The Effect of Blood Flow Restriction during Low-Load Resistance Training Unit on Knee Flexor Muscle Fatigue in Recreational Athletes: A Randomized Double-Blinded Placebo-Controlled Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Design
2.3. Participants
2.4. Knee Flexor Muscle Maximal Isometric Torque Measurements
2.5. Local Muscle Fatigue Assessment
2.6. Occurrence of Adverse Events
2.7. Blood Flow Restriction
2.8. Low-Load Restriction Training
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cognetti, D.J.; Sheean, A.J.; Owens, J.G. Blood Flow Restriction Therapy and Its Use for Rehabilitation and Return to Sport: Physiology, Application, and Guidelines for Implementation. Arthrosc. Sports Med. Rehabil. 2022, 4, e71–e76. [Google Scholar] [CrossRef]
- Huang, J.; Park, H.Y. Effect of blood flow restriction with low-intensity resistance training in patients with osteoarthritis and rheumatoid arthritis: A systematic review and meta-analysis based on randomized controlled trials. Phys. Act. Nutr. 2024, 28, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Hughes, L.; Paton, B.; Rosenblatt, B.; Gissane, C.; Patterson, S.D. Blood flow restriction training in clinical musculoskeletal rehabilitation: A systematic review and meta-analysis. Br. J. Sports Med. 2017, 51, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Centner, C.; Wiegel, P.; Gollhofer, A.; König, D. Effects of Blood Flow Restriction Training on Muscular Strength and Hypertrophy in Older Individuals: A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 95–108. [Google Scholar] [CrossRef]
- Lixandrão, M.E.; Ugrinowitsch, C.; Berton, R.; Vechin, F.C.; Conceição, M.S.; Damas, F.; Libardi, C.A.; Roschel, H. Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 361–378. [Google Scholar] [CrossRef]
- Slysz, J.; Stultz, J.; Burr, J.F. The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. J. Sci. Med. Sport 2016, 19, 669–675. [Google Scholar] [CrossRef]
- Formiga, M.F.; Fay, R.; Hutchinson, S.; Locandro, N.; Ceballos, A.; Lesh, A.; Buscheck, J.; Meanor, J.; Owens, J.G.; Cahalin, L.P. Effect of aerobic exercise training with and without blood flow restriction on aerobic capacity in healthy young adults: A systematic review with meta-analysis. Int. J. Sports Phys. Ther. 2020, 15, 175–187. [Google Scholar] [CrossRef]
- Zhuan, S.; Zhu, Y.; Zhou, J.; Lei, S.; Wang, X.; Li, J. Enhancing lower limb and core muscle activation with blood flow restriction training: A randomized crossover study on high-intensity squat exercises. Front. Physiol. 2024, 15, 1436441. [Google Scholar] [CrossRef]
- Hwang, P.S.; Willoughby, D.S. Mechanisms Behind Blood Flow-Restricted Training and its Effect Toward Muscle Growth. J. Strength Cond. Res. 2019, 33 (Suppl. S1), S167–S179. [Google Scholar] [CrossRef]
- Fraca-Fernández, E.; Ceballos-Laita, L.; Hernández-Lázaro, H.; Jiménez-Del-Barrio, S.; Mingo-Gómez, M.T.; Medrano-de-la-Fuente, R.; Hernando-Garijo, I. Effects of Blood Flow Restriction Training in Patients before and after Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Healthcare 2024, 12, 1231. [Google Scholar] [CrossRef]
- Dong, J.; Chi, J.; Lei, E.F.; Wang, D. Effects of blood flow restriction training on aerobic capacity, lower limb muscle strength and mass in healthy adults: A meta-analysis. J. Sports Med. Phys. Fit. 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Pişkin, N.E.; Yavuz, G.; Aktuğ, Z.B.; Aldhahi, M.I.; Al-Mhanna, S.B.; Gülü, M. The Effect of Combining Blood Flow Restriction with the Nordic Hamstring Exercise on Hamstring Strength: Randomized Controlled Trial. J. Clin. Med. 2024, 13, 2035. [Google Scholar] [CrossRef]
