Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) in the Treatment of Bulimia Nervosa (BN): A Review and Insight into Potential Mechanisms of Action
Abstract
:1. Introduction
2. Methods
2.1. Data Sources and Search Strategy
2.2. Study Selection Criteria
2.3. Screening Process
2.3.1. Title and Abstract Screening
2.3.2. Full-Text Assessment
3. Results
3.1. Summary of Included Studies
3.2. Effects on Attention
3.3. Effects on Inhibitory Control
3.4. Effects on Decision-Making
3.5. Effects on Binge Episodes
3.6. Effects on Vomiting Episodes
3.7. Effects on Depression
3.8. Effects on Anxiety
3.9. Effects on Symptoms of Eating Disorders
3.10. Effects on the Severity of Disease
3.11. Effects on Food Craving
3.12. Effects on Functioning
3.13. Effects on Cortisol Concentration
3.14. Effects on Obsessive–Compulsive Symptom
3.15. Effects on Heart Parameters
3.16. Follow-Ups
3.17. Neuroimaging Outcomes
3.18. Safety
4. Discussion
5. Potential Mechanisms of Action of rTMS in BN
5.1. Neuromodulation of Brain Networks
5.2. rTMS Can Induce Neuroplasticity in BN
5.3. Impact of rTMS on Serotoninergic Dysfunction in BN
5.4. Anti-Inflammatory Action of rTMS
5.5. HPA Axis Modulation
6. Limitations and Future Directions
6.1. Sample Size and Generalizability
6.2. Handedness and Demographics
6.3. Short Follow-Up Periods
6.4. Adverse Effects Monitoring
6.5. Complete Outcome Data Missing
6.6. Use of Validated Measurement Tools Instead of Diaries
6.7. Avoid Measuring a Given Pathophysiology or Symptom over a Longer Period of Time
6.8. Focus on Core Symptoms of BN in Future Studies
6.9. Validation of rTMS Protocols
6.10. Use of New Measurement Tools (Neuroimaging, Biomarkers)
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- van Eeden, A.E.; van Hoeken, D.; Hoek, H.W. Incidence, prevalence and mortality of anorexia nervosa and bulimia nervosa. Curr. Opin. Psychiatry 2021, 34, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Harrington, B.C.; Jimerson, M.; Haxton, C.; Jimerson, D.C. Initial evaluation, diagnosis, and treatment of anorexia nervosa and bulimia nervosa. Am. Fam. Physician 2015, 91, 46–52. [Google Scholar] [PubMed]
- Nitsch, A.; Dlugosz, H.; Gibson, D.; Mehler, P.S. Medical complications of bulimia nervosa. Cleve Clin. J. Med. 2021, 88, 333–343. [Google Scholar] [CrossRef]
- Himmerich, H.; Hotopf, M.; Shetty, H.; Schmidt, U.; Treasure, J.; Hayes, R.D.; Stewart, R.; Chang, C.K. Psychiatric comorbidity as a risk factor for the mortality of people with bulimia nervosa. Soc. Psychiatry Psychiatr. Epidemiol. 2019, 54, 813–821. [Google Scholar] [CrossRef]
- Masheb, R.; White, M.A. Bulimia nervosa in overweight and normal-weight women. Compr. Psychiatry 2012, 53, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Westmoreland, P.; Krantz, M.J.; Mehler, P.S. Medical Complications of Anorexia Nervosa and Bulimia. Am. J. Med. 2016, 129, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Agras, W.S. Cognitive Behavior Therapy for the Eating Disorders. Psychiatr. Clin. N. Am. 2019, 42, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Svaldi, J.; Schmitz, F.; Baur, J.; Hartmann, A.S.; Legenbauer, T.; Thaler, C.; von Wietersheim, J.; de Zwaan, M.; Tuschen-Caffier, B. Efficacy of psychotherapies and pharmacotherapies for Bulimia nervosa. Psychol. Med. 2019, 49, 898–910. [Google Scholar] [CrossRef]
- Davis, H.; Attia, E. Pharmacotherapy of eating disorders. Curr. Opin. Psychiatry 2017, 30, 452–457. [Google Scholar] [CrossRef]
- Himmerich, H.; Kan, C.; Au, K.; Treasure, J. Pharmacological treatment of eating disorders, comorbid mental health problems, malnutrition and physical health consequences. Pharmacol. Ther. 2021, 217, 107667. [Google Scholar] [CrossRef]
- Hart, L.M.; Granillo, M.T.; Jorm, A.F.; Paxton, S.J. Unmet need for treatment in the eating disorders: A systematic review of eating disorder specific treatment seeking among community cases. Clin. Psychol. Rev. 2011, 31, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, B.; Touyz, S.; Hay, P.; Burton, A.; Russell, J.; Caterson, I. Neuroimaging in bulimia nervosa and binge eating disorder: A systematic review. J. Eat. Disord. 2018, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Berner, L.A.; Winter, S.R.; Ayaz, H.; Shewokis, P.A.; Izzetoglu, M.; Marsh, R.; Nasser, J.A.; Matteucci, A.J.; Lowe, M.R. Altered prefrontal activation during the inhibition of eating responses in women with bulimia nervosa. Psychol. Med. 2023, 53, 3580–3590. [Google Scholar] [CrossRef] [PubMed]
- Seitz, J.; Hueck, M.; Dahmen, B.; Schulte-Rüther, M.; Legenbauer, T.; Herpertz-Dahlmann, B.; Konrad, K. Attention Network Dysfunction in Bulimia Nervosa—An fMRI Study. PLoS ONE 2016, 11, e0161329. [Google Scholar] [CrossRef] [PubMed]
- Hallett, M. Transcranial magnetic stimulation and the human brain. Nature 2000, 406, 147–150. [Google Scholar] [CrossRef]
