Interdisciplinary Management of Traumatic Injuries to the Kidneys and Urinary Tract Caused by Blunt Abdominopelvic Trauma
Abstract
:1. Introduction
2. Purpose of This Review
3. Background
Epidemiology
4. Guidelines
- -
- European guideline, EAU Guidelines on Urological Trauma from the European Association of Urology (Ed. March 2023; [8]);
- -
- -
- -
- Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury, 2012 [13];
- -
- Recommendations on Acute Kidney Injury Biomarkers from the Acute Disease Quality Initiative (ADQI) Consensus Conference: A Consensus Statement, 2020 [14];
- -
- Use of Intravenous Iodinated Contrast Media in Patients with Kidney Disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation, 2020 [15].
5. Classifications
6. General Management
6.1. Initial Evaluation
6.2. Damage Control
6.3. Urinary Bladder Catheterisation
6.4. Imaging
6.5. Free Fluid/Urine Extralumination
6.6. Recommendation on the Early Diagnostic and Management of Acute Kidney Injury
6.6.1. Laboratory Values
6.6.2. Kidney Care Bundles
6.6.3. Use of Radiographic Contrast Agents in Critically Ill Patients with Risk of AKI
6.7. Documentation
7. Special Management
7.1. Injuries to the Kidney, the Renal Pelvic Calyx System, and the Vessels Supplying the Kidneys
7.2. Injuries to the Ureter
7.3. Injuries to the Urinary Bladder
7.4. Injuries to the Posterior Pelvic Urethra
8. Discussion
9. Limitations
10. Practical Conclusions
- Urinary tract injuries due to abdominal trauma are common, but they are often primarily asymptomatic. In all cases, an explicit exclusion diagnosis using native and multiphase contrast-medium computed tomography with a late urogram phase of the entire abdomen/pelvis is obligatory.
- The most commonly used descriptive classification is the organ-specific AAST Organ Injury Scoring Scale (Organ Injury Scale; AAST-OIS) of the American Association for the Surgery of Trauma.
- As part of the differential diagnostic/therapeutic assessment, the determination of the creatinine concentration from aspirates/drainages of free fluid retention is a cornerstone measurement in cases with suspected urinoma.
- Posterior urethral injuries are primarily associated with pelvic fractures and are often associated with high morbidity and incontinence. Catheterisation without excluding a urethral lesion entails a risk of additional trauma. Therefore, emergency catheter insertion without prior retrograde urethrography should be avoided. If primary urological interventional transurethral katheterisation is not possible, cystostomy and a delayed reconstruction must be performed.
- A cystogram should be performed to rule out bladder injury. Intraperitoneal bladder ruptures must be surgically fixed with high urgency; extraperitoneal bladder ruptures may often be cured by using a bladder catheter.
- Ureter splinting as early as possible is advantageous in cases of lesions. For extensive defects elective, specific reconstruction is usually necessary.
- In cases of kidney injury, non-operative management by interventional radiological angioembolisation is the first-line therapy due to its higher organ and kidney function preservation rate. Over 90% of life-threatening kidney injuries (usually up to grade 4–5 AAST) are, nowadays, treated by interventional radiologists. The nephrectomy rate during surgical exploration is very high, reaching 30%.
- An assessment of kidney function (GFR, proteinuria) is recommended in trauma patients at risk of AKI. In patients at risk, an early assessment for acute kidney injury using clinical information in addition to kidney function improves kidney-associated outcomes. Traditional measures of kidney function include SCr, SCr-based estimated glomerular filtration rate (eGFR) equations, and urine output. An assessment of Cystatin C eGFR may improve the assessment of renal function. Formulas to estimate GFR including both SCr and Cystatin C are available.
- The prophylaxis of contrast-associated AKI by volume expansion is indicated in patients at high risk. Individual patient comorbidities should be critically considered. Kidney replacement therapy (KRT) should not be initiated to remove contrast medium.
