The Role of Sodium Glucose Co-Transporter 2 Inhibitors in Atrial Fibrillation: A Comprehensive Review
Abstract
:1. Introduction
2. Pathophysiological Mechanisms
2.1. Mitochondrial Dysfunction and Oxidative Stress
2.2. Inflammatory Response and Atrial Fibrosis
2.3. Uric Acid—Ion Balance—Diuretic and Natriuretic Effects—Diastolic Function
2.4. Hypoglycemia and Body Weight Reduction
2.5. Regulation of Autonomic Nervous System Activity
2.6. Erythropoiesis and Hematocrit Levels
3. Clinical Data
3.1. SGLT2is and AF Incidence
3.1.1. RCTs
3.1.2. Observational Studies
Study ID | Setting (Country) | Type of Study | Population | SGLT2is | Follow-Up | Main Outcomes |
---|---|---|---|---|---|---|
Zelniker et al., 2020 [82] | 882 participating institutions in 33 countries | RCT (post-hoc analysis) | Patients with T2DM and either multiple risk factors for atherosclerotic CVD (n = 10,186) or known atherosclerotic CVD (n = 6974) in the DECLARE-TIMI 58 trial, irrespectively of baseline prevalence of AF/AFL. | DAPA | 50.4 months | DAPA reduced the risk of AF/AFL events by 19% (7.8 vs. 9.6 events per 1000 patient-years; HR 0.81, 95% CI: [0.68–0.95], p = 0.009). There was no effect modification by sex, history of ischemic stroke, HbA1c, BMI, BP, or eGFR (all p for interaction > 0.20). DAPA also reduced the total number (first and recurrent) of AF/AFL events (337 vs. 432; incidence rate ratio 0.77, 95% CI: [0.64–0.92], p = 0.005). |
Butt et al., 2022 [83] | 410 participating institutions in 20 countries | RCT (post-hoc analysis) | Patients with HFrEF (LVEF ≤ 40%) and without AF (history of AF or AF on enrolment ECG) in the DAPA-HF trial (n = 2834). | DAPA | 18.2 months | Among patients without AF at baseline, DAPA did not significantly decrease the risk of new-onset AF compared with placebo (2.8 vs. 3.3 events per 100 person-years respectively; HR 0.86, 95% CI: [0.60–1.22]). |
Li et al., 2022 [84] | 667 participating institutions in 30 countries | RCT (post-hoc pooled analysis) | Participants with T2DM and high risk of CVD or CKD were included and randomly assigned to CANA or placebo. Pooled analysis from CANVAS Program and CREDENCE trial. | CANA | 47 months | CANA had no detectable effect on AF/AFL events (HR 0.82, 95% CI: [0.67–1.02]) compared with placebo. Subgroup analysis, however, suggested a possible reduction in AF/AFL in those with no AF/AFL history at baseline (HR 0.78, 95% CI: [0.62–0.99]). Results were similar after adjusting for age, gender, BMI, HbA1c, and eGFR. |
Persson et al., 2018 [93] | Denmark, Norway, and Sweden | Observational Multinational Retrospective Study (CVD-REAL Nordic) | Patients with T2DM (n = 10,227 new users of DAPA and n = 30,681 new users of DPP4i) matched 1:3 by PS. | DAPA | 11.4 months | DAPA was not associated with a lower risk of new-onset AF incidence compared to DPP4is (1.47/100 patient-years vs. 1.58/100 patient-years, respectively, HR 0.92, 95% CI: [0.76–1.12]). |
Ling et al., 2020 [85] | Chang Gung Memorial Hospital (Taiwan) | Observational Retrospective Single-center Study | Patients with T2DM and without AF at baseline (n = 15,606 and n = 12,383 treated with SGLT2is and DPP4i, respectively). PS weighting was used to balance covariates across study groups. | EMPA DAPA CANA | 17.76 and 12.6 months for SGLT2i and DPP4i groups, respectively | The use of SGLT2is was associated with a lower risk of new-onset AF compared with DPP4i (HR 0.61, 95% CI: [0.50–0.73], p < 0.001). Subgroup analysis revealed similar antiarrhythmic results across several subgroups including old age, females, the presence of CVD, HBA1c, and CKD. |
Tanaka et al., 2021 [92] | Kobe University Hospital of Japan | Observational Retrospective Single-center Study | Patients with non-ischemic DCM (n = 218) without AF at baseline and LVEF < 45%. | EMPA DAPA CANA | 6.1 years | Of the 60 patients with T2DM, the SGLT2i users (32 patients (53.3%)) experienced fewer episodes of new-onset AF compared to non-SGLT2i users (log-rank p = 0.04). |
Zhou et al., 2022 [91] | First Affiliated Hospital of Anhui Medical University (China) | Observational Retrospective Single-center Study | Patients with HF (n = 903), including 78 participants with AF and 825 participants without AF at baseline. | EMPA DAPA CANA | N/A | SGLT2i users experienced a lower prevalence of AF (8.4% vs. 12.1%, p < 0.001) and a lower risk of developing AF (OR 0.76, 95% CI: [0.70–0.85], p < 0.001) compared to non-SGLT2i users. The effect of SGLT2is on AF episodes was consistent irrespectively of age, gender, BMI, and eGFR. |
Lee et al., 2022 [86] | Hong Kong (China) | Observational Retrospective Population-based Cohort Study | Patients with T2DM (n = 61,233) treated with SGLT2is (n = 21,713) or DPP4is (n = 39,510). PS matching (1:1 ratio) was performed. | EMPA DAPA CANA ERTU | 67.6 months | Patients treated with SGLT2is demonstrated lower incidence of new-onset AF (1.96% vs. 2.78%, SMD = 0.05) compared to DPP4i users. Cox regression found that SGLT2i users showed lower risk of new-onset AF (HR 0.68, 95% CI: [0.56–0.83], p = 0.0001) after adjusting for significant confounder factors. |
Chan et al., 2022 [87] | Taiwan | Observational Nationwide Retrospective Cohort Study | Patients with T2DM without preexisting AF receiving GLP-1RA (n = 344,893), SGLT2i (n = 44,370), and DPP4i (n = 393,100) were enrolled. A 1:1 PS matching to balance covariates across paired study groups was used. | EMPA DAPA CANA ERTU | 2.03 and 2.01 years for the paired SGLT2i and DPP4i groups, and 2.24 and 2.24 years for the SGLT2i and GLP-1RA groups, respectively | SGLT2i administration was associated with lower risk of new-onset AF compared with either DPP4i (HR 0.90, 95% CI: [0.84–0.96], p = 0.0028) or GLP-1RA (HR 0.74; 95% CI: [0.63–0.88], p = 0.0007) treatment after PSM. After subgroup analysis, DAPA was associated with a lower risk of new-onset AF compared with DPP4i (p interaction = 0.02) |
