Submaximal Verification Test to Exhaustion Confirms Maximal Oxygen Uptake: Roles of Anaerobic Performance and Respiratory Muscle Strength
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Body Composition Analysis
2.4. Hematological Parameters
2.5. Pulmonary Function Procedure
2.6. Wingate Anaerobic Test (WAnT)
2.7. Incremental Exercise Test (IETRAMP)
2.8. Verification Test (VER85)
2.9. Cardiorespiratory Response Analysis
2.10. Blood Pressure and Stroke Volume
2.11. Arterial Blood Gas and Lactate Concentration
2.12. Respiratory Muscle Strength Analysis
2.13. Rate of Perceived Exertion
2.14. Statistical Analysis
3. Results
3.1. Maximal Oxygen Uptake Confirmation
3.2. Anaerobic Performance
3.3. Respiratory Muscle Strength
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levine, B.D. VO2max: What do we know, and what do we still need to know? J. Physiol. 2008, 586, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Beltz, N.M.; Gibson, A.L.; Janot, J.M.; Kravitz, L.; Mermier, C.M.; Dalleck, L.C. Graded Exercise Testing Protocols for the Determination of VO2max: Historical Perspectives, Progress, and Future Considerations. J. Sports Med. 2016, 2016, 3968393. [Google Scholar] [CrossRef] [PubMed]
- Bentley, D.J.; Newell, J.; Bishop, D. Incremental exercise test design and analysis: Implications for performance diagnostics in endurance athletes. Sports Med. 2007, 37, 575–586. [Google Scholar] [CrossRef]
- Poole, D.C.; Wilkerson, D.P.; Jones, A.M. Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur. J. Appl. Physiol. 2008, 102, 403–410. [Google Scholar] [CrossRef]
- Michalik, K.; Danek, N.; Zatoń, M. Assessment of the physical fitness of road cyclists in the step and ramp protocols of the incremental test. J. Sports Med. Phys. Fit. 2019, 59, 1285–1291. [Google Scholar] [CrossRef]
- Danek, N.; Michalik, K.; Hebisz, R.; Zatoń, M. Influence of warm-up prior to incremental exercise Test on aerobic performance in physically active men. Pol. J. Sport Tour. 2019, 26, 9–13. [Google Scholar] [CrossRef]
- Michalik, K.; Danek, N.; Zatoń, M. Comparison of the Ramp and Step Incremental Exercise Test Protocols in Assessing the Maximal Fat Oxidation Rate in Youth Cyclists. J. Hum. Kinet. 2021, 80, 163–172. [Google Scholar] [CrossRef]
- Sánchez-Otero, T.; Iglesias-Soler, E.; Boullosa, D.A.; Tuimil, J.L. Verification criteria for the determination of VO2 MAX in the field. J. Strength Cond. Res. 2014, 28, 3544–3551. [Google Scholar] [CrossRef]
- Schaun, G.Z. The Maximal Oxygen Uptake Verification Phase: A Light at the End of the Tunnel? Sports Med. Open 2017, 3, 44. [Google Scholar] [CrossRef]
- Poole, D.C.; Jones, A.M. Measurement of the maximum oxygen uptake o2max: o2peak is no longer acceptable. J. Appl. Physiol. 2017, 122, 997–1002. [Google Scholar] [CrossRef]
- Lucía, A.; Rabadán, M.; Hoyos, J.; Hernández-Capilla, M.; Pérez, M.; San Juan, A.F.; Earnest, C.P.; Chicharro, J.L. Frequency of the VO2max plateau phenomenon in world-class cyclists. Int. J. Sports Med. 2006, 27, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Robergs, R.A.; Ghiasvand, F.; Marks, D.; Burns, S. Incidence of the oxygen plateau at VO2max during exercise testing to volitional fatigue. J. Exerc. Physiol. 2000, 3, 1–12. [Google Scholar]
- Day, J.R.; Rossiter, H.B.; Coats, E.M.; Skasick, A.; Whipp, B.J. The maximally attainable VO2 during exercise in humans: The peak vs. maximum issue. J. Appl. Physiol. 2003, 95, 1901–1907. [Google Scholar] [CrossRef] [PubMed]
