Diabetes-Related Changes in Carotid Wall Properties: Role of Triglycerides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Protocol
2.2. Body Size and BP Measurement
2.3. CCA Intima–Media Thickness, Luminal Diameter, Wall Tensile Stress, Local Pulse Wave Velocity, Media Thickness and Media Power
2.4. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raghavan, S.; Vassy, J.L.; Ho, Y.L.; Song, R.J.; Gagnon, D.R.; Cho, K.; Wilson, P.W.F.; Phillips, L.S. Diabetes mellitus-related all-cause and cardiovascular mortality in a national cohort of adults. J. Am. Heart Assoc. 2019, 8, e011295. [Google Scholar] [CrossRef] [PubMed]
- Booth, G.L.; Kapral, M.K.; Fung, K.; Tu, J.V. Relation between age and cardiovascular disease in men and women with diabtes compared with non-diabetic people: A population-based retrospective cohort study. Lancet 2006, 368, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.D.; Sattar, N. Cardiovascular risk in diabetes mellitus: Epidemiology, assessment and prevention. Nat. Rev. Cardiol. 2023, 20, 685–695. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef]
- Cruickshank, K.; Riste, L.; Anderson, S.G.; Wright, J.S.; Dunn, G.; Gosling, R.G. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: An integrated index of vascular function? Circulation 2002, 106, 2085–2090. [Google Scholar] [CrossRef]
- Prenner, S.B.; Chirinos, J.A. Arterial stiffness in diabetes mellitus. Atherosclerosis 2015, 238, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Sharif, S.; Visseren, F.L.J.; Spiering, W.; de Jong, P.A.; Bots, M.L.; Westerink, J.; SMART study group. Arterial stiffness as a risk factor for cardiovascular events and all-cause mortality in people with Type 2 diabetes. Diabet. Med. 2019, 36, 1125–1132. [Google Scholar]
- Kimoto, E.; Shoji, T.; Shinohara, K.; Hatsuda, S.; Mori, K.; Fukumoto, S.; Koyama, H.; Emoto, M.; Okuno, Y.; Nishizawa, Y. Regional arterial stiffness in patients with type 2 diabetes and chronic kidney disease. J. Am. Soc. Nephrol. 2006, 17, 2245–2252. [Google Scholar] [CrossRef]
- Cameron, J.D.; Bulpitt, C.J.; Pinto, E.S.; Rajkumar, C. The aging of elastic and muscular arteries: A comparison of diabetic and nondiabetic subjects. Diabetes Care 2003, 26, 2133–2138. [Google Scholar] [CrossRef]
- Roca, F.; Zmuda, L.; Noël, G.; Duflot, T.; Iacob, M.; Moreau-Grangé, L.; Prévost, G.; Joannides, R.; Bellien, J. Changes in carotid arterial wall viscosity and carotid arterial stiffness in type 2 diabetes patients. Atherosclerosis 2024, 394, 117188. [Google Scholar] [CrossRef]
- Ahmadizar, F.; Wang, K.; Roos, M.; Bos, M.; Mattace-Raso, F.; Kavousi, M. Association between arterial stiffness/remodeling and new-onset type 2 diabetes mellitus in general population. Diabetes Res. Clin. Pract. 2023, 196, 110237. [Google Scholar] [CrossRef] [PubMed]
- Avolio, A.; Jones, D.; Tafazzoli-Shadpour, M. Quantification of alterations in structure and function of elastin in the arterial media. Hypertension 1998, 32, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Lyle, A.N.; Raaz, U. Killing Me Unsoftly: Causes and mechanisms of arterial stiffness. Arterioscler. Thromb. Vasc. Biol. 2017, 37, e1–e11. [Google Scholar] [CrossRef]
- Lacolley, P.; Regnault, V.; Segers, P.; Laurent, S. Vascular smooth muscle cells and arterial stiffening: Relevance in development, aging, and disease. Physiol. Rev. 2017, 97, 1555–1617. [Google Scholar] [CrossRef] [PubMed]
- Staef, M.; Ott, C.; Kannenkeril, D.; Striepe, K.; Schiffer, M.; Schmieder, R.E.; Bosch, A. Determinants of arterial stiffness in patients with type 2 diabetes mellitus: A cross sectional analysis. Sci. Rep. 2023, 13, 8944. [Google Scholar] [CrossRef]
- Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 2015, 5, 194–222. [Google Scholar] [CrossRef]
- Muniyappa, R.; Sowers, J.R. Role of insulin resistance in endothelial dysfunction. Rev. Endocr. Metab. Disord. 2013, 14, 5–12. [Google Scholar] [CrossRef]
- Bucerius, J.; Mani, V.; Moncrieff, C.; Rudd, J.H.; Machac, J.; Fuster, V.; Farkouh, M.E.; Fayad, Z.A. Impact of noninsulin-dependent type 2 diabetes on carotid wall 18F-fluorodeoxyglucose positron emission tomography uptake. J. Am. Coll. Cardiol. 2012, 59, 2080–2088. [Google Scholar] [CrossRef]
- Sekizuka, H.; Hoshide, S.; Kabutoya, T.; Kario, K. Determining the relationship between triglycerides and arterial stiffness in cardiovascular risk patients without low-density lipoprotein cholesterol-lowering therapy. Int. Heart J. 2021, 62, 1320–1327. [Google Scholar] [CrossRef]
- Bucala, R.; Tracey, K.J.; Cerami, A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J. Clin. Investig. 1991, 87, 432–438. [Google Scholar] [CrossRef]
- Quehenberger, P.; Bierhaus, A.; Fasching, P.; Muellner, C.; Klevesath, M.; Hong, M.; Stier, G.; Sattler, M.; Schleicher, E.; Speiser, W.; et al. Endothelin 1 transcription is controlled by nuclear factor-kappaB in AGE-stimulated cultured endothelial cells. Diabetes 2000, 49, 1561–1570. [Google Scholar] [CrossRef] [PubMed]
- Pavlovska, I.; Kunzova, S.; Jakubik, J.; Hruskova, J.; Skladana, M.; Rivas-Serna, I.M.; Medina-Inojosa, J.R.; Lopez-Jimenez, F.; Vysoky, R.; Geda, Y.E.; et al. Associations between high triglycerides and arterial stiffness in a population-based sample: Kardiovize Brno 2030 study. Lipids Health Dis. 2020, 19, 170. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Huang, Y.; Lu, Y.; Yuan, H. Associations of non-high-density lipoprotein cholesterol, triglycerides and the total cholesterol/HDL-c ratio with arterial stiffness independent of low-density lipoprotein cholesterol in a Chinese population. Hypertens. Res. 2019, 42, 1223–1230. [Google Scholar] [CrossRef]
- Granchi, S.; Vannacci, E.; Biagi, E.; Masotti, L. Multidimensional spectral analysis of the ultrasonic radiofrequency signal for characterization of media. Ultrasonics 2016, 68, 89–101. [Google Scholar] [CrossRef]
- Puato, M.; Faggin, E.; Rattazzi, M.; Paterni, M.; Kozàkovà, M.; Palombo, C.; Pauletto, P.; Study Group on Arterial Wall Structure. In vivo noninvasive identification of cell composition of intimal lesions: A combined approach with ultrasonography and immunocytochemistry. J. Vasc. Surg. 2003, 38, 1390–1395. [Google Scholar] [CrossRef]
- Kawasaki, M.K.; Ito, Y.; Yokoyama, H.; Arai, M.; Takemura, G.; Hara, A.; Ichiki, Y.; Takatsu, H.; Minatoguchi, S.; Fujiwara, H. Assessment of arterial medial characteristics in human carotid arteries using integrated backscatter ultrasound and its histological implications. Atherosclerosis 2005, 180, 145–154. [Google Scholar] [CrossRef]
- World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation; WHO: Geneva, Switzerland, 2006. Available online: https://www.who.int/publications/i/item/definition-and-diagnosis-of-diabetes-mellitus-and-intermediate-hyperglycaemia (accessed on 1 December 2023).
- Ramzy, I. Definition of hypertension and pressure goals during treatment (ESC-ESH Guidelines 2018). E-J. Cardiol. Pract. 2019, 22. Available online: https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-17/definition-of-hypertension-and-pressure-goals-during-treatment-esc-esh-guidelin (accessed on 1 December 2023).