- Amani-Shalamzari, S.; Rajabi, S.; Rajabi, H.; Gahreman, D.E.; Paton, C.; Bayati, M.; Rosemann, T.; Nikolaidis, P.T.; Knechtle, B. Effects of Blood Flow Restriction and Exercise Intensity on Aerobic, Anaerobic, and Muscle Strength Adaptations in Physically Active Collegiate Women. Front. Physiol. 2019, 10, 810. [Google Scholar] [CrossRef]
- Yang, K.; Chee, C.S.; Abdul Kahar, J.; Tengku Kamalden, T.F.; Li, R.; Qian, S. Effects of blood flow restriction training on physical fitness among athletes: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 16615. [Google Scholar] [CrossRef]
- Kubo, Y.; Fujita, D.; Sugiyama, S.; Takachu, R.; Sugiura, T.; Sawada, M.; Yamashita, K.; Kobori, K.; Kobori, M. Safety and Effects of a Four-Week Preoperative Low-Load Resistance Training With Blood Flow Restriction on Pre- and Postoperative Quadriceps Strength in Patients Undergoing Total Knee Arthroplasty: A Single-Blind Randomized Controlled Trial. Cureus 2024, 16, e64466. [Google Scholar] [CrossRef]
- Johns, W.L.; Vadhera, A.S.; Hammoud, S. Blood Flow Restriction Therapy After Anterior Cruciate Ligament Reconstruction. Arthroscopy 2024, 40, 1724–1726. [Google Scholar] [CrossRef]
- Kamiş, O.; Gürses, V.V.; Şendur, H.N.; Altunsoy, M.; Pekel, H.A.; Yıldırım, E.; Aydos, L. Low-Load Resistance Exercise with Blood Flow Restriction Versus High-Load Resistance Exercise on Hamstring Muscle Adaptations in Recreationally Trained Men. J. Strength Cond. Res. 2024. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lo, I.P.; Tsai, Y.Y.; Zhao, C.G.; Hwang, I.S. Dual-task improvement of older adults after treadmill walking combined with blood flow restriction of low occlusion pressure: The effect on the heart-brain axis. J. NeuroEng. Rehabil. 2024, 21, 116. [Google Scholar] [CrossRef]
- Fortin, J.F.; Billaut, F. Blood-Flow Restricted Warm-Up Alters Muscle Hemodynamics and Oxygenation during Repeated Sprints in American Football Players. Sports 2019, 7, 121. [Google Scholar] [CrossRef]
- Beak, H.J.; Park, W.; Yang, J.H.; Kim, J. Effect of Low-Intensity Aerobic Training Combined with Blood Flow Restriction on Body Composition, Physical Fitness, and Vascular Responses in Recreational Runners. Healthcare 2022, 10, 1789. [Google Scholar] [CrossRef]
- Rudisill, S.S.; Varady, N.H.; Kucharik, M.P.; Eberlin, C.T.; Martin, S.D. Evidence-Based Hamstring Injury Prevention and Risk Factor Management: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Am. J. Sports Med. 2023, 51, 1927–1942. [Google Scholar] [CrossRef]
- Abe, T.; Kearns, C.F.; Sato, Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J. Appl. Physiol. 2006, 100, 1460–1466. [Google Scholar] [CrossRef]
- Martin, P.M.; Bart, R.M.; Ashley, R.L.; Velasco, T.; Wise, S.R. An Overview of Blood Flow Restriction Physiology and Clinical Considerations. Curr. Sports Med. Rep. 2022, 21, 123–128. [Google Scholar] [CrossRef]
- Hornikel, B.; Saffold, K.S.; Esco, M.R.; Mota, J.A.; Fedewa, M.V.; Wind, S.A.; Adams, T.L.; Winchester, L.J. Acute Responses to High-Intensity Back Squats with Bilateral Blood Flow Restriction. Int. J. Environ. Res. Public Health 2023, 20, 3555. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Tongtong, C.; Zhang, W.; Li, X. Effect of continuous and intermittent blood flow restriction deep-squat training on thigh muscle activation and fatigue levels in male handball players. Sci. Rep. 2023, 13, 19152. [Google Scholar] [CrossRef]
- He, K.; Sun, Y.; Xiao, S.; Zhang, X.; Du, Z.; Zhang, Y. Effects of High-Load Bench Press Training with Different Blood Flow Restriction Pressurization Strategies on the Degree of Muscle Activation in the Upper Limbs of Bodybuilders. Sensors 2024, 24, 605. [Google Scholar] [CrossRef]