- Midgley, A.W.; McNaughton, L.R.; Polman, R.; Marchant, D. Criteria for determination of maximal oxygen uptake: A brief critique and recommendations for future research. Sports Med. 2007, 37, 1019–1028. [Google Scholar] [CrossRef]
- Costa, V.; Midgley, A.W.; Carroll, S.; Astorino, T.A.; de Paula, T.; Farinatti, P.; Cunha, F.A. Is a verification phase useful for confirming maximal oxygen uptake in apparently healthy adults? A systematic review and meta-analysis. PLoS ONE 2021, 16, e0247057. [Google Scholar] [CrossRef]
- Murias, J.M.; Pogliaghi, S.; Paterson, D.H. Measurement of a True VO2max during a Ramp Incremental Test Is Not Confirmed by a Verification Phase. Front. Physiol. 2018, 9, 143. [Google Scholar] [CrossRef]
- Wagner, J.; Niemeyer, M.; Infanger, D.; Hinrichs, T.; Guerra, C.; Klenk, C.; Königstein, K.; Cajochen, C.; Schmidt-Trucksäss, A.; Knaier, R. Verification-phase tests show low reliability and add little value in determining VO2max in young trained adults. PLoS ONE 2021, 16, e0245306. [Google Scholar] [CrossRef] [PubMed]
- Hebisz, P.; Jastrzębska, A.D.; Hebisz, R. Real Assessment of Maximum Oxygen Uptake as a Verification After an Incremental Test Versus Without a Test. Front. Physiol. 2021, 12, 739745. [Google Scholar] [CrossRef]
- Villanueva, I.R.; Campbell, J.C.; Medina, S.M.; Jorgensen, T.M.; Wilson, S.L.; Angadi, S.S.; Gaesser, G.A.; Dickinson, J.M. Comparison of constant load exercise intensity for verification of maximal oxygen uptake following a graded exercise test in older adults. Physiol. Rep. 2021, 9, e15037. [Google Scholar] [CrossRef]
- Sawyer, B.J.; McMahon, N.; Thornhill, K.L.; Baughman, B.R.; Mahoney, J.M.; Pattison, K.L.; Freeberg, K.A.; Botts, R.T. Supra-Versus Submaximal Cycle Ergometer Verification of VO2max in Males and Females. Sports 2020, 8, 163. [Google Scholar] [CrossRef]
- Possamai, L.T.; Campos, F.S.; Salvador, P.; de Aguiar, R.A.; Guglielmo, L.; de Lucas, R.D.; Caputo, F.; Turnes, T. Similar maximal oxygen uptake assessment from a step cycling incremental test and verification tests on the same or different day. Appl. Physiol. Nutr. Metab. 2020, 45, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Iannetta, D.; de Almeida, A.R.; Ingram, C.P.; Keir, D.A.; Murias, J.M. Evaluating the suitability of supra-POpeak verification trials after ramp-incremental exercise to confirm the attainment of maximum O2 uptake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 319, R315–R322. [Google Scholar] [CrossRef] [PubMed]
- Rossiter, H.B.; Kowalchuk, J.M.; Whipp, B.J. A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. J. Appl. Physiol. 2006, 100, 764–770. [Google Scholar] [CrossRef]
- Gordon, D.; Gernigon, M.; Baker, J.; Merzbach, V.; Scruton, A. The Effects of Non-Contingent Feedback on the Incidence of Plateau at V̇O2max. J. Sports Sci. Med. 2017, 16, 105–111. [Google Scholar]
- Gordon, D.; Hopkins, S.; King, C.; Keiller, D.; Barnes, R.J. Incidence of the plateau at VO2max is dependent on the anaerobic capacity. Int. J. Sports Med. 2011, 32, 1–6. [Google Scholar] [CrossRef]
- Gordon, D.; Caddy, O.; Merzbach, V.; Gernigon, M.; Baker, J.; Scruton, A.; Keiller, D.; Barnes, R. Prior Knowledge of Trial Number Influences the Incidence of Plateau at VO2max. J. Sports Sci. Med. 2015, 14, 47–53. [Google Scholar]