- Brands, P.J.; Willigers, J.M.; Ledoux, L.A.; Reneman, R.S.; Hoeks, A.P. A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound. Ultrasound Med. Biol. 1998, 24, 1325–1335. [Google Scholar] [CrossRef]
- Brands, P.J.; Hoeks, A.P.; Willigers, J.; Willekes, C.; Reneman, R.S. An integrated system for the non-invasive assessment of vessel wall and hemodynamic properties of large arteries by means of ultrasound. Eur. J. Ultrasound 1999, 9, 257–266. [Google Scholar] [CrossRef]
- Engelen, L.; Bossuyt, J.; Ferreira, I.; van Bortel, L.M.; Reesink, K.D.; Segers, P.; Stehouwer, C.D.; Laurent, S.; Boutouyrie, P.; Reference Values for Arterial Measurements Collaboration. Reference values for local arterial stiffness. Part A: Carotid artery. J. Hypertens. 2015, 33, 1981–1996. [Google Scholar] [CrossRef]
- Henry, R.M.; Kostense, P.J.; Dekker, J.M.; Nijpels, G.; Heine, R.J.; Kamp, O.; Bouter, L.M.; Stehouwer, C.D. Carotid arterial remodeling: A maladaptive phenomenon in type 2 diabetes but not in impaired glucose metabolism: The Hoorn study. Stroke 2004, 35, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Du, L.; Li, Z. Ultrasound assessment of tensile stress in carotid arteries of healthy human subjects with varying age. BMC Med. Imaging 2019, 19, 93. [Google Scholar] [CrossRef] [PubMed]
- Kozakova, M.; Morizzo, C.; Guarino, D.; Federico, G.; Miccoli, M.; Giannattasio, C.; Palombo, C. The impact of age and risk factors on carotid and carotid-femoral pulse wave velocity. J. Hypertens. 2015, 33, 1446–1451. [Google Scholar] [CrossRef] [PubMed]
- van Bortel, L.M.; Balkestein, E.J.; van der Heijden-Spek, J.J.; Vanmolkot, F.H.; Staessen, J.A.; Kragten, J.A.; Vredeveld, J.W.; Safar, M.E.; Struijker Boudier, H.A.; Hoeks, A.P. Non-invasive assessment of local arterial pulse pressure: Comparison of applanation tonometry and echo-tracking. J. Hypertens. 2001, 19, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Barzilai, B.; Saffitz, J.E.; Miller, J.G.; Sobel, B.E. Quantitative ultrasonic characterization of the nature of atherosclerotic plaques in human aorta. Circ. Res. 1987, 60, 459–463. [Google Scholar] [CrossRef]
- Hall, C.S.; Nguyen, C.T.; Scott, M.J.; Lanza, G.M.; Wickline, S.A. Delineation of the extracellular determinants of ultrasonic scattering from elastic arteries. Ultrasound Med. Biol. 2000, 26, 613–620. [Google Scholar] [CrossRef]
- Aznaouridis, K.; Vlachopoulos, C.; Dima, I.; Ioakeimidis, N.; Stefanadis, C. Triglyceride level is associated with wave reflections and arterial stiffness in apparently healthy middle-aged men. Heart 2007, 93, 613–614. [Google Scholar] [CrossRef]
- Wang, X.; Ye, P.; Cao, R.; Yang, X.; Xiao, W.; Zhang, Y.; Bai, Y.; Wu, H. Triglycerides are a predictive factor for arterial stiffness: A community-based 4.8-year prospective study. Lipids Health Dis. 2016, 15, 97. [Google Scholar] [CrossRef]
- Cristensen, F.P.B.; Christensen, D.H.; Mortensen, M.B.; Maeng, M.; Kahlert, J.; Sørensen, H.T.; Thomsen, R.W. Triglycerides and risk of cardiovascular events in statin-treated patients with newly diagnosed type 2 diabetes: A Danish cohort study. Cardiovasc. Diabetol. 2023, 22, 187. [Google Scholar] [CrossRef]
- Yang, X.H.; Tu, Q.M.; Li, L.; Guo, Y.P.; Wang, N.S.; Jin, H.M. Triglyceride-lowering therapy for the prevention of cardiovascular events, stroke, and mortality in patients with diabetes: A meta-analysis of randomized controlled trials. Atherosclerosis 2024, 394, 117187. [Google Scholar] [CrossRef]