- Husmann, F.; Mittlmeier, T.; Bruhn, S.; Zschorlich, V.; Behrens, M. Impact of Blood Flow Restriction Exercise on Muscle Fatigue Development and Recovery. Med. Sci. Sports Exerc. 2018, 50, 436–446. [Google Scholar] [CrossRef]
- Anderson, K.D.; Rask, D.M.G.; Bates, T.J.; Nuelle, J.A.V. Overall Safety and Risks Associated with Blood Flow Restriction Therapy: A Literature Review. Mil. Med. 2022, 187, 1059–1064. [Google Scholar] [CrossRef]
- Nascimento, D.d.C.; Rolnick, N.; Neto, I.V.d.S.; Severin, R.; Beal, F.L.R. A Useful Blood Flow Restriction Training Risk Stratification for Exercise and Rehabilitation. Front. Physiol. 2022, 13, 808622. [Google Scholar] [CrossRef]
- Brandner, C.R.; May, A.K.; Clarkson, M.J.; Warmington, S.A. Reported Side-effects and Safety Considerations for the Use of Blood Flow Restriction During Exercise in Practice and Research. Tech. Orthop. 2018, 33, 114–121. [Google Scholar] [CrossRef]
- Neal, B.S.; McManus, C.J.; Bradley, W.J.; Leaney, S.F.; Murray, K.; Clark, N.C. The feasibility, safety, and efficacy of lower limb garment-integrated blood flow restriction training in healthy adults. Phys. Ther. Sport 2023, 60, 9–16. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomized trials. Ann. Intern. Med. 2010, 152, 726–732. [Google Scholar] [CrossRef]
- Abreu, F.G.; Andrade, R.; Pereira, R.; Bastos, R.; Espregueira-Mendes, J. Evaluation of the Stability and Function of the Tibiofemoral and Tibiofibular Joints. In The Art of the Musculoskeletal Physical Exam; Lane, J.G., Gobbi, A., Espregueira-Mendes, J., Kaleka, C.C., Adachi, N., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 443–457. [Google Scholar]
- Lambert, L.A.; McNicholas, M. Evaluation of Range of Motion of the Tibiofemoral Joint. In The Art of the Musculoskeletal Physical Exam; Lane, J.G., Gobbi, A., Espregueira-Mendes, J., Kaleka, C.C., Adachi, N., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 411–418. [Google Scholar]
- Azzini, G.O.M. Clinical Tests for Evaluation of Motor Function of the Knee. In The Art of the Musculoskeletal Physical Exam; Lane, J.G., Gobbi, A., Espregueira-Mendes, J., Kaleka, C.C., Adachi, N., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 419–431. [Google Scholar]
- Silva, L.D.; Tscholl, P.; Bastos, R.; Andrade, R.; Espregueira-Mendes, J. Evaluation of the Menisci. In The Art of the Musculoskeletal Physical Exam; Lane, J.G., Gobbi, A., Espregueira-Mendes, J., Kaleka, C.C., Adachi, N., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 459–465. [Google Scholar]
- Van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; Nijhuis-van der Sanden, M.W.G.; van Cingel, R.E.H. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS ONE 2017, 12, e0189876. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Beretta Piccoli, M.; Rainoldi, A.; Heitz, C.; Wüthrich, M.; Boccia, G.; Tomasoni, E.; Spirolazzi, C.; Egloff, M.; Barbero, M. Innervation zone locations in 43 superficial muscles: Toward a standardization of electrode positioning. Muscle Nerve 2014, 49, 413–421. [Google Scholar] [CrossRef]
- Oleksy, Ł.; Czarny, W.; Bajorek, W.; Król, P.; Mika, A.; Kielnar, R. The Evaluation of Shoulder Muscle Fatigue in Volleyball Players. J. Nov. Physiother. 2018, 8, 2. [Google Scholar] [CrossRef]
- Thompson, B. Effect sizes, confidence intervals, and confidence intervals for effect sizes. Psychol. Sch. 2007, 44, 423–432. [Google Scholar] [CrossRef]
- Boullosa, D.; Esteve-Lanao, J.; Casado, A.; Peyré-Tartaruga, L.A.; Gomes da Rosa, R.; Del Coso, J. Factors Affecting Training and Physical Performance in Recreational Endurance Runners. Sports 2020, 8, 35. [Google Scholar] [CrossRef]