- Siebner, H.R.; Funke, K.; Aberra, A.S.; Antal, A.; Bestmann, S.; Chen, R.; Classen, J.; Davare, M.; Di Lazzaro, V.; Fox, P.T.; et al. Transcranial magnetic stimulation of the brain: What is stimulated?—A consensus and critical position paper. Clin. Neurophysiol. 2022, 140, 59–97. [Google Scholar] [CrossRef]
- George, M.S.; Aston-Jones, G. Noninvasive techniques for probing neurocircuitry and treating illness: Vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Neuropsychopharmacology 2010, 35, 301–316. [Google Scholar] [CrossRef]
- Lefaucheur, J.P.; André-Obadia, N.; Antal, A.; Ayache, S.S.; Baeken, C.; Benninger, D.H.; Cantello, R.M.; Cincotta, M.; de Carvalho, M.; De Ridder, D.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 2014, 125, 2150–2206. [Google Scholar] [CrossRef]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A. Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef]
- Fitzgerald, P.B.; Benitez, J.; de Castella, A.; Daskalakis, Z.J.; Brown, T.L.; Kulkarni, J. A randomized, controlled trial of sequential bilateral repetitive transcranial magnetic stimulation for treatment-resistant depression. Am. J. Psychiatry 2006, 163, 88–94. [Google Scholar] [CrossRef]
- Wassermann, E.M. Risk and safety of repetitive transcranial magnetic stimulation: Report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, 5–7 June 1996. Electroencephalogr. Clin. Neurophysiol. 1998, 108, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.J.; Hahn, S.J.; Kim, W.S.; Paik, N.J. Neuronavigation-guided Repetitive Transcranial Magnetic Stimulation for Aphasia. J. Vis. Exp. 2016, 53345. [Google Scholar]
- Luo, X.; Hu, Y.; Wang, R.; Zhang, M.; Zhong, X.; Zhang, B. Individualized rTMS Treatment for Depression using an fMRI-Based Targeting Method. J. Vis. Exp. 2021, e62687. [Google Scholar]
- Cox, J.; Thakur, B.; Alvarado, L.; Shokar, N.; Thompson, P.M.; Dwivedi, A.K. Repetitive transcranial magnetic stimulation for generalized anxiety and panic disorders: A systematic review and meta-analysis. Ann. Clin. Psychiatry 2022, 34, e2–e24. [Google Scholar] [CrossRef]
- Yan, T.; Xie, Q.; Zheng, Z.; Zou, K.; Wang, L. Different frequency repetitive transcranial magnetic stimulation (rTMS) for posttraumatic stress disorder (PTSD): A systematic review and meta-analysis. J. Psychiatr. Res. 2017, 89, 125–135. [Google Scholar] [CrossRef]
- Fernandes, A.M.; Graven-Nielsen, T.; de Andrade, D.C. New updates on transcranial magnetic stimulation in chronic pain. Curr. Opin. Support. Palliat. Care 2022, 16, 65–70. [Google Scholar] [CrossRef]
- Taylor, R.; Galvez, V.; Loo, C. Transcranial magnetic stimulation (TMS) safety: A practical guide for psychiatrists. Australas. Psychiatry 2018, 26, 189–192. [Google Scholar] [CrossRef]
- Hall, P.A.; Vincent, C.M.; Burhan, A.M. Non-invasive brain stimulation for food cravings, consumption, and disorders of eating: A review of methods, findings and controversies. Appetite 2018, 124, 78–88. [Google Scholar] [CrossRef]
- Cavicchioli, M.; Sarzetto, A.; Erzegovesi, S.; Ogliari, A. Is Repetitive Transcranial Magnetic Stimulation (RTMS) a Promising Therapeutic Intervention for Eating Disorders and Obesity? Clinical Considerations Based on a Meta-Analytic Review. Clin. Neuropsychiatry 2022, 19, 314–327. [Google Scholar]
- Duriez, P.; Bou Khalil, R.; Chamoun, Y.; Maatoug, R.; Strumila, R.; Seneque, M.; Gorwood, P.; Courtet, P.; Guillaume, S. Brain Stimulation in Eating Disorders: State of the Art and Future Perspectives. J. Clin. Med. 2020, 9, 2358. [Google Scholar] [CrossRef]
- Gallop, L.; Flynn, M.; Campbell, I.C.; Schmidt, U. Neuromodulation and Eating Disorders. Curr. Psychiatry Rep. 2022, 24, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Dalton, B.; Bartholdy, S.; Campbell, I.C.; Schmidt, U. Neurostimulation in Clinical and Sub-clinical Eating Disorders: A Systematic Update of the Literature. Curr. Neuropharmacol. 2018, 16, 1174–1192. [Google Scholar] [CrossRef] [PubMed]
- Rachid, F. Repetitive transcranial magnetic stimulation in the treatment of eating disorders: A review of safety and efficacy. Psychiatry Res. 2018, 269, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, S.; Gay, A.; Jaussent, I.; Sigaud, T.; Billard, S.; Attal, J.; Seneque, M.; Galusca, B.; Thiebaut, S.; Massoubre, C.; et al. Improving decision-making and cognitive impulse control in bulimia nervosa by rTMS: An ancillary randomized controlled study. Int. J. Eat. Disord. 2018, 51, 1103–1106. [Google Scholar] [CrossRef]
- Gay, A.; Jaussent, I.; Sigaud, T.; Billard, S.; Attal, J.; Seneque, M.; Galusca, B.; Van Den Eynde, F.; Massoubre, C.; Courtet, P.; et al. A Lack of Clinical Effect of High-frequency rTMS to Dorsolateral Prefrontal Cortex on Bulimic Symptoms: A Randomised, Double-blind Trial. Eur. Eat. Disord. Rev. 2016, 24, 474–481. [Google Scholar] [CrossRef]