- van Vreeswijk, J.; Lyklema, J.; Norde, W. Interaction between fatty acid salts and elastin: Kinetics, absorption equilibrium, and consequences for elasticity. Biopolymers 1999, 50, 472–485. [Google Scholar] [CrossRef]
- Kagan, H.M.; Jordan, R.E.; Lerch, R.M.; Mukherjee, D.P.; Stone, P.; Franzblau, C. Factors affecting the proteolytic degradation of elastin. Adv. Exp. Med. Biol. 1977, 79, 189–207. [Google Scholar] [PubMed]
- Shock, A.; Baum, H.; Kapasi, M.F.; Bull, F.M.; Quinn, P.J. The susceptibility of elastin-fatty acid complexes to elastolytic enzymes. Matrix 1990, 10, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Brodeur, M.R.; Bouvet, C.; Barrette, M.; Moreau, P. Palmitic acid increases medial calcification by inducing oxidative stress. J. Vasc. Res. 2013, 50, 430–441. [Google Scholar] [CrossRef]
- Henry, R.M.; Kostense, P.J.; Spijkerman, A.M.; Dekker, J.M.; Nijpels, G.; Heine, R.J.; Kamp, O.; Westerhof, N.; Bouter, L.M.; Stehouwer, C.D.; et al. Arterial stiffness increases with deteriorating glucose tolerance status: The Hoorn Study. Circulation 2003, 107, 2089–2095. [Google Scholar] [CrossRef]
- Azarbal, A.F.; Repella, T.; Carlson, E.; Manalo, E.C.; Palanuk, B.; Vatankhah, N.; Zientek, K.; Keene, D.R.; Zhang, W.; Abraham, C.Z.; et al. A novel model of tobacco smoke-mediated aortic injury. Vasc. Endovasc. Surg. 2022, 56, 244–252. [Google Scholar] [CrossRef]
- Farra, Y.M.; Matz, J.; Ramkhelawon, B.; Oakes, J.M.; Bellini, C. Structural and functional remodeling of the female Apoe-/- mouse aorta due to chronic cigarette smoke exposure. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H2270–H2282. [Google Scholar] [CrossRef]
- Orshal, J.M.; Khalil, R.A. Sex hormones and the vascular smooth muscle. Adv. Mol. Cell Biol. 2004, 34, 85–103. [Google Scholar]
- Khalil, R.A. Sex hormones as potential modulators of vascular function in hypertension. Hypertension 2005, 46, 249–254. [Google Scholar] [CrossRef]
- Lee, W.S.; Harder, J.A.; Yoshizumi, M.; Lee, M.E.; Haber, E. Progesterone inhibits arterial smooth muscle cell proliferation. Nat. Med. 1997, 3, 1005–1008. [Google Scholar] [CrossRef]
- DuPont, J.J.; Kim, S.K.; Kenney, R.M.; Jaffe, I.Z. Sex differences in the time course and mechanisms of vascular and cardiac aging in mice: Role of the smooth muscle cell mineralocorticoid receptor. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H169–H180. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; McCurley, A.T.; DuPont, J.J.; Aronovitz, M.; Moss, M.E.; Stillman, I.E.; Karumanchi, S.A.; Christou, D.D.; Jaffe, I.Z. Smooth muscle cell-mineralocorticoid receptor as a mediator of cardiovascular stiffness with aging. Hypertension 2018, 71, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Eberth, J.F.; Gresham, V.C.; Reddy, A.K.; Popovic, N.; Wilson, E.; Humphrey, J.D. Importance of pulsatility in hypertensive carotid artery growth and remodeling. J. Hypertens. 2009, 27, 2010–2021. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Gong, Z.; Li, Z.; Li, L.; Kong, W. Vascular extracellular matrix remodeling and hypertension. Antioxid. Redox Signal. 2021, 34, 765–783. [Google Scholar] [CrossRef]
Mean ± SD/Median (IQR)/n (%) | Range | |
---|---|---|
Sex—Male:Female | 273 (49):267 (51) | |
Age (years) | 64 ± 8 | 41–90 |
BMI (kg/m2) | 27.2 ± 4.1 | 15.5–51.7 |
Waist circumference (cm) | 96 ± 12 | 64–139 |
Brachial systolic BP (mmHg) | 134 ± 20 | 96–198 |