- Lacey, A.; Whyte, E.; O’Keeffe, S.; O’Connor, S.; Moran, K. Recruitment and Retention of Recreational Runners in Prospective Injury Research: A Qualitative Study. Int. J. Qual. Methods 2023, 22, 16094069231178278. [Google Scholar] [CrossRef]
- Askling, C.M.; Tengvar, M.; Saartok, T.; Thorstensson, A. Acute first-time hamstring strains during high-speed running: A longitudinal study including clinical and magnetic resonance imaging findings. Am. J. Sports Med. 2007, 35, 197–206. [Google Scholar] [CrossRef]
- Askling, C.M.; Tengvar, M.; Saartok, T.; Thorstensson, A. Proximal hamstring strains of stretching type in different sports: Injury situations, clinical and magnetic resonance imaging characteristics, and return to sport. Am. J. Sports Med. 2008, 36, 1799–1804. [Google Scholar] [CrossRef] [PubMed]
- Jack, R.A., 2nd; Lambert, B.S.; Hedt, C.A.; Delgado, D.; Goble, H.; McCulloch, P.C. Blood Flow Restriction Therapy Preserves Lower Extremity Bone and Muscle Mass After ACL Reconstruction. Sports Health 2023, 15, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Spada, J.M.; Paul, R.W.; Tucker, B.S. Blood Flow Restriction Training preserves knee flexion and extension torque following anterior cruciate ligament reconstruction: A systematic review. J. Orthop. 2022, 34, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Charles, D.; White, R.; Reyes, C.; Palmer, D. A systematic review of the effects of blood flow restriction training on quadriceps muscle atrophy and circumference post acl reconstruction. Int. J. Sports Phys. Ther. 2020, 15, 882–891. [Google Scholar] [CrossRef]
- Takarada, Y.; Takazawa, H.; Ishii, N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med. Sci. Sports Exerc. 2000, 32, 2035–2039. [Google Scholar] [CrossRef]
- Iversen, E.; Røstad, V.; Larmo, A. Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. J. Sport Health Sci. 2016, 5, 115–118. [Google Scholar] [CrossRef]
- Ohta, H.; Kurosawa, H.; Ikeda, H.; Iwase, Y.; Satou, N.; Nakamura, S. Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop. Scand. 2003, 74, 62–68. [Google Scholar] [CrossRef]
- Królikowska, A.; Czamara, A.; Kentel, M. Does Gracilis Tendon Harvest During ACL Reconstruction with a Hamstring Autograft Affect Torque of Muscles Responsible for Shin Rotation? Med. Sci. Monit. 2015, 21, 2084–2093. [Google Scholar] [CrossRef]
- Czamara, A.; Królikowska, A.; Szuba, Ł.; Widuchowski, W.; Kentel, M. Single- vs. double-bundle anterior cruciate ligament reconstruction: A new aspect of knee assessment during activities involving dynamic knee rotation. J. Strength Cond. Res. 2015, 29, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Czamara, A.; Szuba, Ł.; Krzemińska, A.; Tomaszewski, W.; Wilk-Frańczuk, M. Effect of physiotherapy on the strength of tibial internal rotator muscles in males after anterior cruciate ligament reconstruction (ACLR). Med. Sci. Monit. 2011, 17, Cr523–Cr531. [Google Scholar] [CrossRef]
- Speedtsberg, M.B.; Zebis, M.K.; Lauridsen, H.B.; Magnussen, E.; Hölmich, P. Anatomical retraction of the semitendinosus muscle following harvest of the distal semitendinosus tendon for ACL reconstruction. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2022, 30, 1706–1710. [Google Scholar] [CrossRef] [PubMed]
- Von Essen, C.; McCallum, S.; Eriksson, K.; Barenius, B. Minimal graft site morbidity using autogenous semitendinosus graft from the uninjured leg: A randomised controlled trial. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2022, 30, 1639–1645. [Google Scholar] [CrossRef]