Zhuo et al., 2022 [88] | USA | Observational Nationwide Retrospective Cohort Study | Patients (aged ≥66 years) with T2DM and without known history of AF who were enrolled in Medicare fee-for-service. New users of SGLT2is were 1:1 PS-matched to new users of a DPP-4i (n = 74,868) or GLP-1RA (n = 80,475). | EMPA DAPA CANA | 191 and 214 days among SGLT2i and DPP4i users, respectively, and 188 and 173 days among SGLT2i and GLP-1RA users, respectively | The risk of incident AF was lower in the SGLT2i users than the matched DPP4i arm (HR 0.82, 95% CI: [0.76–0.89]; RD–3.7, 95% CI: [−5.2 to −2.2] per 1000 person-years) or the matched GLP-1RA group (HR 0.90, 95% CI: [0.83–0.98], RD −1.8, 95% CI: [−3.2 to −0.3] per 1000 person-years). |
Hsiao et al., 2022 [95] | Taiwan | Observational Multicenter Retrospective Cohort Study | Patients with T2DM treated either with SGLT2is (n = 16,566) or GLP-1RAs (n = 2746). PS weighting was used to balance the baseline covariates. | EMPA DAPA CANA | 1.52 ± 0.74 years for the SGLT2i users and 1.33 ± 1.12 years for the GLP-1RA group | SGLT2i users experienced a significantly lower risk of new-onset AF compared with GLP-1RA users (sub-distribution HR 0.72, 95% CI: [0.54–0.97], p = 0.028). Subgroup analysis revealed similar findings among different high-risk subgroups like older patients, female patients, and patients with CVD or CKD. |
Jhuo et al., 2022 [96] | Kaohsiung Medical University Hospital of Taiwan | Observational, Retrospective, Single-Center Study | Patients with T2DM (n = 9609) without a known history of arrhythmia and antiarrhythmic medication who were prescribed SGLT2i (n = 3203) vs. non-SGLT2i users (n = 6406). | N/A | 51.50 ± 4.23 months | Multivariate analysis showed that SGLT2i administration was associated with significantly lower incidence of new-onset AF (HR 0.56, 95% CI: [0.35–0.88], p = 0.013) than for non-SGLT2i users. |
Cesaro et al., 2022 [94] | Italy Belgium Bulgaria | Observational Multicenter International Retrospective Cohort Study | Patients with T2DM and AMI (n = 646) from the SGLT2i AMI PROTECT registry (NCT05261867). SGLT2i users (n = 111) before AMI were compared to non-SGLT2i users (n = 535). | N/A | 5 days (hospital stay) | In the multivariate logistic regression model, SGLT2i administration was associated with the lower occurrence of NOCAs (OR 0.35, 95% CI: [0.14–0.86], p = 0.022), but it was not an independent predictor of AF occurrence, which showed a reduction, without reaching statistical significance (OR 0.40, 95% CI: [0.14–1.14], p = 0.086). |
Engström et al., 2023 [89] | Denmark Norway Sweden | Observational Multicenter International Retrospective Cohort Study | Patients with T2DM without a history of AF who were newly prescribed an SGLT2i (n = 79,343) or an GLP-1RA (n = 57,613) adjusted for baseline covariates with PS weighting. | EMPA DAPA CANA ERTU | N/A | The adjusted incidence rate of new-onset AF was 8.6 per 1000 person-years for new SGLT2i users compared with 10.0 per 1000 person-years for new GLP-1RA users (adjusted HR 0.89, 95% CI: [0.81–0.96]). No statistically significant heterogeneity of the adjusted HRs was observed between subgroups of patients with and without a history of HF or CVD. |
Fawzy et al., 2023 [97] | More than 60 centers including in TriNetX global research network across seven countries (mainly in USA) | Observational Retrospective Cohort Study | Patients with T2DM who were treated either with (n = 131,189) or without SGLT2is (n = 2,692,985). After PSM, 131,188 patients remained in each group. | N/A | 24 months | Patients who were treated with SGLT2is were experienced a significantly lower risk of incident AF compared to non-SGLT2i users (HR 0.81, 95% CI: [0.76–0.84]). |
Lui et al., 2023 [90] | Hong Kong Hospital Authority | Observational, Population-based, Retrospective Cohort Study | 5840 patients with T2DM (2920 SGLT2i users; 2920 GLP-1RA users) were matched one to one by PS. | EMPA DAPA CANA | 17 months | SGLT2i administration was associated with lower risk of incident AF (HR 0.43, 95% CI: [0.23–0.79], p = 0.006) compared to GLP-1RA users. |
Eroglu et al., 2024 [98] | UK | Observational, Population-based, Retrospective Cohort Study | Patients with T2DM who initiated a new antidiabetic drug class without a diagnosis of AF or AFL (n = 142,447). | N/A | N/A | SGLT2is were associated with a statistically significant decreased risk of AF compared to other hypoglycemic agents (aHR 0.77, 95% CI: [0.68–0.88]) |
Li et al., 2024 [99] | USA | Observational Retrospective Cohort Study | Older patients with T2DM and no history of AF (n = 97,436) who were prescribed either SGLT2is or DPP4is. | EMPA DAPA CANA | 361 days | SGLT2is were associated with a significantly lower risk of incident AF (HR 0.73, 95% CI: [0.57–0.91], p = 0.01) than DPP4is. Non-Hispanic white individuals and patients with existing CVD or CKD experienced significantly lower risk in subgroup analysis. |
3.2. SGLT2is and AF Recurrence
3.2.1. RCTs
3.2.2. Observational Studies
Study ID | Setting (Country) | Type of Study | Population | SGLT2i | Follow-Up | Outcomes |
---|---|---|---|---|---|---|
Haloot et al., 2021 [103] | 48 Healthcare Organizations including in TriNetX global research network (mainly in the United States) | Observational Retrospective Cohort Study | AF patients on a SGLT2i (n = 26,294) and not on a SGLT2i (n = 1,368,518). After propensity score matching, 26,269 patients in each cohort. | EMPA DAPA CANA | N/A | SGLT2i administration was associated with significantly decreased risk of cardioversion (HR 0.921, 95% CI: [0.841–0.999], p = 0.0245). |
Kishima et al., 2022 [102] | Hyogo College of Medicine, Nishinomiya (Japan) | RCT | AF patients with T2DM (n = 70) after AF ablation. Randomization 1:1 (tofogliflozin vs. anagliptin group). | TOFO | N/A | AF recurrence rate was higher in the anagliptin arm compared to the TOFO arm (15 of 32 patients [47%] vs. 9 of 38 patients [24%], p = 0.0417). |