- Bertuzzi, R.; Nascimento, E.M.; Urso, R.P.; Damasceno, M.; Lima-Silva, A.E. Energy system contributions during incremental exercise test. J. Sports Sci. Med. 2013, 12, 454–460. [Google Scholar] [PubMed]
- Juel, C. Current aspects of lactate exchange: Lactate/H+ transport in human skeletal muscle. Eur. J. Appl. Physiol. 2001, 86, 12–16. [Google Scholar] [CrossRef]
- Astorino, T.A.; White, A.C. Assessment of anaerobic power to verify VO2max attainment. Clin. Physiol. Funct. Imaging 2010, 30, 294–300. [Google Scholar] [CrossRef]
- Dominelli, P.B.; Archiza, B.; Ramsook, A.H.; Mitchell, R.A.; Peters, C.M.; Molgat-Seon, Y.; Henderson, W.R.; Koehle, M.S.; Boushel, R.; Sheel, A.W. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise. Exp. Physiol. 2017, l102, 1535–1547. [Google Scholar] [CrossRef]
- Oueslati, F.; Berriri, A.; Boone, J.; Ahmaidi, S. Respiratory muscle strength is decreased after maximal incremental exercise in trained runners and cyclists. Respir. Physiol. Neurobiol. 2018, 248, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; LEA: Hillsdale, NJ, USA, 2008. [Google Scholar]
- Fukuda, D.H.; Wray, M.E.; Kendall, K.L.; Smith-Ryan, A.E.; Stout, J.R. Validity of near-infrared interactance (FUTREX 6100/XL) for estimating body fat percentage in elite rowers. Clin. Physiol. Funct. Imaging 2017, 37, 456–458. [Google Scholar] [CrossRef]
- Szczepan, S.; Danek, N.; Michalik, K.; Wróblewska, Z.; Zatoń, K. Influence of a Six-Week Swimming Training with Added Respiratory Dead Space on Respiratory Muscle Strength and Pulmonary Function in Recreational Swimmers. Int. J. Environ. Res. Public Health 2020, 8, 5743. [Google Scholar] [CrossRef]
- Bar-Or, O. The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.E. Nomogram for simple calculation of cardiac output. Circulation 1955, 11, 635–636. [Google Scholar] [CrossRef]
- Stringer, W.W.; Hansen, J.E.; Wasserman, K. Cardiac output estimated noninvasively from oxygen uptake during exercise. J. Appl. Physiol. 1997, 82, 908–912. [Google Scholar] [CrossRef]
- Hebisz, P.; Hebisz, R.; Zatoń, M.; Ochmann, B.; Mielnik, N. Concomitant application of sprint and high-intensity interval training on maximal oxygen uptake and work output in well-trained cyclists. Eur. J. Appl. Physiol. 2016, 116, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, Z.; Kapreli, E.; Konstantinidou, I.; Oldham, J.; Strimpakos, N. Test/retest reliability of maximum mouth pressure measurements with the MicroRPM in healthy volunteers. Respir. Care 2011, 56, 776–782. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Richardson, J.T. Eta squared and partial eta squared as measures of effect size in educational research. Rev. Educ. Res. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Noakes, T.D. Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity: Comment. Med. Sci. Sports Exerc. 2008, 40, 585–586. [Google Scholar] [CrossRef]
- Midgley, A.W.; McNaughton, L.R.; Carroll, S. Verification phase as a useful tool in the determination of the maximal oxygen uptake of distance runners. Appl. Physiol. Nutr. Metab. 2006, 31, 541–548. [Google Scholar] [CrossRef]
- Niemeyer, M.; Leithaeuser, R.; Beneke, R. Oxygen uptake plateau occurrence depends on oxygen kinetics and oxygen deficit accumulation. Scand. J. Med. Sci. Sports 2019, 29, 1466–1472. [Google Scholar] [CrossRef]