- Sutoh, C.; Koga, Y.; Kimura, H.; Kanahara, N.; Numata, N.; Hirano, Y.; Matsuzawa, D.; Iyo, M.; Nakazato, M.; Shimizu, E. Repetitive Transcranial Magnetic Stimulation Changes Cerebral Oxygenation on the Left Dorsolateral Prefrontal Cortex in Bulimia Nervosa: A Near-Infrared Spectroscopy Pilot Study. Eur. Eat. Disord. Rev. 2016, 24, 83–88. [Google Scholar] [CrossRef]
- Claudino, A.M.; Van den Eynde, F.; Stahl, D.; Dew, T.; Andiappan, M.; Kalthoff, J.; Schmidt, U.; Campbell, I.C. Repetitive transcranial magnetic stimulation reduces cortisol concentrations in bulimic disorders. Psychol. Med. 2011, 41, 1329–1336. [Google Scholar] [CrossRef]
- Van den Eynde, F.; Broadbent, H.; Guillaume, S.; Claudino, A.; Campbell, I.C.; Schmidt, U. Handedness, repetitive transcranial magnetic stimulation and bulimic disorders. Eur. Psychiatry 2012, 27, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Walpoth, M.; Hoertnagl, C.; Mangweth-Matzek, B.; Kemmler, G.; Hinterhölzl, J.; Conca, A.; Hausmann, A. Repetitive transcranial magnetic stimulation in bulimia nervosa: Preliminary results of a single-centre, randomised, double-blind, sham-controlled trial in female outpatients. Psychother. Psychosom. 2008, 77, 57–60. [Google Scholar] [CrossRef]
- Van den Eynde, F.; Claudino, A.M.; Mogg, A.; Horrell, L.; Stahl, D.; Ribeiro, W.; Uher, R.; Campbell, I.; Schmidt, U. Repetitive transcranial magnetic stimulation reduces cue-induced food craving in bulimic disorders. Biol. Psychiatry 2010, 67, 793–795. [Google Scholar] [CrossRef]
- Van den Eynde, F.; Claudino, A.M.; Campbell, I.C.; Schmidt, U. Immediate cognitive effects of repetitive Transcranial Magnetic Stimulation in eating disorders: A pilot study. Eat. Weight. Disord. 2011, 16, e45–e48. [Google Scholar] [CrossRef] [PubMed]
- Van den Eynde, F.; Claudino, A.M.; Campbell, I.; Horrell, L.; Andiappan, M.; Stahl, D.; Schmidt, U. Cardiac safety of repetitive transcranial magnetic stimulation in bulimic eating disorders. Brain Stimul. 2011, 4, 112–114. [Google Scholar] [CrossRef] [PubMed]
- Hizli Sayar, G.; Ünübol, H.; Omay, O.; Tarhan, K. Successful Administration of Repetitive Transcranial Magnetic Stimulation in a Woman with Bulimia Nervosa Comorbid with Depressive Disorder. J. Neurobehav. Sci. 2018, 5, 124–126. [Google Scholar] [CrossRef]
- Downar, J.; Sankar, A.; Giacobbe, P.; Woodside, B.; Colton, P. Unanticipated Rapid Remission of Refractory Bulimia Nervosa, during High-Dose Repetitive Transcranial Magnetic Stimulation of the Dorsomedial Prefrontal Cortex: A Case Report. Front. Psychiatry 2012, 3, 30. [Google Scholar] [CrossRef]
- Hausmann, A.; Mangweth, B.; Walpoth, M.; Hoertnagel, C.; Kramer-Reinstadler, K.; Rupp, C.I.; Hinterhuber, H. Repetitive transcranial magnetic stimulation (rTMS) in the double-blind treatment of a depressed patient suffering from bulimia nervosa: A case report. Int. J. Neuropsychopharmacol. 2004, 7, 371–373. [Google Scholar] [CrossRef]
- Liang, K.; Li, H.; Bu, X.; Li, X.; Cao, L.; Liu, J.; Gao, Y.; Li, B.; Qiu, C.; Bao, W.; et al. Efficacy and tolerability of repetitive transcranial magnetic stimulation for the treatment of obsessive-compulsive disorder in adults: A systematic review and network meta-analysis. Transl. Psychiatry 2021, 11, 332. [Google Scholar] [CrossRef]
- Lee, H.; Lee, J.H.; Hwang, M.H.; Kang, N. Repetitive transcranial magnetic stimulation improves cardiovascular autonomic nervous system control: A meta-analysis. J. Affect. Disord. 2023, 339, 443–453. [Google Scholar] [CrossRef]
- Fitzgerald, P.B.; Hoy, K.E.; Daskalakis, Z.J. Left handedness and response to repetitive transcranial magnetic stimulation in major depressive disorder. World J. Biol. Psychiatry 2021, 22, 310–314. [Google Scholar] [CrossRef]
- Casey, B.J.; Somerville, L.H.; Gotlib, I.H.; Ayduk, O.; Franklin, N.T.; Askren, M.K.; Jonides, J.; Berman, M.G.; Wilson, N.L.; Teslovich, T.; et al. Behavioral and neural correlates of delay of gratification 40 years later. Proc. Natl. Acad. Sci. USA 2011, 108, 14998–15003. [Google Scholar] [CrossRef]
- Raz, A.; Zhu, H.; Yu, S.; Bansal, R.; Wang, Z.; Alexander, G.M.; Royal, J.; Peterson, B.S. Neural substrates of self-regulatory control in children and adults with Tourette syndrome. Can. J. Psychiatry 2009, 54, 579–588. [Google Scholar] [CrossRef]
- Mischel, W.; Shoda, Y.; Rodriguez, M.I. Delay of gratification in children. Science 1989, 244, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Marsh, R.; Stefan, M.; Bansal, R.; Hao, X.; Walsh, B.T.; Peterson, B.S. Anatomical characteristics of the cerebral surface in bulimia nervosa. Biol. Psychiatry 2015, 77, 616–623. [Google Scholar] [CrossRef]
- Cyr, M.; Wang, Z.; Tau, G.Z.; Zhao, G.; Friedl, E.; Stefan, M.; Terranova, K.; Marsh, R. Reward-based spatial learning in teens with bulimia nervosa. J. Am. Acad. Child. Adolesc. Psychiatry 2016, 55, 962–971.e3. [Google Scholar] [CrossRef]
