Update on Clinical Trial Endpoints in Gene Therapy Trials for Inherited Retinal Diseases
Abstract
:1. Introduction
1.1. Methodology
1.2. Inherited Retinal Disease Classification
2. Genetic Therapy Approaches
2.1. Introduction
2.2. Gene-Specific Therapeutic Strategies
2.3. Gene-Agnostic Gene Therapy
3. Endpoints in Inherited Retinal Disease
3.1. Introduction
3.2. Functional Assessments
3.2.1. Visual Acuity
3.2.2. Contrast Sensitivity
3.2.3. Perimetry and Microperimetry
3.2.4. Full-Field Stimulus Threshold (FST)
3.2.5. Electrophysiology
3.2.6. Color Vision Testing
3.2.7. Pupillometry
3.2.8. Photoaversion Assessment
3.3. Structural Endpoints
3.3.1. Introduction
3.3.2. Optical Coherence Tomography (OCT)
3.3.3. Fundus Autofluorescence (FAF)
3.3.4. Adaptive Optics (AO)
3.3.5. Optical Coherence Tomography (OCTA)
3.3.6. Composite Endpoints
3.4. Patient-Focused Outcomes (PFOs)
3.4.1. Introduction
3.4.2. Performance-Based Tests (PBTs)
3.4.3. Patient-Reported Outcomes (PROs)
4. Efficacy Outcomes in Phase 2, 2/3, and 3 Trials (Table 2)
5. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Lam, B.L.; Leroy, B.P.; Black, G.; Ong, T.; Yoon, D.; Trzupek, K. Genetic testing and diagnosis of inherited retinal diseases. Orphanet J. Rare Dis. 2021, 16, 514. [Google Scholar] [CrossRef] [PubMed]
- RetNet: Summaries [Internet]. Available online: https://web.sph.uth.edu/RetNet/sum-dis.htm?csrt=17139658098131438979#A-genes (accessed on 31 October 2023).
- Ben-Yosef, T. Inherited Retinal Diseases. Int. J. Mol. Sci. 2022, 23, 13467. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.M.; Li, H.; Yu, M.; Su, X.; Holder, G.E.; Chan, H.W.; Tham, Y.C. Global Prevalence Estimates of the Most Common Inherited Retinal Diseases Genes: A Systematic Review and Meta-Regression Analysis. Investig. Ophthalmol. Vis. Sci. 2023, 64, 2791. [Google Scholar]
- Gong, J.; Cheung, S.; Fasso-Opie, A.; Galvin, O.; Moniz, L.S.; Earle, D.; Durham, T.; Menzo, J.; Li, N.; Duffy, S.; et al. The Impact of Inherited Retinal Diseases in the United States of America (US) and Canada from a Cost-of-Illness Perspective. Clin. Ophthalmol. 2021, 15, 2855–2866. [Google Scholar] [CrossRef] [PubMed]
- Schofield, D.; Kraindler, J.; Tan, O.; Shrestha, R.; Jelovic, D.; West, S.; Ma, A.; Grigg, J.; Jamieson, R.V. Patient-Reported Health-Related Quality of Life in Individuals with Inherited Retinal Diseases. Ophthalmol. Sci. 2021, 2, 100106. [Google Scholar] [CrossRef]
- Heath Jeffery, R.C.; Mukhtar, S.A.; McAllister, I.L.; Morgan, W.H.; Mackey, D.A.; Chen, F.K. Inherited retinal diseases are the most common cause of blindness in the working-age population in Australia. Ophthalmic Genet. 2021, 42, 431–439. [Google Scholar] [CrossRef]
- Liew, G.; Michaelides, M.; Bunce, C. A comparison of the causes of blindness certifications in England and Wales in working age adults (16–64 years), 1999–2000 with 2009–2010. BMJ Open 2014, 4, e004015. [Google Scholar] [CrossRef]
- Koboldt, D.C.; Steinberg, K.M.; Larson, D.E.; Wilson, R.K.; Mardis, E. The Next-Generation Sequencing Revolution and Its Impact on Genomics. Cell 2013, 155, 27–38. [Google Scholar] [CrossRef]
- Deltcheva, E.; Chylinski, K.; Sharma, C.M.; Gonzales, K.; Chao, Y.; Pirzada, Z.A.; Eckert, M.R.; Vogel, J.; Charpentier, E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471, 602–607. [Google Scholar] [CrossRef]
- Gostimskaya, I. CRISPR–Cas9: A History of Its Discovery and Ethical Considerations of Its Use in Genome Editing. Biochemistry 2022, 87, 777–788. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Chaqour, B.; Duong, T.T.; Yue, J.; Liu, T.; Camacho, D.; Dine, K.E.; Esteve-Rudd, J.; Ellis, S.; Bennett, J.; Shindler, K.S.; et al. AAV2 vector optimization for retinal ganglion cell-targeted delivery of therapeutic genes. Gene Ther. 2024, 31, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Cideciyan, A.V.; Aleman, T.S.; Boye, S.L.; Schwartz, S.B.; Kaushal, S.; Roman, A.J.; Pang, J.J.; Sumaroka, A.; Windsor, E.A.; Wilson, J.M.; et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc. Natl. Acad. Sci. USA 2008, 105, 15112–15117. [Google Scholar] [CrossRef]
- Croze, R.H.; Kotterman, M.; Burns, C.H.; Schmitt, C.E.; Quezada, M.; Schaffer, D.; Kirn, D.; Francis, P. Viral Vector Technologies and Strategies: Improving on Nature. Int. Ophthalmol. Clin. 2021, 61, 59–89. [Google Scholar] [CrossRef] [PubMed]
- Maguire, A.M.; Simonelli, F.; Pierce, E.A.; Pugh, E.N.; Mingozzi, F.; Bennicelli, J.; Banfi, S.; Marshall, K.A.; Testa, F.; Surace, E.M.; et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl. J. Med. 2008, 358, 2240–2248. [Google Scholar] [CrossRef] [PubMed]
- Ong, T.; Pennesi, M.E.; Birch, D.G.; Lam, B.L.; Tsang, S.H. Adeno-Associated Viral Gene Therapy for Inherited Retinal Disease. Pharm. Res. 2019, 36, 34. [Google Scholar] [CrossRef] [PubMed]
- Moseley, J.; Leest, T.; Larsson, K.; Magrelli, A.; Stoyanova-Beninska, V. Inherited retinal dystrophies and orphan designations in the European Union. Eur. J. Ophthalmol. 2024, 11206721241236214. [Google Scholar] [CrossRef]
- Stone, E.M.; Andorf, J.L.; Whitmore, S.S.; DeLuca, A.P.; Giacalone, J.C.; Streb, L.M.; Braun, T.A.; Mullins, R.F.; Scheetz, T.E.; Sheffield, V.C.; et al. Clinically Focused Molecular Investigation of 1000 Consecutive Families with Inherited Retinal Disease. Ophthalmology 2017, 124, 1314–1331. [Google Scholar] [CrossRef]
- Tatour, Y.; Ben-Yosef, T. Syndromic Inherited Retinal Diseases: Genetic, Clinical and Diagnostic Aspects. Diagnostics 2020, 10, 779. [Google Scholar] [CrossRef]
- Thompson, D.A.; Iannaccone, A.; Ali, R.R.; Arshavsky, V.Y.; Audo, I.; Bainbridge, J.W.B.; Besirli, C.G.; Birch, D.G.; Branham, K.E.; Cideciyan, A.V.; et al. Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium. Trans. Vis. Sci. Tech. 2020, 9, 2. [Google Scholar] [CrossRef]
- Nuzbrokh, Y.; Ragi, S.D.; Tsang, S.H. Gene therapy for inherited retinal diseases. Ann. Transl. Med. 2021, 9, 1278. [Google Scholar] [CrossRef] [PubMed]
- Fenner, B.J.; Tan, T.E.; Barathi, A.V.; Tun, S.B.B.; Yeo, S.W.; Tsai, A.S.H.; Lee, S.Y.; Cheung, C.M.G.; Chan, C.M.; Mehta, J.S.; et al. Gene-Based Therapeutics for Inherited Retinal Diseases. Front. Genet. 2022, 12, 794805. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Wilson, D.R.; Sripathi, S.R.; Suprenant, M.P.; Rui, Y.; Wahlin, K.J.; Berlinicke, C.A.; Green, J.J.; Zack, D.J. A combinatorial library of biodegradable polyesters enables non-viral gene delivery to post-mitotic human stem cell-derived polarized RPE monolayers. Regen. Eng. Transl. Med. 2019, 6, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Crane, R.; Makia, M.S.; Zeibak, S.; Tebbe, L.; Ikele, L.; Woods, C.R.; Conley, S.M.; Acharya, G.; Naash, M.I.; Al-Ubaidi, M.R. Effective intravitreal gene delivery to retinal pigment epithelium with hyaluronic acid nanospheres. Mol. Ther. Nucleic Acids 2024, 35, 102222. [Google Scholar] [CrossRef] [PubMed]
- Chambers, C.Z.; Soo, G.L.; Engel, A.L.; Glass, I.A.; Birth Defects Research Laboratory (BDRL); Frassetto, A.; Martini, P.G.V.; Cherry, T.J. Lipid Nanoparticle-Mediated Delivery of mRNA Into the Mouse and Human Retina and Other Ocular Tissues. Transl. Vis. Sci. Technol. 2024, 13, 7. [Google Scholar] [CrossRef]
- Monteiro, A.; Liu, L.; Sheardown, H. Novel delivery vehicle for ocular siRNA gene-silencing therapy. Investig. Ophthalmol. Vis. Sci. 2024, 65, 259. [Google Scholar]
- Nieuwenhuis, B.; Laperrousaz, E.; Tribble, J.R.; Verhaagen, J.; Fawcett, J.W.; Martin, K.R.; Williams, P.A.; Osborne, A. Improving adeno-associated viral (AAV) vector-mediated transgene expression in retinal ganglion cells: Comparison of five promoters. Gene Ther. 2023, 30, 503–519. [Google Scholar] [CrossRef]
- Mével, M.; Pichard, V.; Bouzelha, M.; Alvarez-Dorta, D.; Lalys, P.A.; Provost, N.; Allais, M.; Mendes, A.; Landagaray, E.; Ducloyer, J.B.; et al. Mannose-coupled AAV2: A second-generation AAV vector for increased retinal gene therapy efficiency. Mol. Ther. Methods Clin. Dev. 2024, 32, 101187. [Google Scholar] [CrossRef]
- Beltran, W.A.; Cideciyan, A.V.; Boye, S.E.; Ye, G.J.; Iwabe, S.; Dufour, V.L.; Marinho, L.F.; Swider, M.; Kosyk, M.S.; Sha, J.; et al. Optimization of Retinal Gene Therapy for X-Linked Retinitis Pigmentosa Due to RPGR Mutations. Mol. Ther. 2017, 25, 1866–1880. [Google Scholar] [CrossRef]
- Ballios, B.G.; Pierce, E.A.; Huckfeldt, R.M. Gene editing technology: Towards precision medicine in inherited retinal diseases. Semin. Ophthalmol. 2021, 36, 176–184. [Google Scholar] [CrossRef]
- Cideciyan, A.V.; Sudharsan, R.; Dufour, V.L.; Massengill, M.T.; Iwabe, S.; Swider, M.; Lisi, B.; Sumaroka, A.; Marinho, L.F.; Appelbaum, T.; et al. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proc. Natl. Acad. Sci. USA 2018, 115, E8547–E8556. [Google Scholar] [CrossRef]
- Gnanaguru, G.; Wagschal, A.; Oh, J.; Saez-Torres, K.L.; Li, T.; Temel, R.E.; Kleinman, M.E.; Näär, A.M.; D’Amore, P.A. Targeting of miR-33 ameliorates phenotypes linked to age-related macular degeneration. Mol. Ther. 2021, 29, 2281–2293. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.L.; Du, S.W.; Palczewski, K. Genome editing, a superior therapy for inherited retinal diseases. Vis. Res. 2023, 206, 108192. [Google Scholar] [CrossRef] [PubMed]