Luo et al., 2022 [104] | First Affiliated Hospital of Zhengzhou University (China) | Observational Retrospective Cohort Study | Patients with T2DM and AF, who underwent AF ablation. SGLT2is group (n = 79) and the control group (n = 247). | DAPA | 15.5 ± 8.9 months | The DAPA group had a lower AF recurrence rate than the control group (27.8% vs. 44.9%, p = 0.007). Treatment with DAPA was associated with a lower risk of recurrence of atrial arrhythmias (HR 0.614, 95% CI: [0.387–0.974], p = 0.038) in multivariable Cox regression models. |
Abu-Qaoud et al., 2023 [100] | TriNetX research network | Observational Retrospective Cohort Study | Patients with T2DM after CA for AF were divided by PSM into SGLT2i users (n = 2225) and non-SGLT2i users (n = 2225). | N/A | 12 months | Patients receiving gliflozins were experienced a significantly lower risk of cardioversion, new AAD therapy, and re-do AF ablation compared to controls (aOR 0.68, 95% CI: [0.602–0.776], p < 0.0001). |
Liu et al., 2023 [105] | Chang Gung Memorial Hospital (Taiwan) | Observational, Retrospective, Single-Center Study | Patients with AF and T2DM (n = 122) undergoing CA. | EMPA DAPA CANA | 12 months | The maintenance of sinus rhythm rate was significantly higher in the SGLT2i-treated patients compared to controls (92.5% vs. 72.1%, respectively, p = 0.015), and SGLT2i administration was independently associated with AF recurrence after CA (HR 0.18, 95% CI: [0.04–0.79], p = 0.023). |
Zhao et al., 2023 [106] | China | Observational, Retrospective, Multicenter Study | Patients with T2DM and AF undergoing initial CA were included. SGLT2i users (n = 138) were matched by PSM with non-SGLT2i users (n = 387) in a 1:3 ratio. | N/A | 18 months | Patients receiving SGLT2is experienced a significantly lower AF recurrence rate compared with the non-SGLT2i users (HR 0.63, 95% CI: [0.44–0.90], p = 0.007). |
Qi et al., 2024 [107] | Beijing Chaoyang Hospital (China) | Observational, Retrospective, Single-Center Study | Patients with T2DM and persistent AF (n = 182), undergoing their first radiofrequency ablation. | EMPA DAPA | 16.2 months | SGLT2i users experienced a significantly lower risk of AF recurrence compared to non-SGLT2i users (adjusted HR 0.65, 95% CI: [0.28–0.83], p < 0.01). |
Noh et al., 2024 [108] | Veterans’ Health Service Medical Center (Korea) | Observational, Retrospective, Single-Center Study | Patients who underwent AF CA (n = 272), including non-SGLT2i users (n = 199) and DAPA users (n = 73). | DAPA | 18 months | SGLT2i administration was associated with a significantly decreased risk of AF recurrence (aHR 0.15, 95% CI: [0.07–0.32], p < 0.001). DAPA users experienced a significantly higher period without total arrhythmia recurrence compared to non-DAPA users (log-rank test p < 0.01) |
Fichadiya et al., 2024 [109] | Alberta (Canada) | Observational, Retrospective Population-based Cohort Study | Patients with T2DM and AF (n = 2242) were included. Adults prescribed SGLT2is were matched 1:1 to those prescribed DPP4is based on time-conditional PS. | CANA DAPA EMPA | 36 months | The primary endpoint (a composite of AF-related healthcare utilization, i.e., hospitalization, ED visits, electrical cardioversion, or CA) occurred in 8.7% (n = 97) of the SGLT2i users compared to 10.0% (n = 112) of DPP4i users (aHR 0.73, 95% CI: [0.55–0.96], p = 0.03). |
3.2.3. Meta-Analyses
4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef] [PubMed]
- Yiin, G.S.C.; Howard, D.P.J.; Paul, N.L.M.; Li, L.; Luengo-Fernandez, R.; Bull, L.M.; Welch, S.J.V.; Gutnikov, S.A.; Mehta, Z.; Rothwell, P.M. Age-Specific Incidence, Outcome, Cost, and Projected Future Burden of Atrial Fibrillation–Related Embolic Vascular Events. Circulation 2014, 130, 1236–1244. [Google Scholar] [CrossRef] [PubMed]
- Karamichalakis, N.; Kolovos, V.; Paraskevaidis, I.; Tsougos, E. A New Hope: Sodium-Glucose Cotransporter-2 Inhibition to Prevent Atrial Fibrillation. J. Cardiovasc. Dev. Dis. 2022, 9, 236. [Google Scholar] [CrossRef]
- Ding, W.Y.; Proietti, M.; Romiti, G.F.; Vitolo, M.; Fawzy, A.M.; Boriani, G.; Marin, F.; Blomström-Lundqvist, C.; Potpara, T.S.; Fauchier, L.; et al. Impact of ABC (Atrial Fibrillation Better Care) Pathway Adherence in High-Risk Subgroups with Atrial Fibrillation: A Report from the ESC-EHRA EORP-AF Long-Term General Registry. Eur. J. Intern. Med. 2023, 107, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Romiti, G.F.; Proietti, M.; Bonini, N.; Ding, W.Y.; Boriani, G.; Huisman, M.V.; Lip, G.Y.H. Adherence to the Atrial Fibrillation Better Care (ABC) Pathway and the Risk of Major Outcomes in Patients with Atrial Fibrillation: A Post-Hoc Analysis from the Prospective GLORIA-AF Registry. EClinicalMedicine 2023, 55, 101757. [Google Scholar] [CrossRef]
- Bosco, E.; Hsueh, L.; McConeghy, K.W.; Gravenstein, S.; Saade, E. Major Adverse Cardiovascular Event Definitions Used in Observational Analysis of Administrative Databases: A Systematic Review. BMC Med. Res. Methodol. 2021, 21, 241. [Google Scholar] [CrossRef]
- Papazoglou, A.S.; Kartas, A.; Moysidis, D.V.; Tsagkaris, C.; Papadakos, S.P.; Bekiaridou, A.; Samaras, A.; Karagiannidis, E.; Papadakis, M.; Giannakoulas, G. Glycemic Control and Atrial Fibrillation: An Intricate Relationship, yet under Investigation. Cardiovasc. Diabetol. 2022, 21, 39. [Google Scholar] [CrossRef]
- Zaccardi, F.; Webb, D.R.; Htike, Z.Z.; Youssef, D.; Khunti, K.; Davies, M.J. Efficacy and Safety of Sodium-Glucose Co-Transporter-2 Inhibitors in Type 2 Diabetes Mellitus: Systematic Review and Network Meta-Analysis. Diabetes Obes. Metab. 2016, 18, 783–794. [Google Scholar] [CrossRef]
- Stachteas, P.; Patoulias, D.; Popovic, D.S.; Athanasiadou, P.; Fragakis, N. Bexagliflozin as an Adjunct Therapy to Diet and Exercise to Improve Glycaemic Control in Adults with Type 2 Diabetes. Touch Rev. Endocrinol. 2024, 20, 19–24. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Perkins, B.A.; Fitchett, D.H.; Husain, M.; Cherney, D.Z.I. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus. Circulation 2016, 134, 752–772. [Google Scholar] [CrossRef]