- Cyr, M.; Yang, X.; Horga, G.; Marsh, R. Abnormal fronto-striatal activation as a marker of threshold and subthreshold Bulimia Nervosa. Hum. Brain Mapp. 2018, 39, 1796–1804. [Google Scholar] [CrossRef]
- Berner, L.A.; Marsh, R. Frontostriatal circuits and the development of bulimia nervosa. Front. Behav. Neurosci. 2014, 8, 395. [Google Scholar] [CrossRef] [PubMed]
- Celone, K.A.; Thompson-Brenner, H.; Ross, R.S.; Pratt, E.M.; Stern, C.E. An fMRI investigation of the fronto-striatal learning system in women who exhibit eating disorder behaviors. Neuroimage 2011, 56, 1749–1757. [Google Scholar] [CrossRef] [PubMed]
- Marsh, R.; Steinglass, J.E.; Gerber, A.J.; Graziano O’leary, K.; Wang, Z.; Murphy, D.; Walsh, B.T.; Peterson, B.S. Deficient activity in the neural systems that mediate self-regulatory control in bulimia nervosa. Arch. Gen. Psychiatry 2009, 66, 51–63. [Google Scholar] [CrossRef]
- Marsh, R.; Horga, G.; Wang, Z.; Wang, P.; Klahr, K.W.; Berner, L.A.; Walsh, B.T.; Peterson, B.S. An FMRI study of self-regulatory control and conflict resolution in adolescents with bulimia nervosa. Am. J. Psychiatry 2011, 168, 1210–1220. [Google Scholar] [CrossRef]
- Skunde, M.; Walther, S.; Simon, J.J.; Wu, M.; Bendszus, M.; Herzog, W.; Friederich, H.-C. Neural signature of behavioural inhibition in women with bulimia nervosa. J. Psychiatry Neurosci. 2016, 41, E69–E78. [Google Scholar] [CrossRef]
- Dunlop, K.; Woodside, B.; Lam, E.; Olmsted, M.; Colton, P.; Giacobbe, P.; Downar, J. Increases in frontostriatal connectivity are associated with response to dorsomedial repetitive transcranial magnetic stimulation in refractory binge/purge behaviors. Neuroimage Clin. 2015, 8, 611–618. [Google Scholar] [CrossRef]
- Han, X.; Zhu, Z.; Luan, J.; Lv, P.; Xin, X.; Zhang, X.; Shmuel, A.; Yao, Z.; Ma, G.; Zhang, B. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses. Eur. J. Radiol. Open 2023, 10, 100495. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, R.; Wiegand, S.; Altar, C.; DiStefano, P.S. Neurotrophic factors: From molecule to man. Trends Neurosci. 1994, 17, 182–190. [Google Scholar] [CrossRef]
- Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front. Cell Neurosci. 2019, 13, 363. [Google Scholar] [CrossRef]
- Hyman, C.; Hofer, M.; Barde, Y.A.; Juhasz, M.; Yancopoulos, G.D.; Squinto, S.P.; Lindsay, R.M. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 1991, 350, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Berton, O.; McClung, C.A.; Dileone, R.J.; Krishnan, V.; Renthal, W.; Russo, S.J.; Graham, D.; Tsankova, N.M.; Bolanos, C.A.; Rios, M.; et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 2006, 311, 864–868. [Google Scholar] [CrossRef]
- Martinowich, K.; Manji, H.; Lu, B. New insights into BDNF function in depression and anxiety. Nat. Neurosci. 2007, 10, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.L.; Caldeira, M.V.; Santos, S.D.; Duarte, C.B. Role of the brain-derived neurotrophic factor at glutamatergic synapses. Br. J. Pharmacol. 2008, 153 (Suppl. S1), S310–S324. [Google Scholar] [CrossRef]
- Nockher, W.A.; Renz, H. Neurotrophins in allergic diseases: From neuronal growth factors to intercellular signaling molecules. J. Allergy Clin. Immunol. 2006, 117, 583–589. [Google Scholar] [CrossRef]
- Lommatzsch, M.; Zingler, D.; Schuhbaeck, K.; Schloetcke, K.; Zingler, C.; Schuff-Werner, P.; Virchow, J.C. The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol. Aging 2005, 26, 115–123. [Google Scholar] [CrossRef]
- Bariohay, B.; Lebrun, B.; Moyse, E.; Jean, A. Brain-derived neurotrophic factor plays a role as an anorexigenic factor in the dorsal vagal complex. Endocrinology 2005, 146, 5612–5620. [Google Scholar] [CrossRef]
- Wang, C.F.; Bomberg, E.; Billington, C.; Levine, A.; Kotz, C.M. Brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus reduces energy intake. Am. J. Physiol.—Regul. Integr. Comp. Physiol. 2007, 293, R1003–R1012. [Google Scholar] [CrossRef] [PubMed]
- Tsao, D.; Thomsen, H.K.; Chou, J.; Stratton, J.; Hagen, M.; Loo, C.; Garcia, C.; Sloane, D.L.; Rosenthal, A.; Lin, J.C. TrkB agonists ameliorate obesity and associated metabolic conditions in mice. Endocrinology 2008, 149, 1038–1048. [Google Scholar] [CrossRef]
- Rios, M.; Fan, G.; Fekete, C.; Kelly, J.; Bates, B.; Kuehn, R.; Lechan, R.M.; Jaenisch, R. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol. Endocrinol. 2001, 15, 1748–1757. [Google Scholar] [CrossRef] [PubMed]
- Shobeiri, P.; Bagherieh, S.; Mirzayi, P.; Kalantari, A.; Mirmosayyeb, O.; Teixeira, A.L.; Rezaei, N. Serum and plasma levels of brain-derived neurotrophic factor in individuals with eating disorders (EDs): A systematic review and meta-analysis. J. Eat. Disord. 2022, 10, 105. [Google Scholar] [CrossRef]
- Phillips, K.; Keane, K.; Wolfe, B.E. Peripheral brain derived neurotrophic factor (BDNF) in bulimia nervosa: A systematic review. Arch. Psychiatr. Nurs. 2014, 28, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Muller-Dahlhaus, F.; Vlachos, A. Unraveling the cellular and molecular mechanisms of repetitive magnetic stimulation. Front. Mol. Neurosci. 2013, 6, 50. [Google Scholar] [CrossRef]