- Cideciyan, A.V.; Jacobson, S.G.; Drack, A.V.; Ho, A.C.; Charng, J.; Garafalo, A.V.; Roman, A.J.; Sumaroka, A.; Han, I.C.; Hochstedler, M.D.; et al. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect. Nat. Med. 2019, 25, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Kaltak, M.; de Bruijn, P.; Piccolo, D.; Lee, S.E.; Dulla, K.; Hoogenboezem, T.; Beumer, W.; Webster, A.R.; Collin, R.W.J.; Cheetham, M.E.; et al. Antisense oligonucleotide therapy corrects splicing in the common Stargardt disease type 1-causing variant ABCA4 c.5461-10T>C. Mol. Ther.-Nucleic Acids 2023, 31, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Domínguez, I.; Anido, A.A.; Duijkers, L.; Hoppenbrouwers, T.; Hoogendoorn, A.D.M.; Koster, C.; Collin, R.W.J.; Garanto, A. Efficacy, biodistribution and safety comparison of chemically modified antisense oligonucleotides in the retina. Nucleic Acids Res. 2024, gkae686. [Google Scholar] [CrossRef] [PubMed]
- Cideciyan, A.V.; Jacobson, S.G.; Ho, A.C.; Swider, M.; Sumaroka, A.; Roman, A.J.; Russell, R.C.; Viarbitskaya, I.; Garafalo, A.V.; Schwartz, M.R.; et al. Durable vision improvement after a single intravitreal treatment with antisense oligonucleotide in CEP290-LCA: Replication in two eyes. Am. J. Ophthalmol. Case Rep. 2023, 32, 101873. [Google Scholar] [CrossRef]
- Dulla, K.; Slijkerman, R.; Diepen HC van Albert, S.; Dona, M.; Beumer, W.; Turunen, J.J.; Chan, H.L.; Schulkens, I.A.; Vorthoren, L.; den Besten, C.; et al. Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations. Mol. Ther. 2021, 29, 2441–2455. [Google Scholar] [CrossRef]
- Asmamaw, M.; Zawdie, B. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics 2021, 15, 353–361. [Google Scholar]
- Maeder, M.L.; Stefanidakis, M.; Wilson, C.J.; Baral, R.; Barrera, L.A.; Bounoutas, G.S.; Bumcrot, D.; Charo, H.; Ciulla, D.M.; DaSilva, J.A.; et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat. Med. 2019, 25, 229–233. [Google Scholar] [CrossRef]
- Schaefer, K.A.; Wu, W.H.; Colgan, D.F.; Tsang, S.H.; Bassuk, A.G.; Mahajan, V.B. Retraction Note: Unexpected mutations after CRISPR–Cas9 editing in vivo. Nat. Methods 2018, 15, 394. [Google Scholar] [CrossRef]
- Sinha, D.; Steyer, B.; Shahi, P.K.; Mueller, K.P.; Valiauga, R.; Edwards, K.L.; Bacig, C.; Steltzer, S.S.; Srinivasan, S.; Abdeen, A.; et al. Human iPSC Modeling Reveals Mutation-Specific Responses to Gene Therapy in a Genotypically Diverse Dominant Maculopathy. Am. J. Hum. Genet. 2020, 107, 278–292. [Google Scholar] [CrossRef] [PubMed]
- Pierce, E.A.; Aleman, T.S.; Jayasundera, K.T.; Ashimatey, B.S.; Kim, K.; Rashid, A.; Jaskolka, M.C.; Myers, R.L.; Lam, B.L.; Bailey, S.T.; et al. Gene Editing for CEP290-Associated Retinal Degeneration. N. Engl. J. Med. 2024, 390, 1972–1984. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.S.; Kumar, S.; Hsiao, Y.W.; Fry, L. Harnessing CRISPR-Cas RNA base editing to treat inherited retinal disease. Investig. Ophthalmol. Vis. Sci. 2024, 65, 6053. [Google Scholar]
- Suh, S.; Choi, E.H.; Leinonen, H.; Foik, A.T.; Newby, G.A.; Yeh, W.H.; Dong, Z.; Kiser, P.D.; Lyon, D.C.; Liu, D.R.; et al. Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. Nat. Biomed. Eng. 2021, 5, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Xue, K.; MacLaren, R.E. Antisense oligonucleotide therapeutics in clinical trials for the treatment of inherited retinal diseases. Expert Opin. Investig. Drugs 2020, 29, 1163–1170. [Google Scholar] [CrossRef]
- Farrar, G.J.; Millington-Ward, S.; Chadderton, N.; Humphries, P.; Kenna, P.F. Gene-based therapies for dominantly inherited retinopathies. Gene Ther. 2012, 19, 137–144. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Caiazzi, J.; Giguere, D.; Alterman, J.F.; Echeverria Moreno, D.; Biscans, A.; Hassler, M.; Khvorova, A.; Piunzp, C. Modified siRNA exhibit robust, safe and long-term gene silencing in the retina. Investig. Ophthalmol. Vis. Sci. 2023, 64, 2603. [Google Scholar]
- Cheng, S.Y.; Caiazzi, J.; Biscans, A.; Alterman, J.F.; Echeverria, D.; McHugh, N.; Hassler, M.; Jolly, S.; Giguere, D.; Cipi, J.; et al. Single intravitreal administration of a tetravalent siRNA exhibits robust and efficient gene silencing in mouse and pig photoreceptors. Molecular Therapy-Nucleic Acids 2024, 35, 102088. [Google Scholar] [CrossRef]
- Taniguchi, T.; Endo, K.-I.; Tanioka, H.; Sasaoka, M.; Tashiro, K.; Kinoshita, S.; Kageyama, M. Novel use of a chemically modified siRNA for robust and sustainable in vivo gene silencing in the retina. Sci. Rep. 2020, 10, 22343. [Google Scholar] [CrossRef]
- Tuohy, G.P.; Megaw, R. A Systematic Review and Meta-Analyses of Interventional Clinical Trial Studies for Gene Therapies for the Inherited Retinal Degenerations (IRDs). Biomolecules 2021, 11, 760. [Google Scholar] [CrossRef] [PubMed]
- Sengillo, J.D.; Gregori, N.Z.; Sisk, R.A.; Weng, C.Y.; Berrocal, A.M.; Davis, J.L.; Mendoza-Santiesteban, C.E.; Zheng, D.D.; Feuer, W.J.; Lam, B.L. Visual Acuity, Retinal Morphology, and Patients’ Perceptions after Voretigene Neparovec-rzyl Therapy for RPE65-Associated Retinal Disease. Ophthalmol. Retina 2022, 6, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Lam, B.L.; Davis, J.L.; Gregori, N.Z. Choroideremia Gene Therapy. Int. Ophthalmol. Clin. 2021, 61, 185. [Google Scholar] [CrossRef] [PubMed]
- FDA. Surrogate Endpoint Resources for Drug and Biologic Development. 29 January 2021. Available online: https://www.fda.gov/drugs/development-resources/surrogate-endpoint-resources-drug-and-biologic-development (accessed on 7 November 2023).
- FDA. Multiple Endpoints in Clinical Trials Guidance for Industry [Internet]. 2022. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/multiple-endpoints-clinical-trials-guidance-industry (accessed on 7 November 2023).
- FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and Other Tools) Resource [Internet]; Food and Drug Administration: Silver Spring, MD, USA, 2016. Available online: http://www.ncbi.nlm.nih.gov/books/NBK326791/ (accessed on 10 November 2023).
- Csaky, K.G.; Richman, E.A.; Ferris, F.L., III. Report from the NEI/FDA Ophthalmic Clinical Trial Design and Endpoints Symposium. Investig. Ophthalmol. Vis. Sci. 2008, 49, 479–489. [Google Scholar] [CrossRef]
- Csaky, K.; Ferris, F.; Chew, E.Y.; Nair, P.; Cheetham, J.K.; Duncan, J.L. Report From the NEI/FDA Endpoints Workshop on Age-Related Macular Degeneration and Inherited Retinal Diseases. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3456. [Google Scholar] [CrossRef]
- Schmetterer, L.; Scholl, H.; Garhöfer, G.; Janeschitz-Kriegl, L.; Corvi, F.; Sadda, S.R.; Medeiros, F.A. Endpoints for clinical trials in ophthalmology. Prog. Retin. Eye Res. 2023, 97, 101160. [Google Scholar] [CrossRef]
- Aronson, J.K. Biomarkers and surrogate endpoints. Br. J. Clin. Pharmacol. 2005, 59, 491–494. [Google Scholar] [CrossRef]
- Bennett, C.R.; Bex, P.J.; Bauer, C.M.; Merabet, L.B. The Assessment of Visual Function and Functional Vision. Semin. Pediatr. Neurol. 2019, 31, 30–40. [Google Scholar] [CrossRef]
- Xiong, Y.Z.; Kwon, M.; Bittner, A.K.; Virgili, G.; Giacomelli, G.; Legge, G.E. Relationship Between Acuity and Contrast Sensitivity: Differences Due to Eye Disease. Investig. Ophthalmol. Vis. Sci. 2020, 61, 40. [Google Scholar] [CrossRef]
- Taylor, L.J.; Josan, A.S.; Stratton, I.; Jolly, J.K.; MacLaren, R.E. A cross-sectional study to assess the clinical utility of modern visual function assessments in patients with inherited retinal disease: A mixed methods observational study protocol. BMC Ophthalmol. 2023, 23, 234. [Google Scholar] [CrossRef]
- Wood, L.J.; Jolly, J.K.; Buckley, T.M.; Josan, A.S.; MacLaren, R.E. Low luminance visual acuity as a clinical measure and clinical trial outcome measure: A scoping review. Ophthalmic Physiol. Opt. 2021, 41, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Birch, D.G.; Cheetham, J.K.; Daiger, S.P.; Hoyng, C.; Kay, C.; MacDonald, I.M.; Pennesi, M.E.; Sullivan, L.S. Overcoming the Challenges to Clinical Development of X-Linked Retinitis Pigmentosa Therapies: Proceedings of an Expert Panel. Transl. Vis. Sci. Technol. 2023, 12, 5. [Google Scholar] [CrossRef]
- Daich Varela, M.; Georgiou, M.; Hashem, S.A.; Weleber, R.G.; Michaelides, M. Functional evaluation in inherited retinal disease. Br. J. Ophthalmol. 2022, 106, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Bonsel, K.; Feltgen, N.; Burau, H.; Hansen, L.; Bach, M. Visual Acuities “Hand Motion” and “Counting Fingers” Can Be Quantified with the Freiburg Visual Acuity Test. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1236–1240. [Google Scholar] [CrossRef]
- Wei, A. Validation of Computerized Landolt C Visual Acuity Measurement on ColorDx [Internet]. Master’s Thesis, University of California, Irvine, CA, USA, 2020. Available online: https://www.proquest.com/docview/2428576664/abstract/FBF12D9398AE4616PQ/1 (accessed on 22 January 2024).
- Wesemann, W. Visual acuity measured via the Freiburg visual acuity test (FVT), Bailey Lovie chart and Landolt Ring chart. Klin Monbl Augenheilkd 2002, 219, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Dennis, R.J.; Beer, J.M.A.; Baldwin, J.B.; Ivan, D.J.; Lorusso, F.J.; Thompson, W.T. Using the Freiburg Acuity and Contrast Test to measure visual performance in USAF personnel after PRK. Optom. Vis. Sci. 2004, 81, 516–524. [Google Scholar] [CrossRef]
- Caltrider, D.; Gupta, A.; Tripathy, K. Evaluation of Visual Acuity. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK564307/ (accessed on 13 March 2024).
- Therapeutics, N. Nanoscope Therapeutics Announces Positive Top-line Results from Randomized Controlled Trial of MCO-010 for Retinitis Pigmentosa—Nanoscope Therapeutics [Internet]. 2024. Available online: https://nanostherapeutics.com/2024/03/26/nanoscope-therapeutics-announces-top-line-results-from-ph2-trial-of-mco-010-for-retinitis-pigmentosa/ (accessed on 31 March 2024).