- Vardeny, O.; Vaduganathan, M. Practical Guide to Prescribing Sodium-Glucose Cotransporter 2 Inhibitors for Cardiologists. JACC Heart Fail. 2019, 7, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary. J. Am. Coll. Cardiol. 2022, 79, 1757–1780. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Docherty, K.F.; Claggett, B.L.; Jhund, P.S.; de Boer, R.A.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. SGLT-2 Inhibitors in Patients with Heart Failure: A Comprehensive Meta-Analysis of Five Randomised Controlled Trials. Lancet 2022, 400, 757–767. [Google Scholar] [CrossRef]
- Karakasis, P.; Pamporis, K.; Stachteas, P.; Patoulias, D.; Bougioukas, K.I.; Fragakis, N. Efficacy and Safety of Sodium-Glucose Cotransporter-2 Inhibitors in Heart Failure with Mildly Reduced or Preserved Ejection Fraction: An Overview of 36 Systematic Reviews. Heart Fail. Rev. 2023, 28, 1033–1051. [Google Scholar] [CrossRef]
- Manolis, A.A.; Manolis, T.A.; Melita, H.; Manolis, A.S. Sodium-Glucose Cotransporter Type 2 Inhibitors and Cardiac Arrhythmias. Trends Cardiovasc. Med. 2023, 33, 418–428. [Google Scholar] [CrossRef]
- Wang, A.; Green, J.B.; Halperin, J.L.; Piccini, J.P. Atrial Fibrillation and Diabetes Mellitus. J. Am. Coll. Cardiol. 2019, 74, 1107–1115. [Google Scholar] [CrossRef]
- Vrachatis, D.A.; Papathanasiou, K.A.; Iliodromitis, K.E.; Giotaki, S.G.; Kossyvakis, C.; Raisakis, K.; Kaoukis, A.; Lambadiari, V.; Avramides, D.; Reimers, B.; et al. Could Sodium/Glucose Co-Transporter-2 Inhibitors Have Antiarrhythmic Potential in Atrial Fibrillation? Literature Review and Future Considerations. Drugs 2021, 81, 1381–1395. [Google Scholar] [CrossRef]
- Harada, M.; Melka, J.; Sobue, Y.; Nattel, S. Metabolic Considerations in Atrial Fibrillation―Mechanistic Insights and Therapeutic Opportunities―. Circ. J. 2017, 81, 1749–1757. [Google Scholar] [CrossRef]
- Bugger, H.; Abel, E.D. Mitochondria in the Diabetic Heart. Cardiovasc. Res. 2010, 88, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Tadic, M.; Cuspidi, C. Type 2 Diabetes Mellitus and Atrial Fibrillation: From Mechanisms to Clinical Practice. Arch. Cardiovasc. Dis. 2015, 108, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Olgar, Y.; Turan, B. A Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor Dapagliflozin Comparison with Insulin Shows Important Effects on Zn2+ -Transporters in Cardiomyocytes from Insulin-Resistant Metabolic Syndrome Rats through Inhibition of Oxidative Stress. Can. J. Physiol. Pharmacol. 2019, 97, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, J.; Qiu, J.; Li, J.; Liang, X.; Zhang, Z.; Zhang, X.; Fu, H.; Korantzopoulos, P.; Letsas, K.P.; et al. Xanthine Oxidase Inhibitor Allopurinol Prevents Oxidative Stress-Mediated Atrial Remodeling in Alloxan-Induced Diabetes Mellitus Rabbits. J. Am. Heart Assoc. 2018, 7, e008807. [Google Scholar] [CrossRef] [PubMed]
- Schauer, A.; Adams, V.; Kämmerer, S.; Langner, E.; Augstein, A.; Barthel, P.; Männel, A.; Fabig, G.; Alves, P.K.N.; Günscht, M.; et al. Empagliflozin Improves Diastolic Function in HFpEF by Restabilizing the Mitochondrial Respiratory Chain. Circ. Heart Fail. 2024, 17, e011107. [Google Scholar] [CrossRef] [PubMed]
- Ferrannini, E.; Mark, M.; Mayoux, E. CV Protection in the EMPA-REG OUTCOME Trial: A “Thrifty Substrate” Hypothesis. Diabetes Care 2016, 39, 1108–1114. [Google Scholar] [CrossRef]
- Yurista, S.R.; Silljé, H.H.W.; Rienstra, M.; de Boer, R.A.; Westenbrink, B.D. Sodium-Glucose Co-Transporter 2 Inhibition as a Mitochondrial Therapy for Atrial Fibrillation in Patients with Diabetes? Cardiovasc. Diabetol. 2020, 19, 5. [Google Scholar] [CrossRef]
- Shao, Q.; Meng, L.; Lee, S.; Tse, G.; Gong, M.; Zhang, Z.; Zhao, J.; Zhao, Y.; Li, G.; Liu, T. Empagliflozin, a Sodium Glucose Co-Transporter-2 Inhibitor, Alleviates Atrial Remodeling and Improves Mitochondrial Function in High-Fat Diet/Streptozotocin-Induced Diabetic Rats. Cardiovasc. Diabetol. 2019, 18, 165. [Google Scholar] [CrossRef]
- Nishinarita, R.; Niwano, S.; Niwano, H.; Nakamura, H.; Saito, D.; Sato, T.; Matsuura, G.; Arakawa, Y.; Kobayashi, S.; Shirakawa, Y.; et al. Canagliflozin Suppresses Atrial Remodeling in a Canine Atrial Fibrillation Model. J. Am. Heart Assoc. 2021, 10, e017483. [Google Scholar] [CrossRef]
- Packer, M. Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis. Circulation 2022, 146, 1383–1405. [Google Scholar] [CrossRef]
- Mylonas, N.; Nikolaou, P.E.; Karakasis, P.; Stachteas, P.; Fragakis, N.; Andreadou, I. Endothelial Protection by Sodium-Glucose Cotransporter 2 Inhibitors: A Literature Review of In Vitro and In Vivo Studies. Int. J. Mol. Sci. 2024, 25, 7274. [Google Scholar] [CrossRef] [PubMed]
- Nakatsu, Y.; Kokubo, H.; Bumdelger, B.; Yoshizumi, M.; Yamamotoya, T.; Matsunaga, Y.; Ueda, K.; Inoue, Y.; Inoue, M.-K.; Fujishiro, M.; et al. The SGLT2 Inhibitor Luseogliflozin Rapidly Normalizes Aortic MRNA Levels of Inflammation-Related but Not Lipid-Metabolism-Related Genes and Suppresses Atherosclerosis in Diabetic ApoE KO Mice. Int. J. Mol. Sci. 2017, 18, 1704. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Oh, T.J.; Lee, G.; Maeng, H.J.; Lee, D.H.; Kim, K.M.; Choi, S.H.; Jang, H.C.; Lee, H.S.; Park, K.S.; et al. The Beneficial Effects of Empagliflozin, an SGLT2 Inhibitor, on Atherosclerosis in ApoE−/− Mice Fed a Western Diet. Diabetologia 2017, 60, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Nasiri-Ansari, Ν.; Dimitriadis, G.K.; Agrogiannis, G.; Perrea, D.; Kostakis, I.D.; Kaltsas, G.; Papavassiliou, A.G.; Randeva, H.S.; Kassi, E. Canagliflozin Attenuates the Progression of Atherosclerosis and Inflammation Process in APOE Knockout Mice. Cardiovasc. Diabetol. 2018, 17, 106. [Google Scholar] [CrossRef]
- Kang, Y.; Zhan, F.; He, M.; Liu, Z.; Song, X. Anti-Inflammatory Effects of Sodium-Glucose Co-Transporter 2 Inhibitors on Atherosclerosis. Vasc. Pharmacol. 2020, 133–134, 106779. [Google Scholar] [CrossRef] [PubMed]