Brachial pulse pressure (mmHg) | 57 ± 16 | 25–105 |
HDL cholesterol (mmo/L) | 1.53 ± 0.42 | 0.44–3.05 |
LDL cholesterol (mmo/L) | 3.15 ± 0.88 | 0.91–6.43 |
TGs (mmo/L) | 1.06 [0.77] | 0.23–4.28 |
Fasting glucose (mmol/L) | 5.70 ± 1.27 | 2.39–13.39 |
Current smoker (yes) | 94 (17) | |
Hypertension therapy (yes) | 130 (24) | |
T2DM (yes) | 115 (21) | |
Lipid-lowering therapy (yes) | 126 (23) |
Mean ± SD/Median (IQR)/n (%) | p * | ||
---|---|---|---|
T2DM (No) | T2DM (Yes) | ||
425 | 115 | ||
Sex (male) | 189 (45) | 84 (73) | <0.0005 |
Age (years) | 63 ± 8 | 67 ± 8 | <0.0001 |
BMI (kg/m2) | 26.8 ± 4.1 | 28.7 ± 4.0 | <0.0005 |
Waist circumference (cm) | 95 ± 12 | 103 ± 12 | <0.0001 |
Brachial systolic BP (mmHg) | 134 ± 20 | 132 ± 18 | 0.09 |
Brachial pulse pressure (mmHg) | 57 ± 17 | 57 ± 15 | 0.14 |
HDL cholesterol (mmo/L) | 1.60 ± 0.42 | 1.28 ± 0.34 | <0.0001 |
LDL cholesterol (mmo/L) | 3.28 ± 0.83 | 2.69 ± 0.92 | <0.0001 |
TGs (mmo/L) | 0.98 [0.75] | 1.23 [0.90] | 0.0001 |
Fasting glucose (mmol/L) | 5.27 ± 0.62 | 7.35 ± 1.70 | <0.0001 |
HbA1c (%) | 45.4 [13.2] | ||
Current smoker (yes) | 70 (17) | 24 (21) | 0.32 |
Hypertension therapy (yes) | 81 (19) | 49 (43) | <0.0001 |
Lipid-lowering therapy (yes) | 64 (15) | 62 (54) | <0.0001 |
Mean ± SD | p * | ||
---|---|---|---|
T2DM (No) | T2DM (Yes) | ||
Luminal diameter (mm) | 6.12 ± 0.78 | 6.86 ± 0.96 | <0.0005 |
IMT (microns) | 725 ± 135 | 802 ± 153 | <0.005 |
Media thickness (microns) | 652 ± 122 | 721 ± 138 | <0.005 |
Wall tensile stress (kPa) | 32.7 ± 10.4 | 33.1 ± 10.7 | 0.25 |
Media power | 36.1 ± 4.8 | 39.3 ± 4.6 | <0.0001 |
PWV (m/s) | 7.65 ± 1.32 | 8.40 ± 1.89 | <0.01 |
Model with T2DM | Model with T2DM-Related Factors | ||||
---|---|---|---|---|---|
Beta ± SE | p | Beta ± SE | p | ||
CCA Media power | Sex (male) | 0.28 ± 0.04 | <0.0001 | 0.31 ± 0.04 | <0.0001 |
PP (mmHg) | 0.15 ± 0.04 | <0.0005 | 0.13 ± 0.04 | <0.005 | |
Smoking (yes) | 0.14 ± 0.05 | <0.01 | 0.12 ± 0.05 | <0.05 | |
T2DM (yes) | 0.24 ± 0.04 | <0.0001 | |||
logTGs | 0.14 ± 0.04 | 0.001 | |||
Cumulative R2 | 0.18 | <0.0001 | 0.16 | <0.0001 | |
CCA PWV (m/s) | Age (years) | 0.13 ± 0.04 | <0.005 | 0.13 ± 0.04 | <0.005 |
PP (mmHg) | 0.33 ± 0.04 | <0.0001 | 0.31 ± 0.04 | <0.0001 | |
CCA media power | 0.19 ± 0.03 | <0.0001 | 0.22 ± 0.03 | <0.0001 | |
T2DM (yes) | 0.17 ± 0.04 | 0.0005 | |||
FPG (mmol/L) | 0.12 ± 0.03 | <0.005 | |||
Cumulative R2 | 0.25 | <0.0001 | 0.25 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozakova, M.; Morizzo, C.; Penno, G.; Chiappino, D.; Palombo, C. Diabetes-Related Changes in Carotid Wall Properties: Role of Triglycerides. J. Clin. Med. 2024, 13, 5654. https://doi.org/10.3390/jcm13185654
Kozakova M, Morizzo C, Penno G, Chiappino D, Palombo C. Diabetes-Related Changes in Carotid Wall Properties: Role of Triglycerides. Journal of Clinical Medicine. 2024; 13(18):5654. https://doi.org/10.3390/jcm13185654
Chicago/Turabian StyleKozakova, Michaela, Carmela Morizzo, Giuseppe Penno, Dante Chiappino, and Carlo Palombo. 2024. "Diabetes-Related Changes in Carotid Wall Properties: Role of Triglycerides" Journal of Clinical Medicine 13, no. 18: 5654. https://doi.org/10.3390/jcm13185654
APA StyleKozakova, M., Morizzo, C., Penno, G., Chiappino, D., & Palombo, C. (2024). Diabetes-Related Changes in Carotid Wall Properties: Role of Triglycerides. Journal of Clinical Medicine, 13(18), 5654. https://doi.org/10.3390/jcm13185654