- Tiraset, N.; Poonyathalang, A.; Padungkiatsagul, T.; Deeyai, M.; Vichitkunakorn, P.; Vanikieti, K. Comparison of Visual Acuity Measurement Using Three Methods: Standard ETDRS Chart, Near Chart and a Smartphone-Based Eye Chart Application. Clin. Ophthalmol. 2021, 15, 859–869. [Google Scholar] [CrossRef]
- Phung, L.; Gregori, N.Z.; Ortiz, A.; Shi, W.; Schiffman, J.C. Reproducibility and Comparison of Visual Acuity Obtained with Sightbook Mobile Application to Near Card and Snellen Chart. Retina 2016, 36, 1009–1020. [Google Scholar] [CrossRef]
- Wang, T.; Huang, P.J.; Chen, C.; Liu, D.W.; Yi, J.L. A comparison of visual acuity measured by ETDRS chart and Standard Logarithmic Visual Acuity chart among outpatients. Int. J. Ophthalmol. 2021, 14, 536–540. [Google Scholar] [CrossRef]
- Yu, H.J.; Kaiser, P.K.; Zamora, D.; Bocanegra, M.; Cone, C.; Brown, D.M.; Sadda, S.R.; Wykoff, C.C. Visual Acuity Variability: Comparing Discrepancies between Snellen and ETDRS Measurements among Subjects Entering Prospective Trials. Oph. Retina 2021, 5, 224–233. [Google Scholar] [CrossRef]
- Johnson, C.A.; Casson, E.J. Effects of Luminance, Contrast, and Blur on Visual Acuity. Optom. Vis. Sci. 1995, 72, 864. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.J.; Jolly, J.K.; Andrews, C.D.; Wilson, I.R.; Hickey, D.; Cehajic-kapetanovic, J.; Maclaren, R.E. Low-contrast visual acuity versus low-luminance visual acuity in choroideremia. Clin. Exp. Optom. 2021, 104, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Karuntu, J.S.; Nguyen, X.T.; Boon, C.J.F. Correlations between the Michigan Retinal Degeneration Questionnaire and visual function parameters in patients with retinitis pigmentosa. Acta Ophthalmol. 2024, 102, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Guymer, R.H.; Finger, R.P. Low luminance deficit and night vision symptoms in intermediate age-related macular degeneration. Br. J. Ophthalmol. 2016, 100, 395–398. [Google Scholar] [CrossRef]
- McGuinness, M.B.; Finger, R.P.; Wu, Z.; Luu, C.D.; Chen, F.K.; Arnold, J.J.; Chakravarthy, U.; Heriot, W.J.; Runciman, J.; Guymer, R.H. Properties of the Impact of Vision Impairment and Night Vision Questionnaires Among People with Intermediate Age-Related Macular Degeneration. Transl. Vis. Sci. Technol. 2019, 8, 3. [Google Scholar] [CrossRef]
- Pondorfer, S.G.; Terheyden, J.H.; Heinemann, M.; Wintergerst, M.W.M.; Holz, F.G.; Finger, R.P. Association of Vision-related Quality of Life with Visual Function in Age-Related Macular Degeneration. Sci. Rep. 2019, 9, 15326. [Google Scholar] [CrossRef]
- Thompson, A.C.; Luhmann, U.F.O.; Stinnett, S.S.; Vajzovic, L.; Horne, A.; Toth, C.A.; Cousins, S.W.; Lad, E.M. Association of Low Luminance Questionnaire With Objective Functional Measures in Early and Intermediate Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2018, 59, 289–297. [Google Scholar] [CrossRef]
- Kaur, K.; Gurnani, B. Contrast Sensitivity. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK580542/ (accessed on 7 March 2024).
- Hou, F.; Huang, C.B.; Lesmes, L.; Feng, L.X.; Tao, L.; Zhou, Y.F.; Lu, Z.L. qCSF in Clinical Application: Efficient Characterization and Classification of Contrast Sensitivity Functions in Amblyopia. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5365–5377. [Google Scholar] [CrossRef]
- Lesmes, L.A.; Lu, Z.L.; Baek, J.; Albright, T.D. Bayesian adaptive estimation of the contrast sensitivity function: The quick CSF method. J. Vis. 2010, 10, 17. [Google Scholar] [CrossRef]
- Yan, F.F.; Hou, F.; Lu, Z.L.; Hu, X.; Huang, C.B. Efficient Characterization and Classification of Contrast Sensitivity Functions in Aging. Sci. Rep. 2017, 7, 5045. [Google Scholar] [CrossRef]
- Anders, P.; Traber, G.L.; Hall, U.; Garobbio, S.A.; Chan, E.J.; Gabrani, C.; Camenzind, H.; Pfau, M.; Herzog, M.; Scholl, H.P.N. Evaluating Contrast Sensitivity in Early and Intermediate Age-Related Macular Degeneration With the Quick Contrast Sensitivity Function. Investig. Ophthalmol. Vis. Sci. 2023, 64, 7. [Google Scholar] [CrossRef] [PubMed]
- Vingopoulos, F.; Wai, K.M.; Katz, R.; Vavvas, D.G.; Kim, L.A.; Miller, J.B. Measuring the Contrast Sensitivity Function in Non-Neovascular and Neovascular Age-Related Macular Degeneration: The Quantitative Contrast Sensitivity Function Test. J. Clin. Med. 2021, 10, 2768. [Google Scholar] [CrossRef] [PubMed]
- Alahmadi, B.O.; Omari, A.A.; Abalem, M.F.; Andrews, C.; Schlegel, D.; Branham, K.H.; Khan, N.W.; Fahim, A.; Jayasundera, T. Contrast sensitivity deficits in patients with mutation-proven inherited retinal degenerations. BMC Ophthalmol. 2018, 18, 313. [Google Scholar] [CrossRef] [PubMed]
- Vingopoulos, F.; Bannerman, A.; Zhou, P.; Koch, T.; Wescott, H.E.; Kim, L.; Vavvas, D.; Miller, J.W.; Miller, J.B. Towards the validation of quantitative contrast sensitivity as a clinical endpoint: Correlations with vision-related quality of life in bilateral, A.M.D. Br. J. Ophthalmol. 2024, 108, 846–851. [Google Scholar] [CrossRef]
- Finn, M.; Vingopoulos, F.; Zhao, Y.; Zhou, P.; Bannerman, A.; Romano, F.; Ding, X.; Hassan, Z.; Patel, N.A.; Wu, D.M.; et al. Test-retest repeatability and agreement of the quantitative contrast sensitivity function test: Towards the validation of a new clinical endpoint. Graefe’s Arch. Clin. Exp. Ophthalmol. 2023, 262, 813–822. [Google Scholar] [CrossRef]
- Narayanan, D.; Rodriguez, J.D.; Wallstrom, G.; Chapin, M.J.; Welch, D.L.; Abelson, M.B. Contrast Sensitivity Assessment using the Ora-VCF® Variable Contrast Flicker Test in Non-Advanced Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2020, 61, 3010. [Google Scholar]
- Rodriguez, J.D.; Zilinskas, R.; Hamm, A.; Choi, A.; Bensinger, E.; Abelson, M.B. A novel computerized test for early to intermediate age-related macular degeneration: The Ora contrast sensitivity test (Ora CST). Investig. Ophthalmol. Vis. Sci. 2023, 64, 2771. [Google Scholar]
- Variable_Contrast_Flicker_VCF_Test_Sell_Sheet_d01.pdf [Internet]. Available online: https://vba.vitbucklesociety.org/images/sponsors/ora/Variable_Contrast_Flicker_VCF_Test_Sell_Sheet_d01.pdf (accessed on 21 June 2024).
- Xu, M.; Zhai, Y.; MacDonald, I.M. Visual Field Progression in Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2020, 61, 56. [Google Scholar] [CrossRef]
- Heijl, A.; Lindgren, A.; Lindgren, G. Test-Retest Variability in Glaucomatous Visual Fields. Am. J. Ophthalmol. 1989, 108, 130–135. [Google Scholar] [CrossRef]
- Wall, M.; Woodward, K.R.; Doyle, C.K.; Artes, P.H. Repeatability of Automated Perimetry: A Comparison between Standard Automated Perimetry with Stimulus Size III and V, Matrix, and Motion Perimetry. Investig. Ophthalmol. Vis. Sci. 2009, 50, 974–979. [Google Scholar] [CrossRef]
- Buckley, T.M.W.; Josan, A.S.; Taylor, L.J.; Jolly, J.K.; Cehajic-Kapetanovic, J.; MacLaren, R.E. Characterizing Visual Fields in RPGR Related Retinitis Pigmentosa Using Octopus Static-Automated Perimetry. Transl. Vis. Sci. Technol. 2022, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Tee, J.J.L.; Yang, Y.; Kalitzeos, A.; Webster, A.; Bainbridge, J.; Weleber, R.G.; Michaelides, M. Characterization of Visual Function, Interocular Variability and Progression Using Static Perimetry–Derived Metrics in RPGR-Associated Retinopathy. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2422–2436. [Google Scholar] [CrossRef] [PubMed]
- Frequency of Testing to Detect Visual Field Progression Derived Using a Longitudinal Cohort of Glaucoma Patients—Ophthalmology [Internet]. Available online: https://www.aaojournal.org/article/S0161-6420(16)31836-X/abstract (accessed on 29 August 2024).
