Memory-Guided Saccades and Non-Motor Symptoms Improve after Botulinum Toxin Therapy in Cervical Dystonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Inclusion and Exclusion Criteria
2.2. Eye Movement Evaluation
2.3. Motor and Non-Motor Symptom Evaluation; BoNT/A Administration
2.4. Data Analysis
3. Results
3.1. Motor Symptoms in Patients with CD before and after BoNT/A
3.2. Non-Motor Symptoms in Patients with CD before and after BoNT/A
3.3. Eye Movements in Patients with CD before and after BoNT/A
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Defazio, G.; Jankovic, J.; Giel, J.L.; Papapetropoulos, S. Descriptive epidemiology of cervical dystonia. Tremor Other Hyperkinetic Mov. 2013, 3, tre-03-193-4374-2. [Google Scholar] [CrossRef]
- Ray, S.; Pal, P.K.; Yadav, R. Non-Motor Symptoms in Cervical Dystonia: A Review. Ann. Indian Acad. Neurol. 2020, 23, 449–457. [Google Scholar] [PubMed]
- Patel, S.; Martino, D. Cervical dystonia: From pathophysiology to pharmacotherapy. Behav. Neurol. 2013, 26, 275–282. [Google Scholar] [CrossRef]
- Rasetti-Escargueil, C.; Palea, S. Embracing the Versatility of Botulinum Neurotoxins in Conventional and New Therapeutic Applications. Toxins 2024, 16, 261. [Google Scholar] [CrossRef] [PubMed]
- Sedov, A.; Usova, S.; Semenova, U.; Gamaleya, A.; Tomskiy, A.; Crawford, J.D.; Corneil, B.; Jinnah, H.A.; Shaikh, A.G. The role of pallidum in the neural integrator model of cervical dystonia. Neurobiol. Dis. 2019, 125, 45–54. [Google Scholar] [CrossRef]
- Leisman, G.; Melillo, R. The basal ganglia: Motor and cognitive relationships in a clinical neurobehavioral context. Rev. Neurosci. 2013, 24, 9–25. [Google Scholar] [CrossRef]
- Stamelou, M.; Edwards, M.J.; Hallett, M.; Bhatia, K.P. The non-motor syndrome of primary dystonia: Clinical and pathophysiological implications. Brain 2012, 135, 1668–1681. [Google Scholar] [CrossRef]
- Kassavetis, P.; Kaski, D.; Anderson, T.; Hallett, M. Eye Movement Disorders in Movement Disorders. Mov. Disord. Clin. Pract. 2022, 9, 284–295. [Google Scholar] [CrossRef]
- Carbone, F.; Ellmerer, P.; Ritter, M.; Spielberger, S.; Mahlknecht, P.; Hametner, E.; Hussl, A.; Hotter, A.; Granata, R.; Seppi, K.; et al. Impaired Inhibitory Control of Saccadic Eye Movements in Cervical Dystonia: An Eye-Tracking Study. Mov. Disord. Off. J. Mov. Disord. Soc. 2021, 36, 1246–1250. [Google Scholar] [CrossRef]
- Beck, R.B.; Kneafsey, S.L.; Narasimham, S.; O’Riordan, S.; Isa, T.; Hutchinson, M.; Reilly, R.B. Reduced frequency of ipsilateral express saccades in cervical dystonia: Probing the nigro-tectal pathway. Tremor Other Hyperkin. Mov. 2018, 8, 4–8. [Google Scholar] [CrossRef]