- Garvey, W.T.; Van Gaal, L.; Leiter, L.A.; Vijapurkar, U.; List, J.; Cuddihy, R.; Ren, J.; Davies, M.J. Effects of Canagliflozin versus Glimepiride on Adipokines and Inflammatory Biomarkers in Type 2 Diabetes. Metabolism 2018, 85, 32–37. [Google Scholar] [CrossRef]
- Uthman, L.; Homayr, A.; Juni, R.P.; Spin, E.L.; Kerindongo, R.; Boomsma, M.; Hollmann, M.W.; Preckel, B.; Koolwijk, P.; van Hinsbergh, V.W.M.; et al. Empagliflozin and Dapagliflozin Reduce ROS Generation and Restore NO Bioavailability in Tumor Necrosis Factor α-Stimulated Human Coronary Arterial Endothelial Cells. Cell Physiol. Biochem. 2019, 53, 865–886. [Google Scholar] [CrossRef]
- Kim, S.R.; Lee, S.-G.; Kim, S.H.; Kim, J.H.; Choi, E.; Cho, W.; Rim, J.H.; Hwang, I.; Lee, C.J.; Lee, M.; et al. SGLT2 Inhibition Modulates NLRP3 Inflammasome Activity via Ketones and Insulin in Diabetes with Cardiovascular Disease. Nat. Commun. 2020, 11, 2127. [Google Scholar] [CrossRef]
- Sacks, H.S.; Fain, J.N. Human Epicardial Adipose Tissue: A Review. Am. Heart J. 2007, 153, 907–917. [Google Scholar] [CrossRef]
- Mahajan, R.; Lau, D.H.; Brooks, A.G.; Shipp, N.J.; Manavis, J.; Wood, J.P.M.; Finnie, J.W.; Samuel, C.S.; Royce, S.G.; Twomey, D.J.; et al. Electrophysiological, Electroanatomical, and Structural Remodeling of the Atria as Consequences of Sustained Obesity. J. Am. Coll. Cardiol. 2015, 66, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Packer, M. Epicardial Adipose Tissue May Mediate Deleterious Effects of Obesity and Inflammation on the Myocardium. J. Am. Coll. Cardiol. 2018, 71, 2360–2372. [Google Scholar] [CrossRef] [PubMed]
- Mahabadi, A.A.; Lehmann, N.; Kälsch, H.; Robens, T.; Bauer, M.; Dykun, I.; Budde, T.; Moebus, S.; Jöckel, K.-H.; Erbel, R.; et al. Association of Epicardial Adipose Tissue with Progression of Coronary Artery Calcification Is More Pronounced in the Early Phase of Atherosclerosis. JACC Cardiovasc. Imaging 2014, 7, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Rosito, G.A.; Massaro, J.M.; Hoffmann, U.; Ruberg, F.L.; Mahabadi, A.A.; Vasan, R.S.; O’Donnell, C.J.; Fox, C.S. Pericardial Fat, Visceral Abdominal Fat, Cardiovascular Disease Risk Factors, and Vascular Calcification in a Community-Based Sample. Circulation 2008, 117, 605–613. [Google Scholar] [CrossRef]
- Wong, C.X.; Ganesan, A.N.; Selvanayagam, J.B. Epicardial Fat and Atrial Fibrillation: Current Evidence, Potential Mechanisms, Clinical Implications, and Future Directions. Eur. Heart J. 2016, 38, ehw045. [Google Scholar] [CrossRef] [PubMed]
- Shaihov-Teper, O.; Ram, E.; Ballan, N.; Brzezinski, R.Y.; Naftali-Shani, N.; Masoud, R.; Ziv, T.; Lewis, N.; Schary, Y.; Levin-Kotler, L.-P.; et al. Extracellular Vesicles From Epicardial Fat Facilitate Atrial Fibrillation. Circulation 2021, 143, 2475–2493. [Google Scholar] [CrossRef]
- Sato, T.; Aizawa, Y.; Yuasa, S.; Kishi, S.; Fuse, K.; Fujita, S.; Ikeda, Y.; Kitazawa, H.; Takahashi, M.; Sato, M.; et al. The Effect of Dapagliflozin Treatment on Epicardial Adipose Tissue Volume. Cardiovasc. Diabetol. 2018, 17, 6. [Google Scholar] [CrossRef]
- Stachteas, P.; Karakasis, P.; Patoulias, D.; Clemenza, F.; Fragakis, N.; Rizzo, M. The Effect of Sodium-Glucose Co-Transporter-2 Inhibitors on Markers of Subclinical Atherosclerosis. Ann. Med. 2023, 55, 2304667. [Google Scholar] [CrossRef]
- Li, S.; Cheng, J.; Cui, L.; Gurol, M.E.; Bhatt, D.L.; Fonarow, G.C.; Benjamin, E.J.; Xing, A.; Xia, Y.; Wu, S.; et al. Cohort Study of Repeated Measurements of Serum Urate and Risk of Incident Atrial Fibrillation. J. Am. Heart Assoc. 2019, 8, e012020. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, L.; Tian, D.; Xia, P.; Zheng, H.; Wang, L.; Chen, L. Effects of Sodium-glucose Co-transporter 2 (SGLT2) Inhibitors on Serum Uric Acid Level: A Meta-analysis of Randomized Controlled Trials. Diabetes Obes. Metab. 2018, 20, 458–462. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, Y.; Han, X.; Yang, Y.; Yin, X.; Qiu, J.; Liu, H.; Zhou, Y.; Liu, Y. Association between Serum Uric Acid and Atrial Fibrillation: A Cross-Sectional Community-Based Study in China. BMJ Open 2017, 7, e019037. [Google Scholar] [CrossRef]
- Khan, A.M.; Lubitz, S.A.; Sullivan, L.M.; Sun, J.X.; Levy, D.; Vasan, R.S.; Magnani, J.W.; Ellinor, P.T.; Benjamin, E.J.; Wang, T.J. Low Serum Magnesium and the Development of Atrial Fibrillation in the Community. Circulation 2013, 127, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.E.; Mende, C.; Vijapurkar, U.; Sha, S.; Davies, M.J.; Desai, M. Effects of Canagliflozin on Serum Magnesium in Patients with Type 2 Diabetes Mellitus: A Post Hoc Analysis of Randomized Controlled Trials. Diabetes Ther. 2017, 8, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Zhang, X.; Zhang, J.; Li, Y.; Del Gobbo, L.C.; Zhai, S.; Song, Y. Elevated Serum Magnesium Associated with SGLT2 Inhibitor Use in Type 2 Diabetes Patients: A Meta-Analysis of Randomised Controlled Trials. Diabetologia 2016, 59, 2546–2551. [Google Scholar] [CrossRef] [PubMed]
- Krijthe, B.P.; Heeringa, J.; Kors, J.A.; Hofman, A.; Franco, O.H.; Witteman, J.C.M.; Stricker, B.H. Serum Potassium Levels and the Risk of Atrial Fibrillation. Int. J. Cardiol. 2013, 168, 5411–5415. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Kong, X.-J.; Ji, Y.-Y.; Fan, J.; Ji, C.-C.; Chen, X.-M.; Ma, Y.-D.; Tang, A.-L.; Cheng, Y.-J.; Wu, S.-H. Serum Electrolyte Concentrations and Risk of Atrial Fibrillation: An Observational and Mendelian Randomization Study. BMC Genom. 2024, 25, 280. [Google Scholar] [CrossRef]
- Neuen, B.L.; Oshima, M.; Agarwal, R.; Arnott, C.; Cherney, D.Z.; Edwards, R.; Langkilde, A.M.; Mahaffey, K.W.; McGuire, D.K.; Neal, B.; et al. Sodium-Glucose Cotransporter 2 Inhibitors and Risk of Hyperkalemia in People with Type 2 Diabetes: A Meta-Analysis of Individual Participant Data From Randomized, Controlled Trials. Circulation 2022, 145, 1460–1470. [Google Scholar] [CrossRef]
- Lambert, R.; Srodulski, S.; Peng, X.; Margulies, K.B.; Despa, F.; Despa, S. Intracellular Na + Concentration ([Na+]i) Is Elevated in Diabetic Hearts Due to Enhanced Na+ –Glucose Cotransport. J. Am. Heart Assoc. 2015, 4, e002183. [Google Scholar] [CrossRef]