- Jacobson, S.G.; Voigt, W.J.; Parel, J.M.; Apáthy, P.P.; Nghiem-Phu, L.; Myers, S.W.; Patella, V.M. Automated light- and dark-adapted perimetry for evaluating retinitis pigmentosa. Ophthalmology 1986, 93, 1604–1611. [Google Scholar] [CrossRef] [PubMed]
- Bittner, A.K.; Iftikhar, M.H.; Dagnelie, G. Test-Retest, Within-Visit Variability of Goldmann Visual Fields in Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8042–8046. [Google Scholar] [CrossRef] [PubMed]
- Ross, D.F.; Fishman, G.A.; Gilbert, L.D.; Anderson, R.J. Variability of visual field measurements in normal subjects and patients with retinitis pigmentosa. Arch. Ophthalmol. 1984, 102, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Barnes, C.S.; Schuchard, R.A.; Birch, D.G.; Dagnelie, G.; Wood, L.; Koenekoop, R.K.; Bittner, A.K. Reliability of Semiautomated Kinetic Perimetry (SKP) and Goldmann Kinetic Perimetry in Children and Adults With Retinal Dystrophies. Transl. Vis. Sci. Technol. 2019, 8, 36. [Google Scholar] [CrossRef]
- Bennett, L.D.; Klein, M.; Locke, K.G.; Kiser, K.; Birch, D.G. Dark-Adapted Chromatic Perimetry for Measuring Rod Visual Fields in Patients with Retinitis Pigmentosa. Transl. Vis. Sci. Technol. 2017, 6, 15. [Google Scholar] [CrossRef]
- Ku, C.A.; Igelman, A.D.; Huang, S.J.; Vasconcelos, H.; da Palma, M.M.; Bailey, S.T.; Lauer, A.K.; Weleber, R.G.; Yang, P.; Pennesi, M.E. Improved Rod Sensitivity as Assessed by Two-Color Dark-Adapted Perimetry in Patients with RPE65-Related Retinopathy Treated With Voretigene Neparvovec-rzyl. Transl. Vis. Sci. Technol. 2023, 12, 17. [Google Scholar] [CrossRef]
- McGuigan, D.B.; Roman, A.J.; Cideciyan, A.V.; Matsui, R.; Gruzensky, M.L.; Sheplock, R.; Jacobson, S.G. Automated Light- and Dark-Adapted Perimetry for Evaluating Retinitis Pigmentosa: Filling a Need to Accommodate Multicenter Clinical Trials. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3118. [Google Scholar] [CrossRef]
- Yang, Y.; Dunbar, H. Clinical Perspectives and Trends: Microperimetry as a Trial Endpoint in Retinal Disease. Ophthalmologica 2021, 244, 418–450. [Google Scholar] [CrossRef]
- Cehajic-Kapetanovic, J.; Xue, K.; Martinez-Fernandez de la Camara, C.; Nanda, A.; Davies, A.; Wood, L.J.; Salvetti, A.P.; Fischer, M.D.; Aylward, J.W.; Barnard, A.R.; et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat. Med. 2020, 26, 354–359. [Google Scholar] [CrossRef] [PubMed]
- MacLaren, R.E.; Groppe, M.; Barnard, A.R.; Cottriall, C.L.; Tolmachova, T.; Seymour, L.; Clark, K.R.; During, M.J.; Cremers, F.P.; Black, G.C.; et al. Retinal gene therapy in patients with choroideremia: Initial findings from a phase 1/2 clinical trial. Lancet 2014, 383, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Lam, B.L.; Davis, J.L.; Gregori, N.Z.; MacLaren, R.E.; Girach, A.; Verriotto, J.D.; Rodriguez, B.; Rosa, P.R.; Zhang, X.; Feuer, W.J. Choroideremia Gene Therapy Phase 2 Clinical Trial: 24-Month Results. Am. J. Ophthalmol. 2019, 197, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Xue, K.; Jolly, J.K.; Barnard, A.R.; Rudenko, A.; Salvetti, A.P.; Patrício, M.I.; Edwards, T.L.; Groppe, M.; Orlans, H.O.; Tolmachova, T.; et al. Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia. Nat. Med. 2018, 24, 1507–1512. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, I.S.; Hoang, S.C.; Radziwon, A.; Binczyk, N.M.; Seabra, M.C.; MacLaren, R.E.; Somani, R.; Tennant, M.T.S.; MacDonald, I.M. Two-Year Results After AAV2-Mediated Gene Therapy for Choroideremia: The Alberta Experience. Am. J. Ophthalmol. 2018, 193, 130–142. [Google Scholar] [CrossRef]
- Bainbridge, J.W.B.; Mehat, M.S.; Sundaram, V.; Robbie, S.J.; Barker, S.E.; Ripamonti, C.; Georgiadis, A.; Mowat, F.M.; Beattie, S.G.; Gardner, P.J.; et al. Long-Term Effect of Gene Therapy on Leber’s Congenital Amaurosis. N. Engl. J. Med. 2015, 372, 1887–1897. [Google Scholar] [CrossRef]
- Meur, G.L.; Lebranchu, P.; Billaud, F.; Adjali, O.; Schmitt, S.; Bézieau, S.; Péréon, Y.; Valabregue, R.; Ivan, C.; Darmon, C.; et al. Safety and Long-Term Efficacy of AAV4 Gene Therapy in Patients with RPE65 Leber Congenital Amaurosis. Mol. Ther. 2018, 26, 256–268. [Google Scholar] [CrossRef]
- Mehat, M.S.; Sundaram, V.; Ripamonti, C.; Robson, A.G.; Smith, A.J.; Borooah, S.; Robinson, M.; Rosenthal, A.N.; Innes, W.; Weleber, R.G.; et al. Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration. Ophthalmology 2018, 125, 1765–1775. [Google Scholar] [CrossRef]
- Tanna, P.; Georgiou, M.; Aboshiha, J.; Strauss, R.W.; Kumaran, N.; Kalitzeos, A.; Weleber, R.G.; Michaelides, M. Cross-Sectional and Longitudinal Assessment of Retinal Sensitivity in Patients With Childhood-Onset Stargardt Disease. Transl. Vis. Sci. Technol. 2018, 7, 10. [Google Scholar] [CrossRef]
- Cukras, C.; Wiley, H.E.; Jeffrey, B.G.; Sen, H.N.; Turriff, A.; Zeng, Y.; Vijayasarathy, C.; Marangoni, D.; Ziccardi, L.; Kjellstrom, S.; et al. Retinal AAV8-RS1 Gene Therapy for X-Linked Retinoschisis: Initial Findings from a Phase I/IIa Trial by Intravitreal Delivery. Mol. Ther. 2018, 26, 2282–2294. [Google Scholar] [CrossRef]
- Anikina, E.; Georgiou, M.; Tee, J.; Webster, A.R.; Weleber, R.G.; Michaelides, M. Characterization of Retinal Function Using Microperimetry-Derived Metrics in Both Adults and Children With RPGR-Associated Retinopathy. Am. J. Ophthalmol. 2022, 234, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Buckley, T.M.W.; Jolly, J.K.; Menghini, M.; Wood, L.J.; Nanda, A.; MacLaren, R.E. Test-retest repeatability of microperimetry in patients with retinitis pigmentosa caused by mutations in RPGR. Clin. Exp. Ophthalmol. 2020, 48, 714–715. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.F.; Hall, A.J.; Thompson, D.A. Full-field stimulus threshold testing: A scoping review of current practice. Eye 2023, 8, 33–53. [Google Scholar] [CrossRef]
- Roman, A.J.; Schwartz, S.B.; Aleman, T.S.; Cideciyan, A.V.; Chico, J.D.; Windsor, E.A.M.; Gardner, L.M.; Ying, G.S.; Smilko, E.E.; Maguire, M.G.; et al. Quantifying rod photoreceptor-mediated vision in retinal degenerations: Dark-adapted thresholds as outcome measures. Exp. Eye Res. 2005, 80, 259–272. [Google Scholar] [CrossRef]
- Jacobson, S.G.; Cideciyan, A.V.; Peshenko, I.V.; Sumaroka, A.; Olshevskaya, E.V.; Cao, L.; Schwartz, S.B.; Roman, A.J.; Olivares, M.B.; Sadigh, S.; et al. Determining consequences of retinal membrane guanylyl cyclase (RetGC1) deficiency in human Leber congenital amaurosis en route to therapy: Residual cone-photoreceptor vision correlates with biochemical properties of the mutants. Hum. Mol. Genet. 2013, 22, 168–183. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Cideciyan, A.V.; Iannaccone, A.; Roman, A.J.; Ditta, L.C.; Jennings, B.J.; Yatsenko, S.A.; Sheplock, R.; Sumaroka, A.; Swider, M.; et al. Blue Cone Monochromacy: Visual Function and Efficacy Outcome Measures for Clinical Trials. PLoS ONE 2015, 10, e0125700. [Google Scholar] [CrossRef]
- Roman, A.J.; Cideciyan, A.V.; Wu, V.; Garafalo, A.V.; Jacobson, S.G. Full-field stimulus testing: Role in the clinic and as an outcome measure in clinical trials of severe childhood retinal disease. Prog. Retin. Eye Res. 2022, 87, 101000. [Google Scholar] [CrossRef]
- Chung, D.C.; McCague, S.; Yu, Z.F.; Thill, S.; DiStefano-Pappas, J.; Bennett, J.; Cross, D.; Marshall, K.; Wellman, J.; High, K.A. Novel mobility test to assess functional vision in patients with inherited retinal dystrophies. Clin. Exp. Ophthalmol. 2018, 46, 247–259. [Google Scholar] [CrossRef]
- Maguire, A.M.; Russell, S.; Wellman, J.A.; Chung, D.C.; Yu, Z.F.; Tillman, A.; Wittes, J.; Pappas, J.; Elci, O.; Marshall, K.A.; et al. Efficacy, Safety, and Durability of Voretigene Neparvovec-rzyl in RPE65 Mutation–Associated Inherited Retinal Dystrophy: Results of Phase 1 and 3 Trials. Ophthalmology 2019, 126, 1273–1285. [Google Scholar] [CrossRef]
- Majander, A.; Robson, A.G.; João, C.; Holder, G.E.; Chinnery, P.F.; Moore, A.T.; Votruba, M.; Stockman, A.; Yu-Wai-Man, P. The pattern of retinal ganglion cell dysfunction in Leber hereditary optic neuropathy. Mitochondrion 2017, 36, 138–149. [Google Scholar] [CrossRef]
- Lam, B.L.; Feuer, W.J.; Schiffman, J.C.; Porciatti, V.; Vandenbroucke, R.; Rosa, P.R.; Gregori, G.; Guy, J. Trial End Points and Natural History in Patients With G11778A Leber Hereditary Optic Neuropathy: Preparation for Gene Therapy Clinical Trial. JAMA Ophthalmol. 2014, 132, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Jarc-Vidmar, M.; Tajnik, M.; Brecelj, J.; Fakin, A.; Sustar, M.; Naji, M.; Stirn-Kranjc, B.; Glavač, D.; Hawlina, M. Clinical and electrophysiology findings in Slovene patients with Leber hereditary optic neuropathy. Doc. Ophthalmol. 2015, 130, 179–187. [Google Scholar] [CrossRef]
- Sharkawi, E.; Oleszczuk, J.D.; Holder, G.E.; Raina, J. Clinical and electrophysiological recovery in Leber hereditary optic neuropathy with G3460A mutation. Doc. Ophthalmol. 2012, 125, 71–74. [Google Scholar] [CrossRef]
- den Hollander, A.I.; Roepman, R.; Koenekoop, R.K.; Cremers, F.P.M. Leber congenital amaurosis: Genes, proteins and disease mechanisms. Prog. Retin. Eye Res. 2008, 27, 391–419. [Google Scholar] [CrossRef] [PubMed]
- Perrault, I.; Rozet, J.M.; Ghazi, I.; Leowski, C.; Bonnemaison, M.; Gerber, S.; Ducroq, D.; Cabot, A.; Souied, E.; Dufier, J.L.; et al. Different Functional Outcome of RetGC1 and RPE65 Gene Mutations in Leber Congenital Amaurosis. Am. J. Hum. Genet. 1999, 64, 1225–1228. [Google Scholar] [CrossRef]
- Foxman, S.G.; Heckenlively, J.R.; Bateman, J.B.; Wirtschafter, J.D. Classification of Congenital and Early Onset Retinitis Pigmentosa. Arch. Ophthalmol. 1985, 103, 1502–1506. [Google Scholar] [CrossRef] [PubMed]
- Brecelj, J.; Stirn-Kranjc, B. ERG and VEP follow-up study in children with Leber’s congenital amaurosis. Eye 1999, 13, 47–54. [Google Scholar] [CrossRef]
- Bainbridge, J.W.B.; Smith, A.J.; Barker, S.S.; Robbie, S.; Henderson, R.; Balaggan, K.; Viswanathan, A.; Holder, G.E.; Stockman, A.; Tyler, N.; et al. Effect of Gene Therapy on Visual Function in Leber’s Congenital Amaurosis. N. Engl. J. Med. 2008, 358, 2231–2239. [Google Scholar] [CrossRef]
- Thiadens, A.A.H.J.; Somervuo, V.; van den Born, L.I.; Roosing, S.; van Schooneveld, M.J.; Kuijpers, R.W.A.M.; van Moll-Ramirez, N.; Cremers, F.P.; Hoyng, C.B.; Klaver, C.C. Progressive Loss of Cones in Achromatopsia: An Imaging Study Using Spectral-Domain Optical Coherence Tomography. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5952–5957. [Google Scholar] [CrossRef]