- Stell, R.; Bronstein, A.M.; Gresty, M.; Buckwell, D.; Marsden, C.D. Saccadic function in spasmodic torticollis. J. Neurol. Neurosurg. Psychiatry 1990, 53, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L. The neural encoding of the location of targets for saccadic eye movements. J. Exp. Biol. 1989, 146, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Robinson, F.R.; Fuchs, A.F. The role of the cerebellum in voluntary eye movements. Annu. Rev. Neurosci. 2001, 24, 981–1004. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, A.G.; Zee, D.S.; Crawford, J.D.; Jinnah, H.A. Cervical dystonia: A neural integrator disorder. Brain 2016, 139, 2590–2599. [Google Scholar] [CrossRef]
- Tsui, J.K.; Eisen, A.; Stoessl, A.J.; Calne, S.; Calne, D.B. Double-blind study of botulinum toxin in spasmodic torticollis. Lancet 1986, 2, 245–247. [Google Scholar] [CrossRef]
- Consky, E.; Basinki, A.; Belle, L.; Ranawaya, R.; Lang, A. The Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS): Assessment of validity and inter-rater reliability. Neurology 1990, 40, 445. [Google Scholar]
- Beck, A.T.; Steer, R.A. Manual for the Beck Anxiety Inventory; Psychological Corp.: San Antonio, TX, USA, 1993. [Google Scholar]
- Wang, Y.; Gorenstein, C. Assessment of depression in medical patients: A systematic review of the utility of the Beck Depression Inventory-II. Clinics 2013, 68, 1274–1287. [Google Scholar] [CrossRef]
- Bruno, D.; Schurmann Vignaga, S. Addenbrooke’s cognitive examination III in the diagnosis of dementia: A critical review. Neuropsychiatr. Dis. Treat. 2019, 15, 441–447. [Google Scholar] [CrossRef]
- BM Corp. IBM SPSS Statistics for Windows, Version 24.0; IBM Corp.: Armonk, NY, USA, 2016. [Google Scholar]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Katz, L.C.; LaMantia, A.S.; McNamara, J.O.; Williams, S.M. Neural Control of Saccadic Eye Movements. Neuroscience 2001, 2, 453–457. [Google Scholar]
- Mitchell, J.F.; Zipser, D. Sequential memory-guided saccades and target selection: A neural model of the frontal eye fields. Vis. Res. 2003, 43, 2669–2695. [Google Scholar] [CrossRef]
- Funahashi, S.; Bruce, C.J.; Goldman-Rakic, P.S. Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiol. 1989, 61, 331–349. [Google Scholar] [CrossRef] [PubMed]
- Hikosaka, O.; Wurtz, R.H. Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. J. Neurophysiol. 1985, 53, 266–291. [Google Scholar] [CrossRef]
- Carey, D.P. Do action systems resist visual illusions? Trends Cogn. Sci. 2001, 5, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Westwood, D.A.; Chapman, C.D.; Roy, E.A. Pantomimed actions may be controlled by the ventral visual stream. Exp. Brain Res. 2000, 130, 545–548. [Google Scholar] [CrossRef]
- Massendari, D.; Lisi, M.; Collins, T.; Cavanagh, P. Memory-guided saccades show effect of a perceptual illusion whereas visually guided saccades do not. J. Neurophysiol. 2018, 119, 62–72. [Google Scholar] [CrossRef]
- Tai, Y.C.; Lin, C.H. An overview of pain in Parkinson’s disease. Clin. Park. Relat. Disord. 2019, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Alexander, G.E.; Crutcher, M.D.; DeLong, M.R. Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog. Brain Res. 1990, 85, 119–146. [Google Scholar]