- Banerjee, S.K.; McGaffin, K.R.; Pastor-Soler, N.M.; Ahmad, F. SGLT1 Is a Novel Cardiac Glucose Transporter That Is Perturbed in Disease States. Cardiovasc. Res. 2009, 84, 111–118. [Google Scholar] [CrossRef]
- Philippaert, K.; Kalyaanamoorthy, S.; Fatehi, M.; Long, W.; Soni, S.; Byrne, N.J.; Barr, A.; Singh, J.; Wong, J.; Palechuk, T.; et al. Cardiac Late Sodium Channel Current Is a Molecular Target for the Sodium/Glucose Cotransporter 2 Inhibitor Empagliflozin. Circulation 2021, 143, 2188–2204. [Google Scholar] [CrossRef]
- Joshi, S.S.; Singh, T.; Newby, D.E.; Singh, J. Sodium-Glucose Co-Transporter 2 Inhibitor Therapy: Mechanisms of Action in Heart Failure. Heart 2021, 107, 1032–1038. [Google Scholar] [CrossRef]
- Lee, T.-I.; Chen, Y.-C.; Lin, Y.-K.; Chung, C.-C.; Lu, Y.-Y.; Kao, Y.-H.; Chen, Y.-J. Empagliflozin Attenuates Myocardial Sodium and Calcium Dysregulation and Reverses Cardiac Remodeling in Streptozotocin-Induced Diabetic Rats. Int. J. Mol. Sci. 2019, 20, 1680. [Google Scholar] [CrossRef] [PubMed]
- Mustroph, J.; Wagemann, O.; Lücht, C.M.; Trum, M.; Hammer, K.P.; Sag, C.M.; Lebek, S.; Tarnowski, D.; Reinders, J.; Perbellini, F.; et al. Empagliflozin Reduces Ca/Calmodulin-dependent Kinase II Activity in Isolated Ventricular Cardiomyocytes. ESC Heart Fail. 2018, 5, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Zhan, G.; Wang, X.; Wang, X.; Li, J.; Tang, Y.; Bi, H.; Yang, X.; Xia, Y. Dapagliflozin: A Sodium–Glucose Cotransporter 2 Inhibitor, Attenuates Angiotensin II-Induced Atrial Fibrillation by Regulating Atrial Electrical and Structural Remodeling. Eur. J. Pharmacol. 2024, 978, 176712. [Google Scholar] [CrossRef] [PubMed]
- Lameire, N. Renal Mechanisms of Diuretic Resistance in Congestive Heart Failure. Kidney Dial. 2023, 3, 56–72. [Google Scholar] [CrossRef]
- Stachteas, P.; Nasoufidou, A.; Patoulias, D.; Karakasis, P.; Karagiannidis, E.; Mourtzos, M.-A.; Samaras, A.; Apostolidou, X.; Fragakis, N. The Role of Sodium-Glucose Co-Transporter-2 Inhibitors on Diuretic Resistance in Heart Failure. Int. J. Mol. Sci. 2024, 25, 3122. [Google Scholar] [CrossRef]
- Aguilar-Gallardo, J.S.; Correa, A.; Contreras, J.P. Cardio-Renal Benefits of Sodium–Glucose Co-Transporter 2 Inhibitors in Heart Failure with Reduced Ejection Fraction: Mechanisms and Clinical Evidence. Eur. Heart J. Cardiovasc. Pharmacother. 2022, 8, 311–321. [Google Scholar] [CrossRef]
- Chang, S.-L.; Chen, Y.-C.; Chen, Y.-J.; Wangcharoen, W.; Lee, S.-H.; Lin, C.-I.; Chen, S.-A. Mechanoelectrical Feedback Regulates the Arrhythmogenic Activity of Pulmonary Veins. Heart 2007, 93, 82–88. [Google Scholar] [CrossRef]
- Shetty, S.S.; Krumerman, A. Putative Protective Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Atrial Fibrillation through Risk Factor Modulation and off-Target Actions: Potential Mechanisms and Future Directions. Cardiovasc. Diabetol. 2022, 21, 119. [Google Scholar] [CrossRef]
- Matsutani, D.; Sakamoto, M.; Kayama, Y.; Takeda, N.; Horiuchi, R.; Utsunomiya, K. Effect of Canagliflozin on Left Ventricular Diastolic Function in Patients with Type 2 Diabetes. Cardiovasc. Diabetol. 2018, 17, 73. [Google Scholar] [CrossRef]
- Tanaka, H.; Hirata, K. Potential Impact of SGLT2 Inhibitors on Left Ventricular Diastolic Function in Patients with Diabetes Mellitus. Heart Fail. Rev. 2018, 23, 439–444. [Google Scholar] [CrossRef]
- Andersen, A.; Bagger, J.I.; Sørensen, S.K.; Baldassarre, M.P.A.; Pedersen-Bjergaard, U.; Forman, J.L.; Gislason, G.; Lindhardt, T.B.; Knop, F.K.; Vilsbøll, T. Associations of Hypoglycemia, Glycemic Variability and Risk of Cardiac Arrhythmias in Insulin-Treated Patients with Type 2 Diabetes: A Prospective, Observational Study. Cardiovasc. Diabetol. 2021, 20, 241. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Teshima, Y.; Fukui, A.; Kondo, H.; Nishio, S.; Nakagawa, M.; Saikawa, T.; Takahashi, N. Glucose Fluctuations Increase the Incidence of Atrial Fibrillation in Diabetic Rats. Cardiovasc. Res. 2014, 104, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.-H.; Park, Y.-M.; Yun, J.-S.; Cha, S.-A.; Choi, E.-K.; Han, K.; Han, E.; Lee, Y.; Ahn, Y.-B. Severe Hypoglycemia Is a Risk Factor for Atrial Fibrillation in Type 2 Diabetes Mellitus: Nationwide Population-Based Cohort Study. J. Diabetes Complicat. 2018, 32, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-D.; Kim, S.-W.; Moon, J.S.; Lee, Y.Y.; Cho, N.H.; Lee, J.-H.; Jeon, J.-H.; Choi, Y.-K.; Kim, M.K.; Park, K.-G. Impact of Social Distancing Due to Coronavirus Disease 2019 on the Changes in Glycosylated Hemoglobin Level in People with Type 2 Diabetes Mellitus. Diabetes Metab. J. 2021, 45, 109–114. [Google Scholar] [CrossRef]
- Lee, P.C.; Ganguly, S.; Goh, S.-Y. Weight Loss Associated with Sodium-glucose Cotransporter-2 Inhibition: A Review of Evidence and Underlying Mechanisms. Obes. Rev. 2018, 19, 1630–1641. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.; Wei, X.; Zhang, X.; Ye, Y.; Li, W.; Su, X. Antiarrhythmic Effects and Mechanisms of Sodium-Glucose Cotransporter 2 Inhibitors: A Mini Review. Front. Cardiovasc. Med. 2022, 9, 915455. [Google Scholar] [CrossRef]
- Chen, P.-S.; Chen, L.S.; Fishbein, M.C.; Lin, S.-F.; Nattel, S. Role of the Autonomic Nervous System in Atrial Fibrillation. Circ. Res. 2014, 114, 1500–1515. [Google Scholar] [CrossRef]
- Herat, L.Y.; Magno, A.L.; Rudnicka, C.; Hricova, J.; Carnagarin, R.; Ward, N.C.; Arcambal, A.; Kiuchi, M.G.; Head, G.A.; Schlaich, M.P.; et al. SGLT2 Inhibitor–Induced Sympathoinhibition. JACC Basic. Transl. Sci. 2020, 5, 169–179. [Google Scholar] [CrossRef]
- Zhang, N.; Feng, B.; Ma, X.; Sun, K.; Xu, G.; Zhou, Y. Dapagliflozin Improves Left Ventricular Remodeling and Aorta Sympathetic Tone in a Pig Model of Heart Failure with Preserved Ejection Fraction. Cardiovasc. Diabetol. 2019, 18, 107. [Google Scholar] [CrossRef]