- Wang, H.Y.; Crupi, D.; Liu, J.; Stucky, A.; Cruciata, G.; Di Rocco, A.; Friedman, E.; Quartarone, A.; Ghilardi, M.F. Repetitive transcranial magnetic stimulation enhances BDNF-TrkB signaling in both brain and lymphocyte. J. Neurosci. 2011, 31, 11044–11054. [Google Scholar] [CrossRef]
- Cheeran, B.; Talelli, P.; Mori, F.; Koch, G.; Suppa, A.; Edwards, M.; Houlden, H.; Bhatia, K.; Greenwood, R.; Rothwell, J.C. A common polymorphism in the brain-derived neurotrophic fac- tor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J. Physiol. 2008, 586, 5717–5725. [Google Scholar] [CrossRef]
- Yamada, H.; Yoshimura, C.; Nakajima, T.; Nagata, T. Recovery of low plasma BDNF over the course of treatment among patients with bulimia nervosa. Psychiatry Res. 2012, 198, 448–451. [Google Scholar] [CrossRef]
- Kaye, W.H.; Frank, G.K.; Bailer, U.F.; Henry, S.E.; Meltzer, C.C.; Price, J.C.; Mathis, C.A.; Wagner, A. Serotonin alterations in anorexia and bulimia nervosa: New insights from imaging studies. Physiol. Behav. 2005, 85, 73–81. [Google Scholar] [CrossRef]
- Cuesto, G.; Everaerts, C.; León, L.G.; Acebes, A. Molecular bases of anorexia nervosa, bulimia nervosa and binge eating disorder: Shedding light on the darkness. J. Neurogenet. 2017, 31, 266–287. [Google Scholar] [CrossRef] [PubMed]
- Lyons, W.E.; Mamounas, L.A.; Ricaurte, G.A.; Coppola, V.; Reid, S.W.; Bora, S.H.; Wihler, C.; Koliatsos, V.E.; Tessarollo, L. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc. Natl. Acad. Sci. USA 1999, 96, 15239–15244. [Google Scholar] [CrossRef] [PubMed]
- Kaye, W. Neurobiology of anorexia and bulimia nervosa. Physiol. Behav. 2008, 94, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Azmitia, E.C. Modern views on an ancient chemical: Serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res. Bull. 2001, 56, 413–424. [Google Scholar] [CrossRef]
- Jenkins, T.A.; Nguyen, J.C.; Polglaze, K.E.; Bertrand, P.P. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients 2016, 8, 56. [Google Scholar] [CrossRef]
- Steiger, H.; Bruce, K.R.; Groleau, P. Neural circuits, neurotransmitters, and behavior: Serotonin and temperament in bulimic syndromes. Curr. Top Behav. Neurosci. 2011, 6, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Leibowitz, S.F.; Shor-Posner, G. Brain serotonin and eating behavior. Appetite 1986, 7, 1–14. [Google Scholar] [CrossRef]
- Blundell, J.E. Serotonin and appetite. Neuropharmacology 1984, 23, 1537–1551. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.J. Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology 1999, 21 (Suppl. S2), 99S–105S. [Google Scholar] [CrossRef]
- Soubrie, P. Reconciling the role of central serotonin neurons in human and animal behavior. Behav. Brain Sci. 1986, 9, 319. [Google Scholar] [CrossRef]
- Steiger, H.; Young, S.N.; Kin, N.M.; Koerner, N.; Israel, M.; Lageix, P.; Paris, J. Implications of impulsive and affective symptoms for serotonin function in bulimia nervosa. Psychol. Med. 2001, 31, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Brewerton, T.D.; Brandt, H.A.; Lessem, M.D.; Murphy, D.L.; Jimerson, D.C. Serotonin in eating disorders. In Serotonin in Major Psychiatric disorders. Progress in Psychiatry; Coccaro, E.F., Murphy, D.L., Eds.; American Psychiatric Press, Inc.: Washington, DC, USA, 1990; Volume 21, pp. 155–184. [Google Scholar]
- Kaye, W.; Strober, M.; Jimerson, D. The neurobiology of eating disorders. In The Neurobiology of Mental Illness; Charney, D.S., Nestler, E.J., Eds.; Oxford Press: New York, NY, USA, 2004; pp. 1112–1128. [Google Scholar]
- Bailer, U.F.; Price, J.C.; Meltzer, C.C.; Mathis, C.A.; Frank, G.K.; Weissfeld, L.; McConaha, C.W.; Henry, S.E.; Brooks-Achenbach, S.; Barbarich, N.C.; et al. Altered 5-HT2A receptor binding after recovery from bulimia type anorexia nervosa: Relationships to harm avoidance and drive for thinness. Neuropsychopharmacology 2004, 29, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Tiihonen, J.; Keski-Rahkonen, A.; Lopponen, M.; Muhonen, M.; Kajander, J.; Allonen, T.; Någren, K.; Hietala, J.; Rissanen, A. Brain serotonin 1A receptor binding in bulimia nervosa. Biol. Psychiatry 2004, 55, 871–873. [Google Scholar] [CrossRef] [PubMed]
- Tauscher, J.; Pirker, W.; Willeit, M.; de Zwaan, M.; Bailer, U.; Neumeister, A.; Asenbaum, S.; Lernkh, C.; Praschak-Rieder, N.; Bru¨cke, T.; et al. Beta-CIT and single photon emission computer tomography reveal reduced brain serotonin transporter availability in bulimia nervosa. Biol. Psychiatry 2001, 49, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Baeken, C.; De Raedt, R.; Bossuyt, A.; Van Hove, C.; Mertens, J.; Dobbeleir, A.; Blanckaert, P.; Goethals, I. The impact of HF-rTMS treatment on serotonin(2A) receptors in unipolar melancholic depression. Brain Stimul. 2011, 4, 104–111. [Google Scholar] [CrossRef]