- Giladi, N. The Mechanism of Action of Botulinum Toxin Type A in Focal Dystonia Is Most Probably through Its Dual Effect on Efferent (Motor) and Afferent Pathways at the Injected Site. J. Neurol. Sci. 1997, 152, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.B.; Gregory, R.; Wilson, J.; Banks, S.; Turner, A.; Parkin, S.; Giladi, N.; Joint, C.; Aziz, T. Executive cognitive deficits in primary dystonia. Mov. Disord. 2003, 18, 539–550. [Google Scholar] [CrossRef]
- Camargo, C.H.; Teive, H.A.; Becker, N.; Munhoz, R.P.; Werneck, L.C. Botulinum toxin type A and cervical dystonia: A seven-year follow-up. Arq. Neuropsiquiatr. 2011, 69, 745–750. [Google Scholar] [CrossRef]
- Hok, P.; Veverka, T.; Hluštík, P.; Nevrlý, M.; Kaňovský, P. The Central Effects of Botulinum Toxin in Dystonia and Spasticity. Toxins 2021, 13, 155. [Google Scholar] [CrossRef]
- Costanzo, M.; Belvisi, D.; Berardelli, I.; Maraone, A.; Baione, V.; Ferrazzano, G.; Cutrona, C.; Leodori, G.; Pasquini, M.; Conte, A.; et al. Effect of Botulinum Toxin on Non-Motor Symptoms in Cervical Dystonia. Toxins 2021, 13, 647. [Google Scholar] [CrossRef]
- Rosales, R.L.; Dressler, D. On Muscle Spindles, Dystonia and Botulinum Toxin. Eur. J. Neurol. Off. J. Eur. Fed. Neurol. Soc. 2010, 17 (Suppl. S1), 71–80. [Google Scholar] [CrossRef] [PubMed]
- Currà, A.; Trompetto, C.; Abbruzzese, G.; Berardelli, A. Central Effects of Botulinum Toxin Type A: Evidence and Supposition. Mov. Disord. 2004, 19 (Suppl. S8), S60–S64. [Google Scholar] [CrossRef] [PubMed]
- Sugar, D.; Patel, R.; Comella, C.; González, D.A.; Gray, G.; Stebbins, G.T.; Mahajan, A. The effect of botulinum toxin on anxiety in cervical dystonia: A prospective, observational study. Park. Relat. Disord. 2023, 114, 105792. [Google Scholar] [CrossRef] [PubMed]
- Moriarty, A.; Rafee, S.; Ndukwe, I.; O’Riordan, S.; Hutchinson, M. Longitudinal Follow-Up of Mood in Cervical Dystonia and Influence on Age at Onset. Mov. Disord. Clin. Pract. 2022, 9, 614–618. [Google Scholar] [CrossRef]
- Kumar, R.; Dhaliwal, H.P.; Kukreja, R.V.; Singh, B.R. The Botulinum Toxin as a Therapeutic Agent: Molecular Structure and Mechanism of Action in Motor and Sensory Systems. Semin. Neurol. 2016, 36, 10–19. [Google Scholar] [CrossRef]
- Luvisetto, S. Botulinum Neurotoxins in Central Nervous System: An Overview from Animal Models to Human Therapy. Toxins 2021, 13, 751. [Google Scholar] [CrossRef]
- Weise, D.; Weise, C.M.; Naumann, M. Central Effects of Botulinum Neurotoxin-Evidence from Human Studies. Toxins 2019, 11, 21. [Google Scholar] [CrossRef]
- Mazzocchio, R.; Caleo, M. More than at the neuromuscular synapse: Actions of botulinum neurotoxin A in the central nervous system. Neuroscientist 2015, 21, 44–61. [Google Scholar] [CrossRef]
- Restani, L.; Giribaldi, F.; Manich, M.; Bercsenyi, K.; Menendez, G.; Rossetto, O.; Caleo, M.; Schiavo, G. Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog. 2012, 8, e1003087. [Google Scholar] [CrossRef] [PubMed]