- Niemeyer, M.; Bergmann, T.G.J.; Beneke, R. Oxygen uptake plateau: Calculation artifact or physiological reality? Eur. J. Appl. Physiol. 2020, 120, 231–242. [Google Scholar] [CrossRef]
- Murias, J.M.; Kowalchuk, J.M.; Paterson, D.H. Time course and mechanisms of adaptations in cardiorespiratory fitness with endurance training in older and young men. J. Appl. Physiol. 2010, 108, 621–627. [Google Scholar] [CrossRef]
- Dogra, S.; Spencer, M.D.; Paterson, D.H. Higher Cardiorespiratory Fitness in Older Trained Women is Due to Preserved Stroke Volume. J. Sports Sci. Med. 2012, 11, 745–750. [Google Scholar]
- Scharhag-Rosenberger, F.; Carlsohn, A.; Cassel, M.; Mayer, F.; Scharhag, J. How to test maximal oxygen uptake: A study on timing and testing procedure of a supramaximal verification test. Appl. Physiol. Nutr. Metab. 2011, 36, 153–160. [Google Scholar] [CrossRef]
- Costa, V.A.B.; Midgley, A.W.; Baumgart, J.K.; Carroll, S.; Astorino, T.A.; Schaun, G.Z.; Fonseca, G.F.; Cunha, F.A. Confirming the attainment of maximal oxygen uptake within special and clinical groups: A systematic review and meta-analysis of cardiopulmonary exercise test and verification phase protocols. PLoS ONE 2024, 19, e0299563. [Google Scholar] [CrossRef]
- Hill, D.W.; Poole, D.C.; Smith, J.C. The relationship between power and the time to achieve VO2(max). Med. Sci. Sports Exerc. 2002, 34, 709–714. [Google Scholar] [CrossRef]
- Poole, D.C.; Jones, A.M. Oxygen uptake kinetics. Compr. Physiol. 2012, 2, 933–996. [Google Scholar] [CrossRef]
- Midgley, A.W.; Bentley, D.J.; Luttikholt, H.; McNaughton, L.R.; Millet, G.P. Challenging a dogma of exercise physiology: Does an incremental exercise test for valid VO2 max determination really need to last between 8 and 12 minutes? Sports Med. 2008, 38, 441–447. [Google Scholar] [CrossRef]
- Michalik, K.; Korta, K.; Danek, N.; Smolarek, M.; Zatoń, M. Influence of Intensity RAMP Incremental Test on Peak Power, Post-Exercise Blood Lactate, and Heart Rate Recovery in Males: Cross-Over Study. Int. J. Environ. Res. Public Health 2019, 16, 3934. [Google Scholar] [CrossRef]
- Boudet, G.; Albuisson, E.; Bedu, M.; Chamoux, A. Heart rate running speed relationships during exhaustive bouts in the laboratory. Can. J Appl. Physiol. 2004, 29, 731–742. [Google Scholar] [CrossRef]
- Midgley, A.W.; Carroll, S.; Marchant, D.; McNaughton, L.R.; Siegler, J. Evaluation of true maximal oxygen uptake based on a novel set of standardised criteria. Appl. Physiol. Nutr. Metab. 2009, 34, 115–123. [Google Scholar] [CrossRef]
- Wan, J.J.; Qin, Z.; Wang, P.Y.; Sun, Y.; Liu, X. Muscle fatigue: General understanding and treatment. Exp. Mol. Med. 2017, 49, e384. [Google Scholar] [CrossRef]
- Arad, A.D.; Bishop, K.; Adimoolam, D.; Albu, J.B.; DiMenna, F.J. Severe-intensity constant-work-rate cycling indicates that ramp incremental cycling underestimates VO2max in a heterogeneous cohort of sedentary individuals. PLoS ONE 2020, 15, e0235567. [Google Scholar] [CrossRef]
- Noakes, T.D. Testing for maximal oxygen consumption has produced a brainless model of human exercise performance. Br. J. Sports Med. 2008, 42, 551–555. [Google Scholar] [CrossRef]
- Oueslati, F.; Boone, J.; Tabka, Z.; Ahmaidi, S. Respiratory and locomotor muscle implications on the VO2 slow component and the VO2 excess in young trained cyclists. Respir. Physiol. Neurobiol. 2017, 239, 1–9. [Google Scholar] [CrossRef]