- Alexander, J.J.; Umino, Y.; Everhart, D.; Chang, B.; Min, S.H.; Li, Q.; Timmers, A.M.; Hawes, N.L.; Pang, J.J.; Barlow, R.B.; et al. Restoration of cone vision in a mouse model of achromatopsia. Nat. Med. 2007, 13, 685–687. [Google Scholar] [CrossRef]
- Pang, J.J.; Alexander, J.; Lei, B.; Deng, W.; Zhang, K.; Li, Q.; Chang, B.; Hauswirth, W.W. Achromatopsia as a Potential Candidate for Gene Therapy. Adv. Exp. Med. Biol. 2010, 664, 639–646. [Google Scholar] [PubMed]
- Bowles, K.; Cukras, C.; Turriff, A.; Sergeev, Y.; Vitale, S.; Bush, R.A.; Sieving, P.A. X-Linked Retinoschisis: RS1 Mutation Severity and Age Affect the ERG Phenotype in a Cohort of 68 Affected Male Subjects. Investig. Ophthalmol. Vis. Sci. 2011, 52, 9250–9256. [Google Scholar] [CrossRef] [PubMed]
- Grigg, J.R.; Hooper, C.Y.; Fraser, C.L.; Cornish, E.E.; McCluskey, P.J.; Jamieson, R.V. Outcome measures in juvenile X-linked retinoschisis: A systematic review. Eye 2020, 34, 1760–1769. [Google Scholar] [CrossRef]
- Kjellström, S.; Vijayasarathy, C.; Ponjavic, V.; Sieving, P.A.; Andréasson, S. Long-term 12 year follow-up of X-linked congenital retinoschisis. Ophthalmic Genet. 2010, 31, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Forsius, H.; Krause, U.; Helve, J.; Vuopala, V.; Mustonen, E.; Vainio-Mattila, B.; Fellman, J.; Eriksson, A.W. Visual acuity in 183 cases of X-chromosomal retinoschisis. Can. J. Ophthalmol. 1973, 8, 385–393. [Google Scholar]
- Foote, K.G.; Neitz, M.; Neitz, J. Comparison of the Richmond HRR 4th edition and Farnsworth–Munsell 100 Hue Test for quantitative assessment of tritan color deficiencies. J. Opt. Soc. Am. A 2014, 31, A186–A188. [Google Scholar] [CrossRef]
- Ghose, S.; Parmar, T.; Dada, T.; Vanathi, M.; Sharma, S. A new computer-based Farnsworth Munsell 100-hue test for evaluation of color vision. Int. Ophthalmol. 2014, 34, 747–751. [Google Scholar] [CrossRef] [PubMed]
- Hasrod, N.; Rubin, A. The Cambridge Colour Test: Reliability of discrimination trivectors in colour space. Afr. Vis. Eye Health 2019, 78, 10. [Google Scholar] [CrossRef]
- Aleman, T.S.; Jacobson, S.G.; Chico, J.D.; Scott, M.L.; Cheung, A.Y.; Windsor, E.A.M.; Furushima, M.; Redmond, T.M.; Bennett, J.; Palczewski, K.; et al. Impairment of the transient pupillary light reflex in Rpe65(-/-) mice and humans with leber congenital amaurosis. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1259–1271. [Google Scholar] [CrossRef]
- Cideciyan, A.V.; Krishnan, A.K.; Roman, A.J.; Sumaroka, A.; Swider, M.; Jacobson, S.G. Measures of Function and Structure to Determine Phenotypic Features, Natural History, and Treatment Outcomes in Inherited Retinal Diseases. Annu. Rev. Vis. Sci. 2021, 7, 747–772. [Google Scholar] [CrossRef]
- Stingl, K.; Kempf, M.; Bartz-Schmidt, K.U.; Dimopoulos, S.; Reichel, F.; Jung, R.; Kelbsch, C.; Kohl, S.; Kortüm, F.C.; Nasser, F.; et al. Spatial and temporal resolution of the photoreceptors rescue dynamics after treatment with voretigene neparvovec. Br. J. Ophthalmol. 2022, 106, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Kelbsch, C.; Kempf, M.; Jung, R.; Kortüm, F.; Reith, M.; Kuehlewein, L.; Kohl, S.; Strasser, T.; Peters, T.; Wilhelm, H.; et al. Rod and Cone Function Measured Objectively by Chromatic Pupil Campimetry Show a Different Preservation Between Distinct Genotypes in Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2023, 64, 18. [Google Scholar] [CrossRef] [PubMed]
- Prokofyeva, E.; Troeger, E.; Wilke, R.; Zrenner, E. Early Visual Symptom Patterns in Inherited Retinal Dystrophies. Ophthalmologica 2011, 226, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Adams, W.H.; Digre, K.B.; Patel, B.C.K.; Anderson, R.L.; Warner, J.E.A.; Katz, B.J. The Evaluation of Light Sensitivity in Benign Essential Blepharospasm. Am. J. Ophthalmol. 2006, 142, 82–87.e8. [Google Scholar] [CrossRef]
- Cortez, M.M.; Rea, N.A.; Hunter, L.A.; Digre, K.B.; Brennan, K.C. Altered pupillary light response scales with disease severity in migrainous photophobia. Cephalalgia 2017, 37, 801–811. [Google Scholar] [CrossRef]
- Vanagaite, J.; Pareja, J.A.; Støren, O.; White, L.R.; Sand, T.; Stovner, L.J. Light-induced discomfort and pain in migraine. Cephalalgia 1997, 17, 733–741. [Google Scholar] [CrossRef]
- Verriotto, J.D.; Gonzalez, A.; Aguilar, M.C.; Parel, J.M.A.; Feuer, W.J.; Smith, A.R.; Lam, B.L. New Methods for Quantification of Visual Photosensitivity Threshold and Symptoms. Transl. Vis. Sci. Technol. 2017, 6, 18. [Google Scholar] [CrossRef]
- Gonzalez, A.; Aguilar, M.; Rowaan, C.; Rosa, P.R.; Graham, V.M.; Hurwitz, B.E.; Lam, B.L.; Parel, J.M. Response Reliability during Automated Visual Photosensitivity Assessment in Achromatopsia. Investig. Ophthalmol. Vis. Sci. 2019, 60, 5934. [Google Scholar]
- Cortez, M.M.; Digre, K.; Uddin, D.; Hung, M.; Blitzer, A.; Bounsanga, J.; Voss, M.W.; Katz, B.J. Validation of a photophobia symptom impact scale. Cephalalgia 2019, 39, 1445–1454. [Google Scholar] [CrossRef]
- Ratnam, K.; Carroll, J.; Porco, T.C.; Duncan, J.L.; Roorda, A. Relationship Between Foveal Cone Structure and Clinical Measures of Visual Function in Patients With Inherited Retinal Degenerations. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5836–5847. [Google Scholar] [CrossRef]
- Foote, K.G.; Loumou, P.; Griffin, S.; Qin, J.; Ratnam, K.; Porco, T.C.; Roorda, A.; Duncan, J.L. Relationship Between Foveal Cone Structure and Visual Acuity Measured With Adaptive Optics Scanning Laser Ophthalmoscopy in Retinal Degeneration. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3385–3393. [Google Scholar] [CrossRef] [PubMed]
- Daich Varela, M.; Esener, B.; Hashem, S.A.; Cabral de Guimaraes, T.A.; Georgiou, M.; Michaelides, M. Structural evaluation in inherited retinal diseases. Br. J. Ophthalmol. 2021, 105, 1623–1631. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, M.; Fujinami, K.; Michaelides, M. Inherited retinal diseases: Therapeutics, clinical trials and end points—A review. Clin. Exper Ophthalmol. 2021, 49, 270–288. [Google Scholar] [CrossRef] [PubMed]
- Laíns, I.; Wang, J.C.; Cui, Y.; Katz, R.; Vingopoulos, F.; Staurenghi, G.; Vavvas, D.G.; Miller, J.W.; Miller, J.B. Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA). Prog. Retin. Eye Res. 2021, 84, 100951. [Google Scholar] [CrossRef]
- Birch, D.G.; Locke, K.G.; Wen, Y.; Locke, K.I.; Hoffman, D.R.; Hood, D.C. Spectral-domain optical coherence tomography measures of outer segment layer progression in patients with X-linked retinitis pigmentosa. JAMA Ophthalmol. 2013, 131, 1143–1150. [Google Scholar] [CrossRef]
- Sandberg, M.A.; Brockhurst, R.J.; Gaudio, A.R.; Berson, E.L. The Association between Visual Acuity and Central Retinal Thickness in Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2005, 46, 3349–3354. [Google Scholar] [CrossRef]
- Aizawa, S.; Mitamura, Y.; Baba, T.; Hagiwara, A.; Ogata, K.; Yamamoto, S. Correlation between visual function and photoreceptor inner/outer segment junction in patients with retinitis pigmentosa. Eye 2009, 23, 304–308. [Google Scholar] [CrossRef]
- Fischer, M.D.; Fleischhauer, J.C.; Gillies, M.C.; Sutter, F.K.; Helbig, H.; Barthelmes, D. A New Method to Monitor Visual Field Defects Caused by Photoreceptor Degeneration by Quantitative Optical Coherence Tomography. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3617–3621. [Google Scholar] [CrossRef]
- Cai, C.X.; Locke, K.G.; Ramachandran, R.; Birch, D.G.; Hood, D.C. A Comparison of Progressive Loss of the Ellipsoid Zone (EZ) Band in Autosomal Dominant and X-Linked Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7417–7422. [Google Scholar] [CrossRef]
- Ojima, Y.; Tsujikawa, A.; Yamashiro, K.; Ooto, S.; Tamura, H.; Yoshimura, N. Restoration of outer segments of foveal photoreceptors after resolution of central serous chorioretinopathy. Jpn. J. Ophthalmol. 2010, 54, 55–60. [Google Scholar] [CrossRef]
- Hariri, A.H.; Zhang, H.Y.; Ho, A.; Francis, P.; Weleber, R.G.; Birch, D.G.; Ferris, F.L., 3rd; Sadda, S.R. Quantification of Ellipsoid Zone Changes in Retinitis Pigmentosa Using en Face Spectral Domain–Optical Coherence Tomography. JAMA Ophthalmol. 2016, 134, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, N.; Georgiou, M.; Bainbridge, J.W.B.; Bertelsen, M.; Larsen, M.; Blanco-Kelly, F.; Ayuso, C.; Tran, H.V.; Munier, F.L.; Kalitzeos, A. Retinal Structure in RPE65-Associated Retinal Dystrophy. Investig. Ophthalmol. Vis. Sci. 2020, 61, 47. [Google Scholar] [CrossRef] [PubMed]
- Tanna, P.; Georgiou, M.; Strauss, R.W.; Ali, N.; Kumaran, N.; Kalitzeos, A.; Fujinami, K.; Michaelides, M. Cross-Sectional and Longitudinal Assessment of the Ellipsoid Zone in Childhood-Onset Stargardt Disease. Transl. Vis. Sci. Technol. 2019, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Tee, J.J.L.; Kalitzeos, A.; Webster, A.R.; Peto, T.; Michaelides, M. Quantitative analysis of hyperautofluorescent rings to characterize the natural history and progression in rpgr-associated retinopathy. Retina 2018, 38, 2401–2414. [Google Scholar] [CrossRef]
- Tee, J.J.L.; Yang, Y.; Kalitzeos, A.; Webster, A.; Bainbridge, J.; Michaelides, M. Natural History Study of Retinal Structure, Progression, and Symmetry Using Ellipzoid Zone Metrics in RPGR-Associated Retinopathy. Am. J. Ophthalmol. 2019, 198, 111–123. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Galles, D.; Klein, M.; Locke, K.G.; Birch, D.G. Application of a Deep Machine Learning Model for Automatic Measurement of EZ Width in SD-OCT Images of RP. Transl. Vis. Sci. Technol. 2020, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Kalra, G.; Cetin, H.; Whitney, J.; Yordi, S.; Cakir, Y.; McConville, C.; Whitmore, V.; Bonnay, M.; Reese, J.L.; Srivastava, S.K.; et al. Automated Identification and Segmentation of Ellipsoid Zone At-Risk Using Deep Learning on SD-OCT for Predicting Progression in Dry AMD. Diagnostics 2023, 13, 1178. [Google Scholar] [CrossRef]
- Loo, J.; Jaffe, G.J.; Duncan, J.L.; Birch, D.G.; Farsiu, S. Validation of a deep learning-based algorithm for segmentation of the ellipsoid zone on optical coherence tomography images of an ush2a-related retinal degeneration clinical trial. Retina 2022, 42, 1347–1355. [Google Scholar] [CrossRef]