- Sibon, I.; Strafella, A.P.; Gravel, P.; Ko, J.H.; Booij, L.; Soucy, J.P.; Leyton, M.; Diksic, M.; Benkelfat, C. Acute prefrontal cortex TMS in healthy volunteers: Effects on brain C- α Mtrp trapping. Neuroimage 2007, 34, 1658–1664. [Google Scholar] [CrossRef]
- Aceves-Serrano, L.; Neva, J.L.; Doudet, D.J. Insight Into the Effects of Clinical Repetitive Transcranial Magnetic Stimulation on the Brain From Positron Emission Tomography and Magnetic Resonance Imaging Studies: A Narrative Review. Front. Neurosci. 2022, 16, 787403. [Google Scholar] [CrossRef]
- Ferreira, S.A.; Pinto, N.; Serrenho, I.; Pato, M.V.; Baltazar, G. Contribution of glial cells to the neuroprotective effects triggered by repetitive magnetic stimulation: A systematic review. Neural Regen. Res. 2024, 19, 116–123. [Google Scholar] [CrossRef]
- Butler, M.J.; Perrini, A.A.; Eckel, L.A. The Role of the Gut Microbiome, Immunity, and Neuroinflammation in the Pathophysiology of Eating Disorders. Nutrients 2021, 13, 500. [Google Scholar] [CrossRef]
- Buchanan, J.B.; Johnson, R.W. Regulation of food intake by inflammatory cytokines in the brain. Neuroendocrinology 2007, 86, 183–190. [Google Scholar] [CrossRef]
- Tabasi, M.; Anbara, T.; Siadat, S.D.; Kheirvari Khezerloo, J.; Elyasinia, F.; Bayanolhagh, S.; Sadat Safavi, S.A.; Yazdannasab, M.R.; Soroush, A.; Bouzari, S. Socio-demographic Characteristics, Biochemical and Cytokine Levels in Bulimia Nervosa Candidates for Sleeve Gastrectomy. Arch. Iran. Med. 2020, 23, 23–30. [Google Scholar] [PubMed]
- Nakai, Y.; Hamagaki, S.; Takagi, R.; Taniguchi, A.; Kurimoto, F. Plasma concentrations of tumor necrosis factor-alpha (TNF-alpha) and soluble TNF receptors in patients with bulimia nervosa. Clin. Endocrinol. 2000, 53, 383–388. [Google Scholar] [CrossRef]
- MacDowell, K.S.; Díaz-Marsá, M.; Güemes, I.; Rodríguez, A.; Leza, J.C.; Carrasco, J.L. Inflammatory activation and cholinergic anti-inflammatory system in eating disorders. Brain Behav. Immun. 2013, 32, 33–39. [Google Scholar] [CrossRef]
- Misiak, B.; Beszłej, J.A.; Kotowicz, K.; Szewczuk-Bogusławska, M.; Samochowiec, J.; Kucharska-Mazur, J.; Frydecka, D. Cytokine alterations and cognitive impairment in major depressive disorder: From putative mechanisms to novel treatment targets. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 80, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Tateishi, H.; Mizoguchi, Y.; Monji, A. Is the Therapeutic Mechanism of Repetitive Transcranial Magnetic Stimulation in Cognitive Dysfunctions of Depression Related to the Neuroinflammatory Processes in Depression? Front. Psychiatry 2022, 13, 834425. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.W.; Yang, Q.H.; Chen, P.J.; Wang, X.Q. Repetitive transcranial magnetic stimulation regulates neuroinflammation in neuropathic pain. Front. Immunol. 2023, 14, 1172293. [Google Scholar] [CrossRef]
- Guillaume, S.; Gorwood, P.; Jollant, F.; Van den Eynde, F.; Courtet, P.; Richard-Devantoy, S. Impaired decision-making in symptomatic anorexia and bulimia nervosa patients: A meta-analysis. Psychol. Med. 2015, 45, 3377–3391. [Google Scholar] [CrossRef]
- Gassen, J.; Prokosch, M.L.; Eimerbrink, M.J.; Proffitt Leyva, R.P.; White, J.D.; Peterman, J.L.; Burgess, A.; Cheek, D.J.; Kreutzer, A.; Nicolas, S.C.; et al. Inflammation Predicts Decision-Making Characterized by Impulsivity, Present Focus, and an Inability to Delay Gratification. Sci. Rep. 2019, 9, 4928. [Google Scholar] [CrossRef] [PubMed]
- Gassen, J.; Makhanova, A.; Maner, J.K.; Plant, E.A.; Eckel, L.A.; Nikonova, L.; Prokosch, M.L.; Boehm, G.W.; Hill, S.E. Experimentally-Induced Inflammation Predicts Present Focus. Adapt. Hum. Behav. Physiol. 2019, 5, 148–163. [Google Scholar] [CrossRef]
- Fischer, S.; Smith, G.T.; Cyders, M.A. Another look at impulsivity: A meta-analytic review comparing specific dispositions to rash action in their relationship to bulimic symptoms. Clin. Psychol. Rev. 2008, 28, 1413–1425. [Google Scholar] [CrossRef]
- Madison, A.A.; Kiecolt-Glaser, J.K. Are sick people really more impulsive?: Investigating inflammation-driven impulsivity. Psychoneuroendocrinology 2022, 141, 105763. [Google Scholar] [CrossRef] [PubMed]
- Zorzo, C.; Higarza, S.G.; Méndez, M.; Martínez, J.A.; Pernía, A.M.; Arias, J.L. High frequency repetitive transcranial magnetic stimulation improves neuronal activity without affecting astrocytes and microglia density. Brain Res. Bull. 2019, 150, 13–20. [Google Scholar] [PubMed]
- Okada, K.; Matsunaga, K.; Yuhi, T.; Kuroda, E.; Yamashita, U.; Tsuji, S. The long-term high-frequency repetitive transcranial magnetic stimulation does not induce mRNA expression of inflammatory mediators in the rat central nervous system. Brain Res. 2002, 957, 37–41. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, M.; Hao, W.; Wang, Y.; Zhang, T.; Liu, C. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Transl. Psychiatry 2023, 13, 5. [Google Scholar] [CrossRef]
