canal stenosis (%) | 18.8 |
Polyneuropathy (%) | 12.5 |
Previous Medical Treatment | |
Antiagregants (%) | 6.3 |
Anticoagulants (%) | 43.8 |
SLT2i (%) | 31.3 |
ACEi (%) | 18.8 |
ARB (%) | 18.8 |
MRA (%) | 31.3 |
Beta-blockers (%) | 31.3 |
Antiarrhythmic drugs (%) | 12.5 |
Digoxin (%) | 0 |
VARIABLE | Visit 0 | Visit 1 | p |
---|---|---|---|
Laboratory and Biomarker Determinations | |||
Hb (g/dL± SD) (n = 16) | 14.3 ± 1.7 | 14.0 ± 1.8 | 0.263 |
eGFR (mL/min/1.73 m2, ± SD) (n = 16) | 60.6 ± 14.6 | 52.5 ± 14.7 | 0.036 |
NT-proBNP (pg/mL, IQR) (n = 16) | 1815.0 (1132.5–3642.5) | 2020.0 (836.25–3997.5) | 0.272 |
HsTnI (pg/mL, ± SD) (n = 9) | 154.6 ± 114.9 | 153.1 ± 137.8 | 0.971 |
IL-6 (pg/mL, IQR) (n = 9) | 2.7 (2.4–36.2) | 3.0 (1.3–6.3) | 0.08 |
TIM-1 (pg/mL, ± SD) (n = 9) | 199.6 ± 104.2 | 232.8 ± 131.6 | 0.359 |
Gal3 (pg/mL, ± SD) (n = 9) | 7544.7 ± 2307.5 | 8945.4 ± 3926.3 | 0.303 |
hsCPR (mg/L, ± SD) (n = 9) | 2.4 ± 2.8 | 2.3 ± 1.7 | 0.952 |
CK-MB (ng/mL, ± SD) (n = 9) | 1.7 ± 0.7 | 2.6 ± 1.3 | 0.165 |
NT-ProANP (ng/mL, ± SD) (n = 9) | 65.2 ± 12.6 | 64.5 ± 12.2 | 0.790 |
PTH (pg/mL, ± SD) (n = 9) | 78.9 ± 32.0 | 90.0 ± 43.0 | 0.418 |
Klotho (pg/mL, ± SD) (n = 9) | 535.4 ± 124.6 | 564.5 ± 169.4 | 0.669 |
FGF-23 (RU/mL, IQR) (n = 9) | 257 (126.5–328.5) | 149 (131–207) | 0.499 |
VitD (ng/mL, ± SD) (n = 9) | 33.1 ± 13.2 | 34.7 ± 9.6 | 0.776 |
RBP4 (µg/mL, ± SD) (n = 9) | 28.0 ± 10.5 | 33.6 ± 13.0 | 0.020 |
TIMP-1 (ng/mL, ± SD) (n = 9) | 183.5 ± 31.3 | 201.8 ± 33.1 | 0.069 |
TIMP-2 (ng/mL, ± SD) (n = 9) | 116.9 ± 12.6 | 124.0 ± 22.9 | 0.371 |
MMP-2 (ng/mL, ± SD) (n = 9) | 330.2 ± 47.0 | 339.1 ± 54.9 | 0.619 |
MMP-9 (ng/mL, IQR) (n = 9) | 365 (228–571) | 497.5 (227.8–966.0) | 0.515 |
Prealbumin (mg/dL, IQR) (n = 9) | 26.5 (19.6–28.7) | 32.3 (27.3–33.6) | 0.008 |
VARIABLE | Visit 0 | Visit 1 | p |
---|---|---|---|
Transthoracic Echocardiogram | |||
TAPSE (mm, IQR) (n = 16) | 16.5 (15.3–21.0) | 18.0 (13.5–27.5) | 0.285 |
LVEF Simpson biplane (%, ± SD) (n = 16) | 49.8 ± 11.0 | 51.9 ± 9.6 | 0.303 |
E/E’ (n = 16) | 16.2 ± 4.6 | 16.3 ± 4.7 | 0.947 |
Vein cava diameters (mm) (n = 16) | 16.0 (15.0–18.0) | 15.5 (14.3–17.0) | 0.752 |
GLS LV (%, ± SD) (n = 9) | −11.2 ± 3.9 | −10.6 ± 5.3 | 0.728 |
GLS RV (%, ± SD) (n = 9) | −10.3 ± 4.5 | −9.7 ± 3.5 | 0.523 |
GLS LA (%, ± SD) (n = 9) | 9.1 ± 5.6 | 6.4 ± 6.8 | 0.181 |
Cardiac Magnetic Resonance | |||
LVEF (%, ± SD) (n = 9) | 56 ± 7.2 | 59 ± 8.3 | 0.376 |
LVMi (g/m2, ± SD) (n = 9) | 53.2 ± 32.3 | 71.3 ± 36.0 | 0.139 |
Native T1 (ms, ± SD) (n = 9) | 1424.9 ± 51.9 | 1446.9 ± 54.8 | 0.004 |
Post-contrast T1 (ms, ± SD) (n = 9) | 524.8 ± 68.1 | 499.7 ± 52.9 | 0.130 |
ECV (%, ± SD) (n = 9) | 40.7 ± 8.3 | 42.7 ± 9.4 | 0.415 |
T2 (ms, IQR) (n = 9) | 55.3 (52.7–58.7) | 58.8 (54.6–60.2) | 0.401 |
6-min Walk Test (6MWT) | |||
Distance (m, ± SD) (n = 9) | 238.5 ± 66.7 | 223.8 ± 64.1 | 0.626 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camblor Blasco, A.; Devesa, A.; Nieto Roca, L.; Gómez-Talavera, S.; Lumpuy-Castillo, J.; Pello Lázaro, A.M.; Llanos Jiménez, L.; Sánchez González, J.; Lorenzo, Ó.; Tuñón, J.; et al. Effect of Diflunisal in Patients with Transthyretin Cardiomyopathy: A Pilot Study. J. Clin. Med. 2024, 13, 5032. https://doi.org/10.3390/jcm13175032
Camblor Blasco A, Devesa A, Nieto Roca L, Gómez-Talavera S, Lumpuy-Castillo J, Pello Lázaro AM, Llanos Jiménez L, Sánchez González J, Lorenzo Ó, Tuñón J, et al. Effect of Diflunisal in Patients with Transthyretin Cardiomyopathy: A Pilot Study. Journal of Clinical Medicine. 2024; 13(17):5032. https://doi.org/10.3390/jcm13175032
Chicago/Turabian StyleCamblor Blasco, Andrea, Ana Devesa, Luis Nieto Roca, Sandra Gómez-Talavera, Jairo Lumpuy-Castillo, Ana María Pello Lázaro, Lucía Llanos Jiménez, Javier Sánchez González, Óscar Lorenzo, Jose Tuñón, and et al. 2024. "Effect of Diflunisal in Patients with Transthyretin Cardiomyopathy: A Pilot Study" Journal of Clinical Medicine 13, no. 17: 5032. https://doi.org/10.3390/jcm13175032
APA StyleCamblor Blasco, A., Devesa, A., Nieto Roca, L., Gómez-Talavera, S., Lumpuy-Castillo, J., Pello Lázaro, A. M., Llanos Jiménez, L., Sánchez González, J., Lorenzo, Ó., Tuñón, J., Ibáñez, B., & Aceña, Á. (2024). Effect of Diflunisal in Patients with Transthyretin Cardiomyopathy: A Pilot Study. Journal of Clinical Medicine, 13(17), 5032. https://doi.org/10.3390/jcm13175032