- Smith, J.R.; Ade, C.J.; Broxterman, R.M.; Skutnik, B.C.; Barstow, T.J.; Wong, B.J.; Harms, C.A. Influence of exercise intensity on respiratory muscle fatigue and brachial artery blood flow during cycling exercise. Eur. J. Appl. Physiol. 2014, 114, 1767–1777. [Google Scholar] [CrossRef]
- Tanner, D.A.; Duke, J.W.; Stager, J.M. Ventilatory patterns differ between maximal running and cycling. Respir. Physiol. Neurobiol. 2014, 191, 9–16. [Google Scholar] [CrossRef]
- Michalik, K.; Smolarek, M.; Ochmann, B.; Zatoń, M. Determination of optimal load in the Wingate Anaerobic Test is not depend on number of sprints included in mathematical models. Front. Physiol. 2023, 14, 1146076. [Google Scholar] [CrossRef]
Variables | |
---|---|
Age (years) | 22.7 ± 2.4 |
Body height (cm) | 178.0 ± 7.4 |
Body mass (kg) | 77.4 ± 7.3 |
%FAT | 16.4 ± 3.6 |
PA (h per week) | 7 ± 1 |
SP (mm Hg) | 125 ± 9 |
DP (mm Hg) | 71 ± 7 |
FVC (L) | 7.5 ± 1.5 |
FEV1·FVC–1 (%) | 73.9 ± 8.2 |
Hb (g·dL−1) | 14.8 ± 1.1 |
Ht (%) | 43.1 ± 7.8 |
Variables | IETRAMP | VER85 | ||
---|---|---|---|---|
± SD | 95%CI | ± SD | 95%CI | |
Rfmax (breath·min–1) | 55.2 ± 16.1 | 46.7–63.8 | 53.9 ± 11.3 | 47.9–59.9 |
VTmax (L) | 3.2 ± 0.6 | 2.9–3.5 | 3.2 ± 0.5 | 2.9–3.5 |
VEmax (L·min–1) | 148.9 ± 26.7 | 134.7–163.1 | 148.1 ± 21.6 | 136.5–159.8 |
VCO2max (L·min–1) | 4.3 ± 0.6 | 4.0–4.6 | 4.1 ± 0.4 * | 3.9–4.4 |
O2peak (mL·kg–1·min–1) | 49.5 ± 5.0 | 46.9–52.1 | 49.1 ± 4.5 | 46.7–51.4 |
RERmax | 1.14 ± 0.03 | 1.12–1.16 | 1.15 ± 0.05 | 1.12–1.16 |
HRmax (beats·min–1) | 193 ± 9 | 188–198 | 191 ± 9 * | 186–196 |
SV1 (mL) | 125.4 ± 19.3 | 115.1–135.6 | 119.9 ± 21.1 | 108.7–131.1 |
SV2 (mL) | 122.1 ± 15.2 | 114.0–130.2 | 122.5 ± 13.8 | 115.2–129.8 |
VO2·HR-1 (mL·beats–1) | 20.0 ± 2.5 | 18.7–21.3 | 20.6 ± 3.5 | 18.7–22.4 |
[La−] (mmoL·L–1) | 12.1 ± 1.5 | 11.3–12.9 | 12.4 ± 1.6 | 11.6–13.3 |
pH post | 7.21 ± 0.05 | 7.19–7.24 | 7.22 ± 0.04 | 7.19–7.24 |
RPE (6–20) | 19 ± 1 | 18–19 | 18 ± 1 | 18–19 |
Variables | O2peak in IETRAMP (n = 11) | O2peak in VER85 (n = 5) | ||
---|---|---|---|---|
± SD | 95%CI | 95%CI | ||
PPO (W) | 878.9 ± 110.4 | 804.7–953.1 | 834.3 ± 36.4 | 789.1–879.4 |
rPPO (W·kg−1) | 11.3 ± 0.8 | 10.7–11.8 | 11.0 ± 0.5 | 10.4–11.7 |
TWWAnT (kJ) | 19.7 ± 2.1 | 18.3–21.2 | 18.6 ± 0.9 | 17.5–19.7 |
FI (%) | 27.4 ± 5.6 | 23.6–31.3 | 28.6 ± 5.5 | 21.8–35.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalik, K.; Danek, N. Submaximal Verification Test to Exhaustion Confirms Maximal Oxygen Uptake: Roles of Anaerobic Performance and Respiratory Muscle Strength. J. Clin. Med. 2024, 13, 5758. https://doi.org/10.3390/jcm13195758
Michalik K, Danek N. Submaximal Verification Test to Exhaustion Confirms Maximal Oxygen Uptake: Roles of Anaerobic Performance and Respiratory Muscle Strength. Journal of Clinical Medicine. 2024; 13(19):5758. https://doi.org/10.3390/jcm13195758
Chicago/Turabian StyleMichalik, Kamil, and Natalia Danek. 2024. "Submaximal Verification Test to Exhaustion Confirms Maximal Oxygen Uptake: Roles of Anaerobic Performance and Respiratory Muscle Strength" Journal of Clinical Medicine 13, no. 19: 5758. https://doi.org/10.3390/jcm13195758
APA StyleMichalik, K., & Danek, N. (2024). Submaximal Verification Test to Exhaustion Confirms Maximal Oxygen Uptake: Roles of Anaerobic Performance and Respiratory Muscle Strength. Journal of Clinical Medicine, 13(19), 5758. https://doi.org/10.3390/jcm13195758