- Cattanach, L.; Malley, R.; Rodin, J. Psychologic and physiologic reactivity to stressors in eating disordered individuals. Psychosom. Med. 1988, 50, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Dallman, M.F.; la Fleur, S.E.; Pecoraro, N.C.; Gomez, F.; Houshyar, H.; Akana, S.F. Minireview: Glucocorticoids—food intake, abdominal obesity, and wealthy nations in 2004. Endocrinology 2004, 145, 2633–2638. [Google Scholar] [CrossRef]
- Culbert, K.M.; Racine, S.E.; Klump, K.L. Hormonal Factors and Disturbances in Eating Disorders. Curr. Psychiatry Rep. 2016, 18, 65. [Google Scholar] [CrossRef]
- Fichter, M.M.; Pirke, K.M. Effect of experimental and pathological weight loss upon the hypothalamo-pituitary-adrenal axis. Psychoneuroendocrinology 1986, 11, 295–305. [Google Scholar] [CrossRef]
- Pike, K.M.; Wilfley, D.; Hilbert, A.; Fairburn, C.G.; Dohm, F.A.; Striegel-Moore, R.H. Antecedent life events of binge-eating disorder. Psychiatry Res. 2006, 142, 19–29. [Google Scholar] [CrossRef]
- Welch, S.L.; Doll, H.A.; Fairburn, C.G. Life events and the onset of bulimia nervosa: A controlled study. Psychol. Med. 1997, 27, 515–522. [Google Scholar] [CrossRef]
- Smyth, J.M.; Wonderlich, S.A.; Heron, K.E.; Sliwinski, M.J.; Crosby, R.D.; Mitchell, J.E.; Engel, S.G. Daily and momentary mood and stress are associated with binge eating and vomiting in bulimia nervosa patients in the natural environment. J. Consult. Clin. Psychol. 2007, 75, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Kaye, W.H.; Gwirtsman, H.E.; George, D.T. The effect of bingeing and vomiting on hormonal secretion. Biol. Psychiatry 1989, 25, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Weltzin, T.E.; McConaha, C.; McKee, M.; Hsu, L.K.; Perel, J.; Kaye, W.H. Circadian patterns of cortisol, prolactin, and growth hormonal secretion during bingeing and vomiting in normal weight bulimic patients. Biol. Psychiatry 1991, 30, 37–48. [Google Scholar] [CrossRef]
- Koo-Loeb, J.H.; Pedersen, C.; Girdler, S.S. Blunted cardiovascular and catecholamine stress reactivity in women with bulimia nervosa. Psychiatry Res. 1998, 80, 13–27. [Google Scholar] [CrossRef]
- Birketvedt, G.S.; Drivenes, E.; Agledahl, I.; Sundsfjord, J.; Olstad, R.; Florholmen, J.R. Bulimia nervosa—A primary defect in the hypothalamic-pituitary-adrenal axis? Appetite 2006, 22, 1–4. [Google Scholar]
- Swanson, S.A.; Crow, S.J.; Le Grange, D.; Swendsen, J.; Merikangas, K.R. Prevalence and correlates of eating disorders in adolescents: Results from the national comorbidity survey replication adolescent supplement. Arch. Gen. Psychiatry 2011, 68, 714–723. [Google Scholar] [CrossRef]
- Puccio, F.; Fuller-Tyszkiewicz, M.; Ong, D.; Krug, I. A systematic review and meta-analysis on the longitudinal relationship between eating pathology and depression. Int. J. Eat. Disord. 2016, 49, 439–454. [Google Scholar] [CrossRef]
- Beebe, D.W. Bulimia nervosa and depression: A theoretical and clinical appraisal in light of the binge-purge cycle. Br. J. Clin. Psychol. 1994, 33, 259–276. [Google Scholar] [CrossRef] [PubMed]
- Pisetsky, E.M.; Wonderlich, S.A.; Crosby, R.D.; Peterson, C.B.; Mitchell, J.E.; Engel, S.G.; Joiner, T.E.; Bardone-Cone, A.; Le Grange, D.; Klein, M.H.; et al. Depression and personality traits associated with emotion dysregulation: Correlates of suicide attempts in women with bulimia nervosa. Eur. Eat. Disord. Rev. 2015, 23, 537–544. [Google Scholar] [CrossRef]
- Azzi, R.; Samaha, S.; Malaeb, D.; Akel, M.; Azzi, V.; Hallit, S.; Obeid, S. The association between mental health and Bulimia Nervosa among a sample of Lebanese young adults: The indirect effect of difficulties in emotion regulation. BMC Psychiatry 2023, 23, 335. [Google Scholar] [CrossRef]
- Hsu, T.W.; Yeh, T.C.; Kao, Y.C.; Thompson, T.; Brunoni, A.R.; Carvalho, A.F.; Tu, Y.K.; Tseng, P.T.; Yu, C.L.; Cheng, S.L.; et al. Response trajectory to left dorsolateral prefrontal rTMS in major depressive disorder: A systematic review and meta-analysis: Trajectory of rTMS. Psychiatry Res. 2024, 338, 115979. [Google Scholar] [CrossRef] [PubMed]
- Hsu, T.W.; Yeh, T.C.; Kao, Y.C.; Thompson, T.; Brunoni, A.R.; Carvalho, A.F.; Hsu, C.W.; Tu, Y.K.; Liang, C.S. The dose-effect relationship of six stimulation parameters with rTMS over left DLPFC on treatment-resistant depression: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2024, 162, 105704. [Google Scholar] [CrossRef] [PubMed]
- Sjögren, M.; Nielsen, A.S.M.; Hasselbalch, K.C.; Wøllo, M.; Hansen, J.S. A systematic review of blood-based serotonergic biomarkers in Bulimia Nervosa. Psychiatry Res. 2019, 279, 155–171. [Google Scholar] [CrossRef] [PubMed]
Study | Sample Size | Study Design | rTMS Parameters | Outcomes Measured | Key Results |