- Mazer, C.D.; Hare, G.M.T.; Connelly, P.W.; Gilbert, R.E.; Shehata, N.; Quan, A.; Teoh, H.; Leiter, L.A.; Zinman, B.; Jüni, P.; et al. Effect of Empagliflozin on Erythropoietin Levels, Iron Stores, and Red Blood Cell Morphology in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease. Circulation 2020, 141, 704–707. [Google Scholar] [CrossRef]
- Vallon, V.; Verma, S. Effects of SGLT2 Inhibitors on Kidney and Cardiovascular Function. Annu. Rev. Physiol. 2021, 83, 503–528. [Google Scholar] [CrossRef] [PubMed]
- Zelniker, T.A.; Bonaca, M.P.; Furtado, R.H.M.; Mosenzon, O.; Kuder, J.F.; Murphy, S.A.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Wilding, J.P.H.; et al. Effect of Dapagliflozin on Atrial Fibrillation in Patients with Type 2 Diabetes Mellitus. Circulation 2020, 141, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Butt, J.H.; Docherty, K.F.; Jhund, P.S.; de Boer, R.A.; Böhm, M.; Desai, A.S.; Howlett, J.G.; Inzucchi, S.E.; Kosiborod, M.N.; Martinez, F.A.; et al. Dapagliflozin and Atrial Fibrillation in Heart Failure with Reduced Ejection Fraction: Insights from DAPA-HF. Eur. J. Heart Fail. 2022, 24, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yu, J.; Hockham, C.; Perkovic, V.; Neuen, B.L.; Badve, S.V.; Houston, L.; Lee, V.Y.J.; Barraclough, J.Y.; Fletcher, R.A.; et al. Canagliflozin and Atrial Fibrillation in Type 2 Diabetes Mellitus: A Secondary Analysis from the CANVAS Program and CREDENCE Trial and Meta-analysis. Diabetes Obes. Metab. 2022, 24, 1927–1938. [Google Scholar] [CrossRef]
- Ling, A.W.-C.; Chan, C.-C.; Chen, S.-W.; Kao, Y.-W.; Huang, C.-Y.; Chan, Y.-H.; Chu, P.-H. The Risk of New-Onset Atrial Fibrillation in Patients with Type 2 Diabetes Mellitus Treated with Sodium Glucose Cotransporter 2 Inhibitors versus Dipeptidyl Peptidase-4 Inhibitors. Cardiovasc. Diabetol. 2020, 19, 188. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Zhou, J.; Leung, K.S.K.; Wai, A.K.C.; Jeevaratnam, K.; King, E.; Liu, T.; Wong, W.T.; Chang, C.; Wong, I.C.K.; et al. Comparison of Sodium-Glucose Cotransporter-2 Inhibitor and Dipeptidyl Peptidase-4 Inhibitor on the Risks of New-Onset Atrial Fibrillation, Stroke and Mortality in Diabetic Patients: A Propensity Score-Matched Study in Hong Kong. Cardiovasc. Drugs Ther. 2022, 37, 561–569. [Google Scholar] [CrossRef]
- Chan, Y.-H.; Chao, T.-F.; Chen, S.-W.; Lee, H.-F.; Li, P.-R.; Chen, W.-M.; Yeh, Y.-H.; Kuo, C.-T.; See, L.-C.; Lip, G.Y.H. The Risk of Incident Atrial Fibrillation in Patients with Type 2 Diabetes Treated with Sodium Glucose Cotransporter-2 Inhibitors, Glucagon-like Peptide-1 Receptor Agonists, and Dipeptidyl Peptidase-4 Inhibitors: A Nationwide Cohort Study. Cardiovasc. Diabetol. 2022, 21, 118. [Google Scholar] [CrossRef]
- Zhuo, M.; D’Andrea, E.; Paik, J.M.; Wexler, D.J.; Everett, B.M.; Glynn, R.J.; Kim, S.C.; Patorno, E. Association of Sodium-Glucose Cotransporter-2 Inhibitors with Incident Atrial Fibrillation in Older Adults with Type 2 Diabetes. JAMA Netw. Open 2022, 5, e2235995. [Google Scholar] [CrossRef]
- Engström, A.; Wintzell, V.; Melbye, M.; Hviid, A.; Eliasson, B.; Gudbjörnsdottir, S.; Hveem, K.; Jonasson, C.; Svanström, H.; Pasternak, B.; et al. Sodium–Glucose Cotransporter 2 Inhibitor Treatment and Risk of Atrial Fibrillation: Scandinavian Cohort Study. Diabetes Care 2023, 46, 351–360. [Google Scholar] [CrossRef]
- Lui, D.T.W.; Tang, E.H.M.; Wu, T.; Au, I.C.H.; Lee, C.H.; Woo, Y.C.; Tan, K.C.B.; Wong, C.K.H. Risks of Stroke, Its Subtypes and Atrial Fibrillation Associated with Glucagon-like Peptide 1 Receptor Agonists versus Sodium-Glucose Cotransporter 2 Inhibitors: A Real-World Population-Based Cohort Study in Hong Kong. Cardiovasc. Diabetol. 2023, 22, 40. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, Y.; Han, W. Sodium-Glucose Cotransporter-2 Inhibitors Protect against Atrial Fibrillation in Patients with Heart Failure. Ann. Palliat. Med. 2021, 10, 10887–10895. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Tatsumi, K.; Matsuzoe, H.; Soga, F.; Matsumoto, K.; Hirata, K. Association of Type 2 Diabetes Mellitus with the Development of New-Onset Atrial Fibrillation in Patients with Non-Ischemic Dilated Cardiomyopathy: Impact of SGLT2 Inhibitors. Int. J. Cardiovasc. Imaging 2021, 37, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Persson, F.; Nyström, T.; Jørgensen, M.E.; Carstensen, B.; Gulseth, H.L.; Thuresson, M.; Fenici, P.; Nathanson, D.; Eriksson, J.W.; Norhammar, A.; et al. Dapagliflozin Is Associated with Lower Risk of Cardiovascular Events and All-cause Mortality in People with Type 2 Diabetes (CVD-REAL Nordic) When Compared with Dipeptidyl Peptidase-4 Inhibitor Therapy: A Multinational Observational Study. Diabetes Obes. Metab. 2018, 20, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Cesaro, A.; Gragnano, F.; Paolisso, P.; Bergamaschi, L.; Gallinoro, E.; Sardu, C.; Mileva, N.; Foà, A.; Armillotta, M.; Sansonetti, A.; et al. In-Hospital Arrhythmic Burden Reduction in Diabetic Patients with Acute Myocardial Infarction Treated with SGLT2-Inhibitors: Insights from the SGLT2-I AMI PROTECT Study. Front. Cardiovasc. Med. 2022, 9, 1012220. [Google Scholar] [CrossRef]
- Hsiao, F.-C.; Yen, K.-C.; Chao, T.-F.; Chen, S.-W.; Chan, Y.-H.; Chu, P.-H. New-Onset Atrial Fibrillation in Patients with Type 2 Diabetes Treated with Novel Glucose-Lowering Therapies. J. Clin. Endocrinol. Metab. 2022, 107, 2493–2499. [Google Scholar] [CrossRef]
- Jhuo, S.-J.; Lin, T.-H.; Lin, Y.-H.; Tsai, W.-C.; Liu, I.-H.; Wu, B.-N.; Lee, K.-T.; Lai, W.-T. Clinical Observation of SGLT2 Inhibitor Therapy for Cardiac Arrhythmia and Related Cardiovascular Disease in Diabetic Patients with Controlled Hypertension. J. Pers. Med. 2022, 12, 271. [Google Scholar] [CrossRef]
- Fawzy, A.M.; Rivera-Caravaca, J.M.; Underhill, P.; Fauchier, L.; Lip, G.Y.H. Incident Heart Failure, Arrhythmias and Cardiovascular Outcomes with Sodium-glucose Cotransporter 2 (SGLT2) Inhibitor Use in Patients with Diabetes: Insights from a Global Federated Electronic Medical Record Database. Diabetes Obes. Metab. 2023, 25, 602–610. [Google Scholar] [CrossRef]