- Domalpally, A.; Danis, R.P.; Cleland, S.; Zhou, L.; Trane, R.; Huang, Y.; Blodi, B.A. Measurement of Geographic Atrophy Using OCT Split Tool. Investig. Ophthalmol. Vis. Sci. 2017, 58, 1291. [Google Scholar]
- Cleland, S.C.; Konda, S.M.; Danis, R.P.; Huang, Y.; Myers, D.J.; Blodi, B.A.; Domalpally, A. Quantification of Geographic Atrophy Using Spectral Domain OCT in Age-Related Macular Degeneration. Ophthalmol. Retin. 2021, 5, 41–48. [Google Scholar] [CrossRef]
- Chopra, A.L.; Gupta Nittala, M.; Velaga, S.B.; Hariri, A.; Sadda, S.R. Comparison of Geographic Atrophy (GA) Area Measurement from Multiple Imaging Modalities. Investig. Ophthalmol. Vis. Sci. 2023, 64, 2159. [Google Scholar]
- Mai, J.; Riedl, S.; Reiter, G.S.; Lachinov, D.; Vogl, W.D.; Bogunovic, H.; Schmidt-Erfurth, U. Comparison of Fundus Autofluorescence Versus Optical Coherence Tomography–based Evaluation of the Therapeutic Response to Pegcetacoplan in Geographic Atrophy. Am. J. Ophthalmol. 2022, 244, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.D.; Agrón, E.; Domalpally, A.; Clemons, T.E.; van Asten, F.; Wong, W.T.; Danis, R.G.; Sadda, S.; Rosenfeld, P.J.; Klein, M.L. Progression of Geographic Atrophy in Age-related Macular Degeneration: AREDS2 Report Number 16. Ophthalmology 2018, 125, 1913–1928. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Valckenberg, S.; Sahel, J.A.; Danis, R.; Fleckenstein, M.; Jaffe, G.J.; Wolf, S.; Pruente, C.; Holz, F.G. Natural History of Geographic Atrophy Progression Secondary to Age-Related Macular Degeneration (Geographic Atrophy Progression Study). Ophthalmology 2016, 123, 361–368. [Google Scholar] [CrossRef]
- Delori, F.C.; Dorey, C.K.; Staurenghi, G.; Arend, O.; Goger, D.G.; Weiter, J.J. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Investig. Ophthalmol. Vis. Sci. 1995, 36, 718–729. [Google Scholar]
- von Rückmann, A.; Fitzke, F.W.; Bird, A.C. Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br. J. Ophthalmol. 1995, 79, 407–412. [Google Scholar] [CrossRef]
- Georgiou, M.; Fujinami, K.; Michaelides, M. Retinal imaging in inherited retinal diseases. Ann. Eye Sci. 2020, 5, 25. [Google Scholar] [CrossRef]
- Cicinelli, M.V.; Rabiolo, A.; Brambati, M.; Viganò, C.; Bandello, F.; Battaglia Parodi, M. Factors Influencing Retinal Pigment Epithelium-Atrophy Progression Rate in Stargardt Disease. Transl. Vis. Sci. Technol. 2020, 9, 33. [Google Scholar] [CrossRef]
- Heier, J.S.; Lad, E.M.; Holz, F.G.; Rosenfeld, P.J.; Guymer, R.H.; Boyer, D.; Grossi, F.; Baumal, C.R.; Korobelnik, J.F.; Slakter, J.S.; et al. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): Two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. Lancet 2023, 402, 1434–1448. [Google Scholar] [CrossRef]
- Strauss, R.W.; Ho, A.; Jha, A.; Fujinami, K.; Michaelides, M.; Cideciyan, A.V.; Audo, I.; Birch, D.G.; Sadda, S.; Ip, M.; et al. Progression of Stargardt Disease as Determined by Fundus Autofluorescence Over a 24-Month Period (ProgStar Report No. 17). Am. J. Ophthalmol. 2023, 250, 157–170. [Google Scholar] [CrossRef]
- Liu, L.; Wu, Z.; Qi, M.; Li, Y.; Zhang, M.; Liao, D.; Gao, P. Application of Adaptive Optics in Ophthalmology. Photonics 2022, 9, 288. [Google Scholar] [CrossRef]
- Burns, S.A.; Elsner, A.E.; Sapoznik, K.A.; Warner, R.L.; Gast, T.J. Adaptive optics imaging of the human retina. Prog. Retin. Eye Res. 2019, 68, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Britten-Jones, A.C.; Thai, L.; Flanagan, J.P.M.; Bedggood, P.A.; Edwards, T.L.; Metha, A.B.; Ayton, L.N. Adaptive optics imaging in inherited retinal diseases: A scoping review of the clinical literature. Surv. Ophthalmol. 2023, 69, 51–66. [Google Scholar] [CrossRef]
- Lee, B.; Chen, S.; Moult, E.M.; Yu, Y.; Alibhai, A.Y.; Mehta, N.; Baumal, C.R.; Waheed, N.K.; Fujimoto, J.G. High-Speed, Ultrahigh-Resolution Spectral-Domain OCT with Extended Imaging Range Using Reference Arm Length Matching. Transl. Vis. Sci. Technol. 2020, 9, 12. [Google Scholar] [CrossRef]
- Davidson, B.; Kalitzeos, A.; Carroll, J.; Dubra, A.; Ourselin, S.; Michaelides, M.; Bergeles, C. Automatic Cone Photoreceptor Localisation in Healthy and Stargardt Afflicted Retinas Using Deep Learning. Sci. Rep. 2018, 8, 7911. [Google Scholar] [CrossRef]
- Thompson, D.A.; Ali, R.R.; Banin, E.; Branham, K.E.; Flannery, J.G.; Gamm, D.M.; Hauswirth, W.W.; Heckenlively, J.R.; Iannaccone, A.; Jayasundera, K.T.; et al. Advancing therapeutic strategies for inherited retinal degeneration: Recommendations from the Monaciano Symposium. Investig. Ophthalmol. Vis. Sci. 2015, 56, 918–931. [Google Scholar] [CrossRef]
- Samelska, K.; Szaflik, J.P.; Guszkowska, M.; Kurowska, A.K.; Zaleska-Żmijewska, A. Characteristics of Rare Inherited Retinal Dystrophies in Adaptive Optics—A Study on 53 Eyes. Diagnostics 2023, 13, 2472. [Google Scholar] [CrossRef]
- Talcott, K.E.; Ratnam, K.; Sundquist, S.M.; Lucero, A.S.; Lujan, B.J.; Tao, W.; Porco, T.C.; Roorda, A.; Duncan, J.L. Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2219–2226. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.I.W.; Jiang, Y.Y.; Vergilio, G.K.; Serrano, L.W.; Pearson, D.J.; Bennett, J.; Maguire, A.M.; Aleman, T.S. Short-term Assessment of Subfoveal Injection of Adeno-Associated Virus-Mediated hCHM Gene Augmentation in Choroideremia Using Adaptive Optics Ophthalmoscopy. JAMA Ophthalmol. 2022, 140, 411–420. [Google Scholar] [CrossRef]
- Georgiou, M.; Kalitzeos, A.; Patterson, E.J.; Dubra, A.; Carroll, J.; Michaelides, M. Adaptive optics imaging of inherited retinal diseases. Br. J. Ophthalmol. 2018, 102, 1028–1035. [Google Scholar] [CrossRef]
- Langlo, C.S.; Patterson, E.J.; Higgins, B.P.; Summerfelt, P.; Razeen, M.M.; Erker, L.R.; Parker, M.; Collison, F.T.; Fishman, G.A.; Kay, C.N.; et al. Residual foveal cone structure in CNGB3-associated achromatopsia. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3984–3995. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J. Adaptive Optics Images in Clinical Trials of Retinal Disease. J. Vis. 2019, 19, 24. [Google Scholar] [CrossRef]
- Iovino, C.; Iodice, C.M.; Pisani, D.; Damiano, L.; Di Iorio, V.; Testa, F.; Simonelli, F. Clinical Applications of Optical Coherence Tomography Angiography in Inherited Retinal Diseases: An Up-to-Date Review of the Literature. J. Clin. Med. 2023, 12, 3170. [Google Scholar] [CrossRef] [PubMed]
- McCoy, C.E. Understanding the Use of Composite Endpoints in Clinical Trials. West. J. Emerg. Med. 2018, 19, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Montori, V.M.; Permanyer-Miralda, G.; Ferreira-González, I.; Busse, J.W.; Pacheco-Huergo, V.; Bryant, D.; Alonso, J.; Akl, E.A.; Domingo-Salvany, A.; Mills, E.; et al. Validity of composite end points in clinical trials. BMJ 2005, 330, 594–596. [Google Scholar] [CrossRef]
- Cordoba, G.; Schwartz, L.; Woloshin, S.; Bae, H.; Gøtzsche, P.C. Definition, reporting, and interpretation of composite outcomes in clinical trials: Systematic review. BMJ 2010, 341, c3920. [Google Scholar] [CrossRef]
- Ferreira-González, I.; Permanyer-Miralda, G.; Busse, J.W.; Bryant, D.M.; Montori, V.M.; Alonso-Coello, P.; Walter, S.D.; Guyatt, G.H. Methodologic discussions for using and interpreting composite endpoints are limited, but still identify major concerns. J. Clin. Epidemiol. 2007, 60, 651–657, discussion 658–662. [Google Scholar] [CrossRef]
- Baracaldo-Santamaría, D.; Feliciano-Alfonso, J.E.; Ramirez-Grueso, R.; Rojas-Rodríguez, L.C.; Dominguez-Dominguez, C.A.; Calderon-Ospina, C.A. Making Sense of Composite Endpoints in Clinical Research. J. Clin. Med. 2023, 12, 4371. [Google Scholar] [CrossRef] [PubMed]
- Lambertus, S.; Bax, N.M.; Fakin, A.; Groenewoud, J.M.M.; Klevering, B.J.; Moore, A.T.; Michaelides, M.; Webster, A.R.; van der Wilt, G.J.; Hoyng, C.B. Highly sensitive measurements of disease progression in rare disorders: Developing and validating a multimodal model of retinal degeneration in Stargardt disease. PLoS ONE 2017, 12, e0174020. [Google Scholar] [CrossRef]
- Sumaroka, A.; Garafalo, A.V.; Semenov, E.P.; Sheplock, R.; Krishnan, A.K.; Roman, A.J.; Roman, A.J.; Jacobson, S.G.; Cideciyan, A.V. Treatment Potential for Macular Cone Vision in Leber Congenital Amaurosis Due to CEP290 or NPHP5 Mutations: Predictions From Artificial Intelligence. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2551–2562. [Google Scholar] [CrossRef]
- Russell, S.R.; Bennett, J.; Wellman, J.; Chung, D.C.; Yu, Z.F.; Tillman, A.; Wittes, J.; Pappas, J.; Elci, O.; McCague, S.; et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet 2017, 390, 849–860. [Google Scholar] [CrossRef] [PubMed]
- FDA. FDA Patient-Focused Drug Development Guidance Series for Enhancing the Incorporation of the Patient’s Voice in Medical Product Development and Regulatory Decision Making. 14 February 2024. Available online: https://www.fda.gov/drugs/development-approval-process-drugs/fda-patient-focused-drug-development-guidance-series-enhancing-incorporation-patients-voice-medical (accessed on 29 February 2024).
- Chung, D.C.; Birch, D.G.; MacLaren, R.E. Endpoints for Measuring Efficacy in Clinical Trials for Inherited Retinal Disease. Int. Ophthalmol. Clin. 2021, 61, 63. [Google Scholar] [CrossRef] [PubMed]
- Jung, R.; Kempf, M.; Holocher, S.; Kortüm, F.C.; Stingl, K.; Stingl, K. Multi-luminance mobility testing after gene therapy in the context of retinal functional diagnostics. Graefe’s Arch. Clin. Exp. Ophthalmol. 2024, 262, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, B.; Tavares, J.; van den Born, L.I.; Marques, J.P.; Pilotto, E.; Stingl, K.; Charbel Issa, P.; Leroux, D.; Dollfus, H.; Scholl, H.P.N. Current Management of Patients with RPE65 Mutation Associated Inherited Retinal Degenerations in Europe: Results of a 2-Year Follow-Up Multinational Survey. Ophthalmic Res. 2023, 66, 727–748. [Google Scholar] [CrossRef] [PubMed]
- Pierce, E.A.; Ashimatey, B.S.; Jayasundera, T.; Hoyng, C.; Lam, B.L.; Lorenz, B.; Kim, K.; Rashid, A.; Myers, R.; Pennesi, M.E. Twelve-month Natural History Study of CEP290-associated Retinal Degeneration. Ophthalmol. Sci. 2024, 4, 100483. [Google Scholar] [CrossRef]
- Ocugen, Inc. Announces U.S. FDA Clearance of IND Amendment to Initiate OCU400 Phase 3 Clinical Trial—First Gene Therapy to Enter Phase 3 with a Broad Retinitis Pigmentosa Indication. Available online: https://ir.ocugen.com/news-releases/news-release-details/ocugen-inc-announces-us-fda-clearance-ind-amendment-initiate/ (accessed on 21 July 2024).