---|---|---|---|---|---|
[34] | 39 (17 real, 22 sham) | Randomized Controlled Trial (RCT) | 10 Hz, 110% motor threshold, 20 trains of 5 s with 55 s intervals, left DLPFC, 1000 pulses/session | Inhibitory control (Go/No-Go, BIS), Decision-making (IGT), Sustained attention (D2 Test) | Improved inhibitory control in real rTMS group; No significant change in decision-making; Positive change in sustained attention in both groups |
[35] | 47 (23 real, 24 sham) | RCT | 10 Hz, 110% motor threshold, 20 trains of 5 s with 55 s intervals, left DLPFC, 1000 pulses/session | Binge episodes, Vomiting episodes, Depression (MADRS) | No significant reduction in binge episodes; No significant reduction in vomiting episodes; Marginally significant drop in depression score |
[36] | 8 | Single-group pre-post study | 10 Hz, 110% motor threshold, 15 trains of 5 s with 55 s intervals, left DLPFC, 1000 pulses/session | Food craving (FCQ-SS), Anxiety (HADS), Depression (HADS), Eating disorder symptoms (EDI-2, EDEQ), Disease severity (CGI), Functioning (GAF) | Non-significant reduction in eating disorder symptoms; Significant improvement in anxiety and functioning; No significant effect on food craving or disease severity |
[37] | 22 (11 real, 11 sham) | Double-blind RCT | 10 Hz, 110% motor threshold, 20 trains of 5 s with 55 s intervals, left DLPFC, 1000 pulses/session | Food craving (FCQ-S, VAS), Cortisol concentration | Real rTMS group less likely to have binge episodes; Trend towards reducing food cravings; Significantly lower cortisol concentration in real rTMS group |
[38] | 21 (7 left-handed, 14 right-handed) | Single-group pre-post study | 10 Hz, 110% motor threshold, 20 trains of 5 s with 55 s intervals, left DLPFC, 1000 pulses/session | Food craving (FCQ-S), Mood (VAS) | Reduction in food craving (FCQ-S); Worsening of mood in left-handed participants |
[39] | 14 (7 real, 7 sham) | RCT | 20 Hz, 120% motor threshold, 10 trains of 10 s with 60 s intervals, left DLPFC, 2000 pulses/session | Binge episodes, Vomiting episodes, Depression (HDRS, BDI), Obsessive-compulsive symptoms (YBOCS) | Decrease in binge and vomiting episodes in both groups; Improvement in self-rated depression (BDI) and obsessive–compulsive symptoms (YBOCS) |
[40] | 37 (17 real, 20 sham) | RCT | 10 Hz, 110% motor threshold, 20 trains of 5 s with 55 s intervals, left DLPFC, 1000 pulses/session | Food craving (FCQ-S), Urge to eat, Hunger, Mood, Tension (VAS) | Significant reduction in urge to eat in real rTMS group; Improvement in food craving (FCQ-S) in both groups, greater in real rTMS |
[41] | 33 (15 real, 18 sham) | RCT | 10 Hz, 110% motor threshold, 20 trains of 5 s with 55 s intervals, left DLPFC | Selective attention (Stroop Color Word Task) | No improvement in selective attention |
[42] | 38 (18 real, 20 sham) | RCT | 10 Hz, 110% motor threshold, 20 trains of 5 s with 55 s intervals, left DLPFC | Blood pressure, Heart rate | No effect on blood pressure or heart rate |
[43] | 1 | Single case study | 25 Hz, 110% motor threshold, 2 s trains with 25 s intervals, left DLPFC | Depression (HDRS), Binge-purge episodes | Significant reduction in depression and binge–purge behaviors; Complete remission by the third week |
[44] | 1 | Single case study | 10 Hz, 120% motor threshold, 60 trains of 5 s with 10 s intervals, bilateral DMPFC, 3000 pulses/session | Depression (BDI-II, HDRS), Binge-purge episodes | Complete remission of depression and disordered eating; Relapse after 64 days |
[45] | 1 | Single case study | 20 Hz, 80% motor threshold, 10 trains of 10 s with 60 s intervals, left DLPFC | Depression (HDRS, BDI), Binge-purge episodes | 50% reduction in depression (HDRS); No binge–purge episodes post-treatment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmiel, J.; Stępień-Słodkowska, M. Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) in the Treatment of Bulimia Nervosa (BN): A Review and Insight into Potential Mechanisms of Action. J. Clin. Med. 2024, 13, 5364. https://doi.org/10.3390/jcm13185364
Chmiel J, Stępień-Słodkowska M. Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) in the Treatment of Bulimia Nervosa (BN): A Review and Insight into Potential Mechanisms of Action. Journal of Clinical Medicine. 2024; 13(18):5364. https://doi.org/10.3390/jcm13185364
Chicago/Turabian StyleChmiel, James, and Marta Stępień-Słodkowska. 2024. "Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) in the Treatment of Bulimia Nervosa (BN): A Review and Insight into Potential Mechanisms of Action" Journal of Clinical Medicine 13, no. 18: 5364. https://doi.org/10.3390/jcm13185364
APA StyleChmiel, J., & Stępień-Słodkowska, M. (2024). Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) in the Treatment of Bulimia Nervosa (BN): A Review and Insight into Potential Mechanisms of Action. Journal of Clinical Medicine, 13(18), 5364. https://doi.org/10.3390/jcm13185364