- Antonucci, F.; Rossi, C.; Gianfranceschi, L.; Rossetto, O.; Caleo, M. Long-distance retrograde effects of botulinum neurotoxin A. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 3689–3696. [Google Scholar] [CrossRef] [PubMed]
- Aymard, C.; Giboin, L.-S.; Lackmy-Vallée, A.; Marchand-Pauvert, V. Spinal plasticity in stroke patients after botulinum neurotoxin A injection in ankle plantar flexors. Physiol. Rep. 2013, 1, e00173. [Google Scholar] [CrossRef]
- Marchand-Pauvert, V.; Aymard, C.; Giboin, L.-S.; Dominici, F.; Rossi, A.; Mazzocchio, R. Beyond muscular effects: Depression of spinal recurrent inhibition after botulinum neurotoxin A. J. Physiol. 2013, 593, 1017–1029. [Google Scholar] [CrossRef]
- Opavský, R.; Hluštík, P.; Otruba, P.; Kaňovský, P. Sensorimotor network in cervical dystonia and the effect of botulinum toxin treatment: A functional MRI study. J. Neurol. Sci. 2011, 306, 71–75. [Google Scholar] [CrossRef]
- Delnooz, C.C.; Pasman, J.W.; Beckmann, C.F.; van de Warrenburg, B.P. Task-free functional MRI in cervical dystonia reveals multi-network changes that partially normalize with botulinum toxin. PLoS ONE 2013, 8, e62877. [Google Scholar] [CrossRef] [PubMed]
- Brodoehl, S.; Wagner, F.; Prell, T.; Klingner, C.; Witte, O.W.; Gunther, A. Cause or effect: Altered brain network activity in cervical dystonia is partially normalized by botulinum toxin treatment. Neuroimage Clin. 2019, 22, 101792. [Google Scholar] [CrossRef]
- Nevrlý, M.; Hluštík, P.; Hok, P.; Otruba, P.; Tüdös, Z.; Kaňovský, P. Changes in sensorimotor network activation after botulinum toxin type A injections in patients with cervical dystonia: A functional MRI study. Exp. Brain. Res. 2018, 236, 2627–2637. [Google Scholar] [CrossRef]
Demographic Data | Median (IQR) |
---|---|
Age (years) | 63.00 (53.00–69.25) |
CD duration (years) | 10.00 (8.75–13.00) |
BoNT/A therapy median (years) | 7.50 (4.75–9.00) |
BoNT/A dosage (units) | 150.00 (150.00–250.00) |
Tsui Scale | Median (IQR) | p | |
---|---|---|---|
Before BoNT/A | After BoNT/A | ||
Tsui A (amplitude of sustained movements) | 2.5 (2.0–4.0) | 2.0 (1.0–2.25) | 0.003 |
Tsui B (duration of sustained movements) | 2.0 (1.0–2.0) | 2.0 (1.0–2.0) | 0.058 |
Tsui C (shoulder elevation) | 1.0 (0.0–2.0) | 1.0 (0.0–1.0) | 0.124 |
Tsui D (tremor) | 1.0 (0.0–2.0) | 1.0 (0.0–2.0) | 0.206 |
Total score [(A) × (B)] + (C) + (D) | 6.5 (4.75–9.25) | 5.0 (3.0–6.25) | 0.001 |
Non-Motor Symptom Scale | Median (IQR) | p | |
---|---|---|---|
Before BoNT/A | After BoNT/A | ||
ACE-R Domains | |||
Orientation | 10.0 (10.0–10.0) | 10.0 (10.0–10.0) | >0.99 |
Attention | 7.5 (6.0–8.0) | 8.0 (6.0–8.0) | 0.810 |
Memory | 23.5 (17.0–25.0) | 24.0 (22.25–26.0) | 0.003 |
Verbal fluency | 10.5 (7.0–12.0) | 12.0 (10.0–14.0) | 0.002 |
Language | 25.0 (23.0–26.0) | 26.0 (24.75–26.0) | 0.02 |
Visuospatial skills | 16.0 (16.0–16.0) (9–16) † | 16.0 (15.0–16.0) (13–16) † | 0.30 |
ACE-R total | 89.0 (79.0–95.0) | 94.5 (87.0–98.0) | <0.001 |