- Eroglu, T.E.; Coronel, R.; Souverein, P.C. Sodium-Glucose Cotransporter-2 Inhibitors and the Risk of Atrial Fibrillation in Patients with Type 2 Diabetes: A Population-Based Cohort Study. Eur. Heart J. Cardiovasc. Pharmacother. 2024, 10, 289–295. [Google Scholar] [CrossRef]
- Li, Y.; Tang, H.; Guo, Y.; Shao, H.; Kimmel, S.E.; Bian, J.; Schatz, D.A.; Guo, J. Sodium-Glucose Cotransporter-2 Inhibitors and Incidence of Atrial Fibrillation in Older Adults with Type 2 Diabetes: A Retrospective Cohort Analysis. Front. Pharmacol. 2024, 15, 1379251. [Google Scholar] [CrossRef]
- Abu-Qaoud, M.R.; Kumar, A.; Tarun, T.; Abraham, S.; Ahmad, J.; Khadke, S.; Husami, R.; Kulbak, G.; Sahoo, S.; Januzzi, J.L.; et al. Impact of SGLT2 Inhibitors on AF Recurrence after Catheter Ablation in Patients with Type 2 Diabetes. JACC Clin. Electrophysiol. 2023, 9, 2109–2118. [Google Scholar] [CrossRef]
- San Antonio, R. Should SGLT2 Inhibitors Be Part of the Standard Treatment for Atrial Fibrillation in Type 2 Diabetes? JACC Clin. Electrophysiol. 2023, 9, 263–264. [Google Scholar] [CrossRef]
- Kishima, H.; Mine, T.; Fukuhara, E.; Kitagaki, R.; Asakura, M.; Ishihara, M. Efficacy of Sodium-Glucose Cotransporter 2 Inhibitors on Outcomes after Catheter Ablation for Atrial Fibrillation. JACC Clin. Electrophysiol. 2022, 8, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- Haloot, J.; Krokar, L.; Badin, A. Effect of SLGT2 Inhibitors on Patients with Atrial Fibrillation. J. Atr. Fibrillation 2021, 14, 20200502. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.; Sun, L.; Wang, Z.; Zhang, Y.; Li, J.; Chen, Y.; Dong, J. Effect of Dapagliflozin on the Outcome of Radiofrequency Catheter Ablation in Patients with Type 2 Diabetes Mellitus and Atrial Fibrillation. Cardiovasc. Drugs Ther. 2022, 38, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-T.; Wo, H.-T.; Chang, P.-C.; Lee, H.-L.; Wen, M.-S.; Chou, C.-C. Long-Term Efficacy of Sodium-Glucose Cotransporter 2 Inhibitor Therapy in Preventing Atrial Fibrillation Recurrence after Catheter Ablation in Type 2 Diabetes Mellitus Patients. Heliyon 2023, 9, e16835. [Google Scholar] [CrossRef]
- Zhao, Z.; Jiang, C.; He, L.; Zheng, S.; Wang, Y.; Gao, M.; Lai, Y.; Zhang, J.; Li, M.; Dai, W.; et al. Impact of Sodium-Glucose Cotransporter 2 Inhibitor on Recurrence after Catheter Ablation for Atrial Fibrillation in Patients with Diabetes: A Propensity-Score Matching Study and Meta-Analysis. J. Am. Heart Assoc. 2023, 12, e031269. [Google Scholar] [CrossRef]
- Qi, D.; Guan, X.; Liu, X.; Liu, L.; Liu, Z.; Zhang, J. Relationship between Sodium-glucose Cotransporter 2 Inhibitors and Atrial Fibrillation Recurrence after Pulmonary Vein Isolation in Patients with Type 2 Diabetes and Persistent Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2024. [Google Scholar] [CrossRef]
- Noh, H.J.; Cha, S.J.; Kim, C.H.; Choi, S.-W.; Lee, C.H.; Hwang, J.K. Efficacy of Dapagliflozin in Improving Arrhythmia-Related Outcomes after Ablation for Atrial Fibrillation: A Retrospective Single-Center Study. Clin. Res. Cardiol. 2024, 113, 924–932. [Google Scholar] [CrossRef]
- Fichadiya, A.; Quinn, A.; Au, F.; Campbell, D.; Lau, D.; Ronksley, P.; Beall, R.; Campbell, D.J.T.; Wilton, S.B.; Chew, D.S. Association between Sodium–Glucose Cotransporter-2 Inhibitors and Arrhythmic Outcomes in Patients with Diabetes and Pre-Existing Atrial Fibrillation. Europace 2024, 26, euae054. [Google Scholar] [CrossRef]
- Stachteas, P.; Karakasis, P.; Karagiannidis, E.; Patoulias, D.; Athanasiadou, P.; Nasoufidou, A.; Papadopoulos, C.; Kassimis, G.; Fragakis, N. Efficacy of Sodium-Glucose Cotransporter 2 Inhibitors in Preventing AF Recurrence after Catheter Ablation. Hell. J. Cardiol. 2024. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S.K.; Lee, J.; Jeon, B.K.; Kim, T.-H.; Yu, H.T.; Lee, J.M.; Park, J.-K.; Baek, Y.-S.; Kim, D.H.; et al. Protocol of BEYOND Trial: Clinical BEnefit of Sodium-Glucose Cotransporter-2 (SGLT-2) Inhibitors in RhYthm CONtrol of Atrial Fibrillation in Patients with Diabetes Mellitus. PLoS ONE 2023, 18, e0280359. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Osmanaj, F.; Yang, Y.; Hua, K.; Yang, X. Rationale and Design of a Randomized Trial of the Dapagliflozin Evaluation on Atrial Fibrillation Patients Followed Cox-Maze IV: The DETAIL-CMIV Study. Europace 2023, 25, euad33. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stachteas, P.; Nasoufidou, A.; Karagiannidis, E.; Patoulias, D.; Karakasis, P.; Alexiou, S.; Samaras, A.; Zormpas, G.; Stavropoulos, G.; Tsalikakis, D.; et al. The Role of Sodium Glucose Co-Transporter 2 Inhibitors in Atrial Fibrillation: A Comprehensive Review. J. Clin. Med. 2024, 13, 5408. https://doi.org/10.3390/jcm13185408
Stachteas P, Nasoufidou A, Karagiannidis E, Patoulias D, Karakasis P, Alexiou S, Samaras A, Zormpas G, Stavropoulos G, Tsalikakis D, et al. The Role of Sodium Glucose Co-Transporter 2 Inhibitors in Atrial Fibrillation: A Comprehensive Review. Journal of Clinical Medicine. 2024; 13(18):5408. https://doi.org/10.3390/jcm13185408
Chicago/Turabian StyleStachteas, Panagiotis, Athina Nasoufidou, Efstratios Karagiannidis, Dimitrios Patoulias, Paschalis Karakasis, Sophia Alexiou, Athanasios Samaras, Georgios Zormpas, George Stavropoulos, Dimitrios Tsalikakis, and et al. 2024. "The Role of Sodium Glucose Co-Transporter 2 Inhibitors in Atrial Fibrillation: A Comprehensive Review" Journal of Clinical Medicine 13, no. 18: 5408. https://doi.org/10.3390/jcm13185408
APA StyleStachteas, P., Nasoufidou, A., Karagiannidis, E., Patoulias, D., Karakasis, P., Alexiou, S., Samaras, A., Zormpas, G., Stavropoulos, G., Tsalikakis, D., Kassimis, G., Papadopoulos, C., & Fragakis, N. (2024). The Role of Sodium Glucose Co-Transporter 2 Inhibitors in Atrial Fibrillation: A Comprehensive Review. Journal of Clinical Medicine, 13(18), 5408. https://doi.org/10.3390/jcm13185408