- Krolikowska, A.; Sikorski, L.; Czamara, A.; Reichert, P. Are the knee extensor and flexor muscles isokinetic parameters affected by the duration of postoperative physiotherapy supervision in patients eight months after ACL reconstruction with the use of semitendinosus and gracilis tendons autograft? Acta Bioeng. Biomech. 2018, 20, 89–100. [Google Scholar] [PubMed]
- Loenneke, J.P.; Wilson, J.M.; Wilson, G.J.; Pujol, T.J.; Bemben, M.G. Potential safety issues with blood flow restriction training. Scand. J. Med. Sci. Sports 2011, 21, 510–518. [Google Scholar] [CrossRef]
- Prill, R.; Mouton, C.; Klugorová, J.; Królikowska, A.; Karlsson, J.; Becker, R. Implementation of evidence-based medicine in everyday clinical practice. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2023, 31, 3034–3036. [Google Scholar] [CrossRef]
- Jønsson, A.B.; Krogh, S.; Laursen, H.S.; Aagaard, P.; Kasch, H.; Nielsen, J.F. Safety and efficacy of blood flow restriction exercise in individuals with neurological disorders: A systematic review. Scand. J. Med. Sci. Sports 2024, 34, e14561. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.D.; Hughes, L.; Warmington, S.; Burr, J.; Scott, B.R.; Owens, J.; Abe, T.; Nielsen, J.L.; Libardi, C.A.; Laurentino, G.; et al. Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front. Physiol. 2019, 10, 533. [Google Scholar] [CrossRef]
- Królikowska, A.; Kusienicka, K.; Lazarek, E.; Oleksy, Ł.; Prill, R.; Kołcz, A.; Daszkiewicz, M.; Janczak, D.; Reichert, P. A Randomized, Double-Blind Placebo Control Study on the Effect of a Blood Flow Restriction by an Inflatable Cuff Worn around the Arm on the Wrist Joint Position Sense in Healthy Recreational Athletes. J. Clin. Med. 2023, 12, 602. [Google Scholar] [CrossRef]
- Prill, R.; Królikowska, A.; de Girolamo, L.; Becker, R.; Karlsson, J. Checklists, risk of bias tools, and reporting guidelines for research in orthopedics, sports medicine, and rehabilitation. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 3029–3033. [Google Scholar] [CrossRef]
- Prill, R.; Królikowska, A.; Becker, R.; Karlsson, J. Why there is a need to improve evaluation standards for clinical studies in orthopaedic and sports medicine. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 4–5. [Google Scholar] [CrossRef]
- Królikowska, A.; Reichert, P.; Karlsson, J.; Mouton, C.; Becker, R.; Prill, R. Improving the reliability of measurements in orthopaedics and sports medicine. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2023, 31, 5277–5285. [Google Scholar] [CrossRef] [PubMed]
- Madjarova, S.J.; Williams, R.J., 3rd; Nwachukwu, B.U.; Martin, R.K.; Karlsson, J.; Ollivier, M.; Pareek, A. Picking apart p values: Common problems and points of confusion. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2022, 30, 3245–3248. [Google Scholar] [CrossRef] [PubMed]
- Varady, N.H.; Pareek, A.; Eckhardt, C.M.; Williams, R.J., 3rd; Madjarova, S.J.; Ollivier, M.; Martin, R.K.; Karlsson, J.; Nwachukwu, B.U. Multivariable regression: Understanding one of medicine’s most fundamental statistical tools. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2023, 31, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Madjarova, S.J.; Pareek, A.; Eckhardt, C.M.; Khorana, A.; Kunze, K.N.; Ollivier, M.; Karlsson, J.; Williams, R.J., 3rd; Nwachukwu, B.U. Fragility Part I: A guide to understanding statistical power. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2022, 30, 3924–3928. [Google Scholar] [CrossRef]
- Karanicolas, P.J.; Farrokhyar, F.; Bhandari, M. Practical tips for surgical research: Blinding: Who, what, when, why, how? Can. J. Surgery. J. Can. Chir. 2010, 53, 345–348. [Google Scholar]