- Roman, A.J.; Cideciyan, A.V.; Wu, V.; Mascio, A.A.; Krishnan, A.K.; Garafalo, A.V.; Jacobson, S.G. Mobility test to assess functional vision in dark-adapted patients with Leber congenital amaurosis. BMC Ophthalmol. 2022, 22, 266. [Google Scholar] [CrossRef]
- Kumaran, N.; Ali, R.R.; Tyler, N.A.; Bainbridge, J.W.B.; Michaelides, M.; Rubin, G.S. Validation of a Vision-Guided Mobility Assessment for RPE65-Associated Retinal Dystrophy. Transl. Vis. Sci. Technol. 2020, 9, 5. [Google Scholar] [CrossRef]
- Geruschat, D.R.; Flax, M.; Tanna, N.; Bianchi, M.; Fisher, A.; Goldschmidt, M.; Fisher, L.; Dagnelie, G.; Deremeik, J.; Smith, A.; et al. FLORATM: Phase I development of a functional vision assessment for prosthetic vision users. Clin. Exp. Optom. 2015, 98, 342–347. [Google Scholar] [CrossRef]
- Loh, L.; Prem-Senthil, M.; Constable, P.A. Visual acuity and reading print size requirements in children with vision impairment. Clin. Exp. Optom. 2023, 107, 709–715. [Google Scholar] [CrossRef]
- Negiloni, K.; Ramani, K.K.; Jeevitha, R.; Kalva, J.; Sudhir, R.R. Are children with low vision adapted to the visual environment in classrooms of mainstream schools? Indian J. Ophthalmol. 2018, 66, 285. [Google Scholar]
- Jolly, J.K.; Couldridge-Smith, C.E.; Xue, K.; MacLaren, R.E. The impact of progressive visual field constriction on reading ability in an inherited retinal degeneration. Ophthalmologica 2020, 243, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Aleman, T.S.; Miller, A.J.; Maguire, K.H.; Aleman, E.M.; Serrano, L.W.; O’Connor, K.B.; Bedoukian, E.C.; Leroy, B.P.; Maguire, A.M.; Bennett, J. A Virtual Reality Orientation and Mobility Test for Inherited Retinal Degenerations: Testing a Proof-of-Concept After Gene Therapy. Clin. Ophthalmol. 2021, 15, 939–952. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.; Aleman, E.M.; Maguire, K.H.; Nadelmann, J.; Weber, M.L.; Maguire, W.M.; O’Neil, E.C.; Maguire, A.M.; Miller, A.J.; Aleman, T.S. Optimization and Validation of a Virtual Reality Orientation and Mobility Test for Inherited Retinal Degenerations. Transl. Vis. Sci. Technol. 2023, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Authié, C.N.; Poujade, M.; Talebi, A.; Defer, A.; Zenouda, A.; Coen, C.; Mohand-Said, S.; Chaumet-Riffaud, P.; Audo, I.; Sahel, J.A. Development and Validation of a Novel Mobility Test for Rod-Cone Dystrophies: From Reality to Virtual Reality. Am. J. Ophthalmol. 2024, 258, 43–54. [Google Scholar] [CrossRef]
- Magrath, M.D.; Posvar, O.D.; Pucker, O.D. Using Virtual Reality Mobility Testing as a Standardized Clinical End Point in Inherited Retinal Disorders 2023. Available online: https://www.modernretina.com/view/using-virtual-reality-mobility-testing-as-a-standardized-clinical-end-point-in-inherited-retinal-disorders (accessed on 5 March 2024).
- Kartha, A.; Sadeghi, R.; Bradley, C.; Tran, C.; Gee, W.; Dagnelie, G. Measuring visual information gathering in individuals with ultra low vision using virtual reality. Sci. Rep. 2023, 13, 3143. [Google Scholar] [CrossRef] [PubMed]
- Lacy, G.D.; Abalem, M.F.; Musch, D.C.; Jayasundera, K.T. Patient-reported outcome measures in inherited retinal degeneration gene therapy trials. Ophthalmic Genet. 2020, 41, 1–6. [Google Scholar] [CrossRef]
- Orr, P.; Rentz, A.M.; Margolis, M.K.; Revicki, D.A.; Dolan, C.M.; Colman, S.; Fine, J.T.; Bressler, N.M. Validation of the National Eye Institute Visual Function Questionnaire-25 (NEI VFQ-25) in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3354–3359. [Google Scholar] [CrossRef]
- Finger, R.P.; Tellis, B.; Crewe, J.; Keeffe, J.E.; Ayton, L.N.; Guymer, R.H. Developing the Impact of Vision Impairment–Very Low Vision (IVI-VLV) Questionnaire as Part of the LoVADA Protocol. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6150–6158. [Google Scholar] [CrossRef]
- Prem Senthil, M.; Khadka, J.; Pesudovs, K. Assessment of patient-reported outcomes in retinal diseases: A systematic review. Surv. Ophthalmol. 2017, 62, 546–582. [Google Scholar] [CrossRef]
- Lacy, G.D.; Abalem, M.F.; Popova, L.T.; Santos, E.P.; Yu, G.; Rakine, H.Y.; Rosenthal, J.M.; Ehrlich, J.R.; Musch, D.C.; Jayasundera, K.T. Content generation for patient-reported outcome measures for retinal degeneration therapeutic trials. Ophthalmic Genet. 2020, 41, 315–324. [Google Scholar] [CrossRef]
- Lacy, G.D.; Abalem, M.F.; Andrews, C.A.; Abuzaitoun, R.; Popova, L.T.; Santos, E.P.; Yu, G.; Rakine, H.Y.; Baig, N.; Ehrlich, J.R.; et al. The Michigan Vision-Related Anxiety Questionnaire: A Psychosocial Outcomes Measure for Inherited Retinal Degenerations. Am. J. Ophthalmol. 2021, 225, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Durham, T.; Banhazi, J.; Patalano, F.; Jayasundera, T. Beyond the NEI-VFQ: Recent Experience in the Development and Utilization of Patient-Reported Outcomes for Inherited Retinal Diseases. Cold Spring Harb. Perspect. Med. 2023, 13, a041298. [Google Scholar] [CrossRef] [PubMed]
- Audo, I.; Patalano, F.; Naujoks, C.; Spera, C.; Fischer, M.D.; Green, J.; Kay, C.; Durham, T.; Williamson, N.; Bradley, H.; et al. Development of Novel Patient-Reported Outcome (PRO) and Observer-Reported Outcome (ObsRO) Instruments in Retinitis Pigmentosa (RP) and Leber Congenital Amaurosis (LCA): ViSIO-PRO and ViSIO-ObsRO. Ophthalmol. Ther. 2023, 12, 2069–2085. [Google Scholar] [CrossRef] [PubMed]
- Kay, C.; Audo, I.; Naujoks, C.; Spera, C.; Fischer, M.D.; Green, J.; Durham, T.; Williamson, N.; Bradley, H.; Barclay, M.; et al. Qualitative exploration of the visual function impairments and impacts on vision-dependent activities of daily living in Retinitis Pigmentosa and Leber Congenital Amaurosis: Content validation of the ViSIO-PRO and ViSIO-ObsRO measures. J. Patient Rep. Outcomes 2023, 7, 74. [Google Scholar] [CrossRef]
- Fischer, M.D.; Patalano, F.; Naujoks, C.; Banhazi, J.; Bouchet, C.; O’Brien, P.; Kay, C.; Green, J.; Durham, T.; Bradley, H.; et al. Psychometric Validation of the ViSIO-PRO and ViSIO-ObsRO in Retinitis Pigmentosa and Leber Congenital Amaurosis. Ophthalmol. Ther. 2023, 12, 1359–1386. [Google Scholar] [CrossRef]
- ProQR Announces Additional Sepofarsen Illuminate Trial Analyses and Provides Update on Company Strategy|ProQR Therapeutics [Internet]. Available online: https://www.proqr.com/press-releases/proqr-announces-additional-sepofarsen-illuminate-trial-analyses-and-provides-update-on-company-strategy (accessed on 30 June 2024).
- MeiraGTx Reports Second Quarter 2023 Financial and Operational Results|MeiraGTx [Internet]. Available online: https://investors.meiragtx.com/news-releases/news-release-details/meiragtx-reports-second-quarter-2023-financial-and-operational/ (accessed on 1 July 2024).
- Foundation Fighting Blindness. Beacon Doses First Patient in its Phase 2/3 VISTA Clinical Trial for XLRP Gene Therapy. Available online: https://www.fightingblindness.org/research/beacon-doses-first-patient-in-its-phase-2-3-vista-clinical-trial-for-xlrp-gene-therapy-318 (accessed on 1 July 2024).
- Ocugen, Inc. Announces First Patient Dosed in Phase 3 liMeliGhT Clinical Trial for OCU400—First Gene Therapy in Phase 3 with a Broad Retinitis Pigmentosa Indication. Available online: https://ir.ocugen.com/news-releases/news-release-details/ocugen-inc-announces-first-patient-dosed-phase-3-limelight/ (accessed on 21 July 2024).
- Therapeutics, N. Nanoscope Therapeutics Unveils Clinical Trial Results for MCO-010 in Treating Stargardt Disease—Nanoscope Therapeutics [Internet]. 2023. Available online: https://nanostherapeutics.com/2023/08/09/nanoscope-therapeutics-unveils-clinical-trial-results-for-mco-010-in-treating-stargardt-disease/ (accessed on 2 July 2024).
- Yu-Wai-Man, P.; Newman, N.J.; Carelli, V.; Moster, M.L.; Biousse, V.; Sadun, A.A.; Klopstock, T.; Vignal-Clermont, C.; Sergott, R.C.; Rudolph, G.; et al. Bilateral visual improvement with unilateral gene therapy injection for Leber hereditary optic neuropathy. Sci. Transl. Med. 2020, 12, eaaz7423. [Google Scholar] [CrossRef] [PubMed]
- GenSight Biologics Announces Update on Real-World Data from Early Access Programs of LUMEVOQ® Gene Therapy at NANOS 2024—GenSight Biologics [Internet]. Available online: https://www.gensight-biologics.com/2024/03/06/gensight-biologics-announces-update-on-real-world-data-from-early-access-programs-of-lumevoq%EF%83%92-gene-therapy-at-nanos-2024/ (accessed on 1 July 2024).
- Li, X.; Tian, Z.; Chen, Z.; Li, B.; Zhang, Y. Efficacy evaluation of intravitreal injection of rAAV2-ND4 gene for Leber hereditary optic neuropathy. Chin. J. Exp. Ophthalmol. 2021, 39, 724–728. [Google Scholar]
- Yang, S.; He, H.; Zhu, Y.; Wan, X.; Zhou, L.F.; Wang, J.; Wang, W.F.; Liu, L.; Li, B. Chemical and material communication between the optic nerves in rats. Clin. Exp. Ophthalmol. 2015, 43, 742–748. [Google Scholar] [CrossRef]
- NEWS [Internet]. Available online: https://www.neurophth.com/en/NewsD-379.html (accessed on 1 July 2024).
- Fischer, M.D.; Ochakovski, G.A.; Beier, B.; Seitz, I.P.; Vaheb, Y.; Kortuem, C.; Reichel, F.F.L.; Kuehlewein, L.; Kahle, N.A.; Peters, T.; et al. Efficacy and Safety of Retinal Gene Therapy Using Adeno-Associated Virus Vector for Patients With Choroideremia. JAMA Ophthalmol. 2019, 137, 1247–1254. [Google Scholar] [CrossRef]
- Cehajic-Kapetanovic, J.; Bellini, M.P.; Taylor, L.J.; Yusuf, I.H.; Soomro, T.; da Cruz, L.; MacLaren, R.E.; REGENERATE Study Group. Gene Therapy for Choroideremia Using an Adeno-Associated Viral Vector Encoding Rab Escort Protein 1: The REGENERATE Open-Label Trial [Internet]; Efficacy and Mechanism Evaluation; National Institute for Health and Care Research: Southampton, UK, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK604022/ (accessed on 2 July 2024).