BAI | 5.0 (1.0–20.0) | 4.0 (2.0–15.0) | 0.04 |
BDI-II | 4.5 (2.0–8.0) | 3.0 (1.0–5.0) | 0.02 |
TWSTRS disability | 14.5 (8.5–20.5) | 6.0 (2.0–13.0) | 0.004 |
TWSTRS pain | 7.75 (4.69–9.75) | 4.5 (0.0–8.0) | 0.001 |
Variable | Median (IQR) | p | |
---|---|---|---|
Before BoNT/A | After BoNT/A | ||
Smooth pursuit | |||
Horizontal prosaccade expression 1600 ms | 0.5804 (0.5161–0.6503) | 0.5619 (0.5226–0.6386) | 0.48 |
Horizontal prosaccade reaction time 1600 ms | 0.007779 (0.06382–0.01273) | 0.007464 (0.0054950.01302) | 0.66 |
Vertical prosaccade expression 1600 ms | 0.5591 (0.4780–0.6344) | 0.5327 (0.4978–0.5943) | 0.60 |
Vertical prosaccade reaction time 1600 ms | 0.01078 (0.006189–0.01437) | 0.006783 (0.005085–0.01302) | 0.42 |
Prosaccadic expression (MSE) | |||
Latency | 7.59 (7.34–7.99) | 7.37 (6.91–7.86) | 0.57 |
Speed | 2.86 (2.58–3.19) | 2.99 (2.79–3.18) | 0.77 |
Accuracy | 3.74 (2.81–4.71) | 3.21 (2.91–4.15) | 0.52 |
Memory-guided saccade sequence | |||
Correct onward count | 0.0 (0.0–4.0) | 4.0 (0.0–6.0) | <0.001 |
Correct backward count | 0.0 (0.0–1.0) | 2.0 (0.0–5.0) | 0.054 |
Overall correct count | 0.0 (0.0–5.0) | 5.5 (0.0–9.0) | 0.005 |
Antisaccades | ms | ms | |
Reaction time/latency | 522.9 (479.5–538.1) | 510.2 (443.8–605.4) | 0.87 |
Antisaccade directional errors | 0.0 (0.0–2.0) | 1.0 (0.0–4.0) | 0.06 |
Countermanding inhibition errors | 2.0 (0.0–6.25) | 1.0 (0.0–2.25) | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilman Kuric, T.; Popovic, Z.; Matosa, S.; Sadikov, A.; Groznik, V.; Georgiev, D.; Gerbasi, A.; Kragujevic, J.; Mirosevic Zubonja, T.; Krivdic Dupan, Z.; et al. Memory-Guided Saccades and Non-Motor Symptoms Improve after Botulinum Toxin Therapy in Cervical Dystonia. J. Clin. Med. 2024, 13, 5708. https://doi.org/10.3390/jcm13195708
Gilman Kuric T, Popovic Z, Matosa S, Sadikov A, Groznik V, Georgiev D, Gerbasi A, Kragujevic J, Mirosevic Zubonja T, Krivdic Dupan Z, et al. Memory-Guided Saccades and Non-Motor Symptoms Improve after Botulinum Toxin Therapy in Cervical Dystonia. Journal of Clinical Medicine. 2024; 13(19):5708. https://doi.org/10.3390/jcm13195708
Chicago/Turabian StyleGilman Kuric, Tihana, Zvonimir Popovic, Sara Matosa, Aleksander Sadikov, Vida Groznik, Dejan Georgiev, Alessia Gerbasi, Jagoda Kragujevic, Tea Mirosevic Zubonja, Zdravka Krivdic Dupan, and et al. 2024. "Memory-Guided Saccades and Non-Motor Symptoms Improve after Botulinum Toxin Therapy in Cervical Dystonia" Journal of Clinical Medicine 13, no. 19: 5708. https://doi.org/10.3390/jcm13195708
APA StyleGilman Kuric, T., Popovic, Z., Matosa, S., Sadikov, A., Groznik, V., Georgiev, D., Gerbasi, A., Kragujevic, J., Mirosevic Zubonja, T., Krivdic Dupan, Z., Guljas, S., Kuric, I., Juric, S., Palic Kramaric, R., & Tomic, S. (2024). Memory-Guided Saccades and Non-Motor Symptoms Improve after Botulinum Toxin Therapy in Cervical Dystonia. Journal of Clinical Medicine, 13(19), 5708. https://doi.org/10.3390/jcm13195708