- Webster, R.K.; Bishop, F.; Collins, G.S.; Evers, A.W.M.; Hoffmann, T.; Knottnerus, J.A.; Lamb, S.E.; Macdonald, H.; Madigan, C.; Napadow, V.; et al. Measuring the success of blinding in placebo-controlled trials: Should we be so quick to dismiss it? J. Clin. Epidemiol. 2021, 135, 176–181. [Google Scholar] [CrossRef]
Studied Group | n | Age (Years) | Body Mass (kg) | Body Height (cm) | BMI (kg * m−2) |
---|---|---|---|---|---|
BFR Group | 5 | 23.40 ± 0.55 | 79.40 ± 9.29 | 182.80 ± 5.72 | 23.72 ± 2.05 |
Placebo Group | 5 | 22.60 ± 0.89 | 75.20 ± 10.78 | 179.60 ± 5.68 | 23.21 ± 2.06 |
Control Group | 5 | 26.60 ± 2.07 | 73.20 ± 10.66 | 180.80 ± 10.85 | 22.31 ± 1.32 |
Between-Group p-Value | 0.402 | 0.633 | 0.810 | 0.386 |
Semitendinosus Muscle Surface Electromyography-Based Fatigue Index | ||||
---|---|---|---|---|
First Assessment | Second Assessment | Within-Group p-Value | Index’s Change | |
BFR Group | 0.95 ± 0.04 | 0.84 ± 0.08 | 0.009 | −0.11 ± 0.05 |
Placebo Group | 0.93 ± 0.03 | 0.85 ± 0.15 | 0.043 | −0.09 ± 0.14 |
Control Group | 0.88 ± 0.14 | 0.81 ± 0.20 | 0.043 | −0.07 ± 0.08 |
Change in the Surface Electromyography-Based Fatigue Index between the First and Second Assessment | ||||
---|---|---|---|---|
BFR Group | ||||
Semitendinosus Muscle | Biceps Femoris Muscle | |||
Between-Groups p-Value | Effect Size (Cohen’s d) | Between-Groups p-Value | Effect Size (Cohen’s d) | |
Placebo Group | 0.331 | 0.19 | 0.175 | 0.52 |
Control Group | 0.066 | 0.59 | 0.356 | 1.31 |
Biceps Femoris Muscle Surface Electromyography-Based Fatigue Index | ||||
---|---|---|---|---|
first Assessment | second Assessment | Within-Group p-Value | Index’s Change | |
BFR Group | 0.94 ± 0.05 | 0.83 ± 0.06 | ≤0.001 | −0.10 ± 0.02 |
Placebo Group | 0.92 ± 0.09 | 0.84 ± 0.06 | 0.018 | −0.08 ± 0.05 |
Control Group | 0.93 ± 0.06 | 0.88 ± 0.04 | 0.067 | −0.05 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Królikowska, A.; Daszkiewicz, M.; Kocel, J.; Avram, G.M.; Oleksy, Ł.; Prill, R.; Witkowski, J.; Korolczuk, K.; Kołcz, A.; Reichert, P. The Effect of Blood Flow Restriction during Low-Load Resistance Training Unit on Knee Flexor Muscle Fatigue in Recreational Athletes: A Randomized Double-Blinded Placebo-Controlled Pilot Study. J. Clin. Med. 2024, 13, 5444. https://doi.org/10.3390/jcm13185444
Królikowska A, Daszkiewicz M, Kocel J, Avram GM, Oleksy Ł, Prill R, Witkowski J, Korolczuk K, Kołcz A, Reichert P. The Effect of Blood Flow Restriction during Low-Load Resistance Training Unit on Knee Flexor Muscle Fatigue in Recreational Athletes: A Randomized Double-Blinded Placebo-Controlled Pilot Study. Journal of Clinical Medicine. 2024; 13(18):5444. https://doi.org/10.3390/jcm13185444
Chicago/Turabian StyleKrólikowska, Aleksandra, Maciej Daszkiewicz, Julia Kocel, George Mihai Avram, Łukasz Oleksy, Robert Prill, Jarosław Witkowski, Krzysztof Korolczuk, Anna Kołcz, and Paweł Reichert. 2024. "The Effect of Blood Flow Restriction during Low-Load Resistance Training Unit on Knee Flexor Muscle Fatigue in Recreational Athletes: A Randomized Double-Blinded Placebo-Controlled Pilot Study" Journal of Clinical Medicine 13, no. 18: 5444. https://doi.org/10.3390/jcm13185444
APA StyleKrólikowska, A., Daszkiewicz, M., Kocel, J., Avram, G. M., Oleksy, Ł., Prill, R., Witkowski, J., Korolczuk, K., Kołcz, A., & Reichert, P. (2024). The Effect of Blood Flow Restriction during Low-Load Resistance Training Unit on Knee Flexor Muscle Fatigue in Recreational Athletes: A Randomized Double-Blinded Placebo-Controlled Pilot Study. Journal of Clinical Medicine, 13(18), 5444. https://doi.org/10.3390/jcm13185444