- MacLaren, R.E.; Audo, I.; Fischer, M.D.; Huckfeldt, R.M.; Lam, B.L.; Pennesi, M.E.; Sisk, R.; Gow, J.A.; Li, J.; Zhu, K.; et al. An Open-Label Phase II Study Assessing the Safety of Bilateral, Sequential Administration of Retinal Gene Therapy in Participants with Choroideremia: The GEMINI Study. Hum. Gene Ther. 2024, 35, 564–575. [Google Scholar] [CrossRef]
- Abdalla Elsayed, M.E.A.; Taylor, L.J.; Josan, A.S.; Fischer, M.D.; MacLaren, R.E. Choroideremia: The Endpoint Endgame. Int. J. Mol. Sci. 2023, 24, 14354. [Google Scholar] [CrossRef] [PubMed]
- Biogen Announces Topline Results from Phase 3 Gene Therapy Study in Choroideremia|Biogen [Internet]. Available online: https://investors.biogen.com/news-releases/news-release-details/biogen-announces-topline-results-phase-3-gene-therapy-study (accessed on 11 May 2024).
- MacLaren, R.E.; Fischer, M.D.; Gow, J.A.; Lam, B.L.; Sankila, E.M.K.; Girach, A.; Panda, S.; Yoon, D.; Zhao, G.; Pennesi, M.E. Subretinal timrepigene emparvovec in adult men with choroideremia: A randomized phase 3 trial. Nat. Med. 2023, 29, 2464–2472. [Google Scholar] [CrossRef] [PubMed]
I—Photoreceptor Disease |
---|
A—Isolated |
1—Acquired/Progressive |
a—Retinitis Pigmentosa |
i—X-linked |
ii—Autosomal Dominant |
iii—Autosomal Recessive |
iv—Other Multiplex |
b—Cone and Cone Rod Dystrophy |
i—X-linked |
ii—Autosomal Dominant |
iii—Autosomal Recessive |
iv—Other Multiplex |
2—Congenital/Stationary |
a—LCA |
b—SECORD |
c—ECORD |
d—Achromatopsia (Congenital Stationary Cone Dysfunction) |
e—Blue Cone Monochromacy |
f—Congenital Stationary Night Blindness |
i—X-linked |
ii—Autosomal Dominant |
iii—Autosomal Recessive with normal fundus |
iv—Enhanced S-cone Syndrome |
v—Fundus Albipunctatus |
vi—Oguchi Disease |
g—Congenital Stationary Synaptic Dysfunction |
h—Delayed Retinal Maturation |
B—Syndromic |
1—Usher Syndrome |
a—Type I |
b—Type II |
c—Type III |
2—Bardet-Biedl Syndrome |
3—Neuronal Ceroid Lipofuscinosis |
4—Senior-Loken Syndrome |
5—Joubert Syndrome |
6—Microcephaly Congenital Lymphedema and Chorioretinopathy |
7—Retinitis Pigmentosa with Ataxia |
8—Peroxisomal Biogenesis Disorders |
9—Cohen Syndrome |
II—Macular Diseases |
A—Autosomal Recessive Stargardt Disease |
B—Best Disease |
C—Pattern Dystrophy |
D—Autosomal Dominant Stargardt Disease |
E—Sorsby Fundus Dystrophy |
F—Malattia Leventinese |
G—North Carolina Macular Dystrophy |
H—Syndromic Macular Diseases |
1—Macular Dystrophy, Diabetes and Deafness |
2—Pseudoxanthoma Elasticum |
3—Homocystinuria with Macular Atrophy |
4—Spinocerebellar Atrophy |
I—Benign Fleck Retina |
III—Third Branch Disorders |
A—Choroidopathies |
1—Choroideremia |
2—Gyrate Atrophy |
3—Late Onset Retinal Dystrophy |
4—Nummular Choroidal Atrophy |
5—Helicoid Peripapillary Chorioretinal Degeneration |
B—Retinoschisis |
1—X-linked |
2—Recessive |
C—Optic Neuropathies |
1—Non-syndromic |
a—Autosomal Dominant |
b—Autosomal Recessive |
c—Leber Hereditary Optic Neuropathy |
2—Syndromic |
a—Wolfram Syndrome |
b—Hearing Loss |
D—Tumors |
1—von Hippel Lindau |
2—Retinoblastoma |
3—Tuberous Sclerosis |
4—Gardner Syndrome |
E—Vitreoretinopathies |
1—Stickler Syndrome |
2—Familial Exudative Vitreoretinopathy |
a—Norrie Disease |
b—Autosomal Dominant |
3—AD Neovascular Inflammatory Vitreoretinopathy |
4—Wagner Disease (Erosive Vitreoretinopathy) |
5—Knobloch Syndrome |
6—Heritable Vascular Tortuosity |
a—Autosomal Dominant Retinal Vascular Tortuosity |
b—Cerebroretinal Vasculopathy |
c—Fascioscapulohumeral Dystrophy |
F—Albinism |
1—X-linked Ocular Albinism |
2—Oculocutaneous Albinism |
a—Nonsyndromic |
b—Hermansky Pudlak |
c—Chediak Higashi |
G—Isolated Foveal Hypoplasia |
Indication | NCT Number | Status | Phase | Interventions | Sponsor | Retinal Function | Functional Vision | ||
---|---|---|---|---|---|---|---|---|---|
BCVA | VF | FST | Mobility | ||||||
Biallelic RPE65- associated dystrophy | NCT00999609 | FDA Approved | 3 | voretigene neparvovec-rzyl (subretinal OU) | Spark Therapeutics | X MLMT | |||
Biallelic RPE65- associated dystrophy | NCT04516369 * | Japan Approved | 3 | voretigene neparvovec-rzyl (subretinal OU) | Novartis | X | |||
LCA10 CEP290- mediated | NCT03913143 NCT04855045 ILLUMINATE/BRIGHTEN | ACTIVE Did not meet 1° Endpoint | 2/3 | sepofarsen (QR-110) (monocular IVT) | ProQR | X | |||
RP (USH2A- Mediated) | NCT05085964 HELIA | TERMINATED For business reasons | 2 | ultevursen (QR-421a) (Monocular or OU IVT) | ProQR | X (2°) Standard & LLVA | |||
RP (USH2A- Mediated) | NCT05158296 SIRIUS | TERMINATED | 2/3 | ultevursen (QR-421a) (Monocular IVT) | ProQR/Thea | X | |||
RP (USH2A- Mediated) | NCT05176717 CELESTE | TERMINATED For business reasons | 2/3 | ultevursen (QR-421a) (Monocular IVT) | ProQR | X | |||
XLRP (RPGR-mediated) | NCT04671433 MGT-RPGR-021 | ACTIVE Not Recruiting | 3 | botaretigene sparoparvovec AAV5-hRKp.RPGR (subretinal OU) | MeiraGTx/ Janssen | X VMA | |||
XLRP (RPGR-mediated) | NCT04794101 MGT-RPGR-022 | ACTIVE Not recruiting | 3 | botaretigene sparoparvovec AAV5-hRKp.RPGR (subretinal OU) | MeiraGTx/ Janssen | X VMA | |||
XLRP (RPGR-mediated) | NCT05926583 * | RECRUITING | 3 | botaretigene sparoparvovec AAV5-hRKp.RPGR (subretinal OU) | Janssen | X MSA-10 | |||
XLRP (RPGR-mediated) | NCT06275620 DAWN | ENROLLING By invitation | 2 | AGTC-501 rAAV2tYF-GRK1-hRPGRco (subretinal injection) | Beacon/former AGTC | X (2°) | X (2°) MP, MAIA | ||
XLRP (RPGR-mediated) | NCT06333249 SKYLINE | ACTIVE Not recruiting | 2 | AGTC-501 rAAV2tYF-GRK1-hRPGRco (subretinal injection) | Beacon/former AGTC | X MP, MAIA | |||
XLRP (RPGR-mediated) | NCT04850118 VISTA | RECRUITING | 2/3 | AGTC-501 rAAV2tYF-GRK1-hRPGRco (subretinal injection) | Beacon/former AGTC | X LLVA | |||
XLRP (RPGR-mediated) | NCT03116113 XIRIUS | COMPLETED Did not meet 1° endpoint | 1/2/3 | cotoretigene toliparvovec AAV8-RPGR BIIB112 (Monocular, subretinal) | Biogen (formerly NightstaRx) | X MP, MAIA | |||
RP (RHO-mediated and gene-agnostic RP) | NCT06388200 liMeliGhT | RECRUITING | 3 | OCU400-301 (Bilateral Subretinal Injection) | Ocugen | X (2°) LLVA | X LDNA | ||
RP (unspecified) | NCT04945772 RESTORE | COMPLETED Met primary endpoint | 2b | MCO-010 (Monocular IVT) | Nanoscope | X (FrACT) | X (2°) MLYMT | ||
Stargardt | NCT05417126 STARLIGHT | COMPLETED Phase 3 trial in planning | 2 | MCO-010 (Monocular IVT) | Nanoscope | X (2°) | X MLMT | ||
LHON (MT-ND4 associated) | NCT02652780 REVERSE | COMPLETED Did not meet 1° endpoint | 3 | lenadogene nolparvovec (Monocular IVT) | GenSight Biologics | X | |||
LHON (MT-ND4- associated) | NCT02652767 RESCUE | COMPLETED Did not meet 1° endpoint | 3 | lenadogene nolparvovec (Monocular IVT) | GenSight Biologics | X | |||
LHON (MT-ND4- associated) | NCT03293524 REFLECT | ACTIVE Not recruiting | 3 | lenadogene nolparvovec (IVT OU) | GenSight Biologics | X | |||
LHON (MT-ND4- associated) | NCT03153293 ** | ACTIVE Not recruiting | 2/3 | rAAV2-ND4 (Monocular IVT) | Huazhong University of Science and Technology | X | |||
LHON (MT-ND4- associated) | NCT04912843 GOLD | RECRUITING | 2/3 | NR082 rAAV2-ND4 (Monocular IVT) | Wuhan Neurophth Biotechnology | X | |||
Choroideremia | NCT02553135 | COMPLETED | 2 | AAV2-REP1 (Monocular, subretinal) | University of Miami, Bascom Palmer Eye Institute | X | |||
Choroideremia | NCT02407678 REGENERATE | Did not meet 1° endpoint | 2 | AAV2-REP1 (Monocular, subretinal) | University of Oxford, Moorfields Eye Hospital | X | |||
Choroideremia | NCT02671539 THOR *** | Did not meet 1° endpoint | 2 | rAAV2.REP1 | University of Tubingen/ STZ eyetrial | X | |||
Choroideremia | NCT03507686 GEMINI | COMPLETED | 2 | timrepigene emparvovec (BIIB111/AAV2-REP1) (subretinal) | Biogen | X | |||
Choroideremia | NCT03496012 STAR | Did not meet 1° endpoint | 3 | timrepigene emparvovec (BIIB111/AAV2-REP1) (subretinal) | Biogen | X | |||
Choroideremia | NCT03584165 SOLSTICE | Enrolling by invitation | 3 | Long-term follow-up of AAV2-REP1 for CHM Patients | Biogen (previously NightstaRX) | X (2°) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Igoe, J.M.; Lam, B.L.; Gregori, N.Z. Update on Clinical Trial Endpoints in Gene Therapy Trials for Inherited Retinal Diseases. J. Clin. Med. 2024, 13, 5512. https://doi.org/10.3390/jcm13185512
Igoe JM, Lam BL, Gregori NZ. Update on Clinical Trial Endpoints in Gene Therapy Trials for Inherited Retinal Diseases. Journal of Clinical Medicine. 2024; 13(18):5512. https://doi.org/10.3390/jcm13185512
Chicago/Turabian StyleIgoe, Jane M., Byron L. Lam, and Ninel Z. Gregori. 2024. "Update on Clinical Trial Endpoints in Gene Therapy Trials for Inherited Retinal Diseases" Journal of Clinical Medicine 13, no. 18: 5512. https://doi.org/10.3390/jcm13185512