Funding
Conflicts of Interest
Appendix A
References
- TraumaRegister DGU. Allgemeiner Jahresbericht; Sektion NIS der DGU, AUC: München, Germany, 2022. [Google Scholar]
- Meng, M.V.; Brandes, S.B.; McAninch, J.W. Renal trauma: Indications and techniques for surgical exploration. World J. Urol. 1999, 17, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Siram, S.M.; Gerald, S.Z.; Greene, W.R.; Hughes, K.; Oyetunji, T.A.; Chrouser, K.; Cornwell, E.E.; Chang, D.C. Ureteral trauma: Patterns and mechanisms of injury of an uncommon condition. Am. J. Surg. 2010, 199, 566–570. [Google Scholar] [CrossRef]
- Johnsen, N.V.; Dmochowski, R.R.; Young, J.B.; Guillamondegui, O.D. Epidemiology of blunt lower urinary tract trauma with and without pelvic fracture. Urology 2017, 102, 234–239. [Google Scholar] [CrossRef]
- Figler, B.; Hoffler, C.E.; Reisman, W.; Carney, K.J.; Moore, T.; Feliciano, D.; Master, V. Multi-disciplinary update on pelvic fracture associated bladder and urethral injuries. Injury 2012, 43, 1242–1249. [Google Scholar] [CrossRef]
- Wein, A.J.; Kavoussi, L.R.; Partin, A.W.; Peters, C.A. Campbell–Walsh Urology, 11th ed.; Elsevier: Philadelphia, PA, USA, 2016. [Google Scholar]
- Schmittenbecher, P.P.; S2K-Leitlinie Polytraumaversorgung im Kindesalter. AWMF-Reg.-Nr. 006-120. 2020. Available online: https://register.awmf.org/assets/guidelines/006-120l_S2k_Polytraumaversorgung-im-Kindesalter_2021-02.pdf (accessed on 15 April 2023).
- EAU Guidelines on Urological Trauma Edn. Presented at the EAU Annual Congress Milan March 2023. Available online: https://uroweb.org/guidelines/urological-trauma (accessed on 15 April 2023).
- Morey, A.F.; Broghammer, J.A.; Hollowell, C.M.P.; McKibben, M.J.; Souter, L. Urotrauma Guideline 2020: AUA Guideline. J. Urol. 2021, 205, 30–35. [Google Scholar] [CrossRef]
- Deutsche Gesellschaft für Unfallchirurgie e.V. S3-Leitlinie Polytrauma/Schwerverletzten-Behandlung (AWMF Registernummer 187-023), version 4.0. 2022. Available online: https://www.awmf.org/leitlinien/detail/ll/187-023.html (accessed on 1 August 2024).
- AAST-Organ-Verletzungs-Scoring-Skala (Organ Injury Scale; AAST-OIS). Available online: https://www.aast.org/resources-detail/injury-scoring-scale (accessed on 1 August 2024).
- Panel, W.-A.E.; Coccolini, F.; Moore, E.E.; Kluger, Y.; Biffl, W.; Leppaniemi, A.; Matsumura, Y.; Kim, F.; Peitzman, A.B.; Fraga, G.P.; et al. Kidney and uro-trauma: WSES-AAST guidelines. World J. Emerg. Surg. 2019, 14, 54. [Google Scholar]
- Kellum, J.A.; Lameire, N.; Aspelin, P.; Barsoum, R.S.; Burdmann, E.A.; Goldstein, S.L.; Herzog, C.A.; Joannidis, M.; Kribben, A.; Levey, A.S.; et al. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar]
- Ostermann, M.; Zarbock, A.; Goldstein, S.; Kashani, K.; Macedo, E.; Murugan, R.; Bell, M.; Forni, L.; Guzzi, L.; Joannidis, M.; et al. Recommendations on Acute Kidney Injury Biomarkers from the Acute Disease Quality Initiative Consensus Conference: A Consensus Statement. JAMA Netw. Open 2020, 3, e2019209. [Google Scholar] [CrossRef]
- Davenport, M.S.; Perazella, M.A.; Yee, J.; Dillman, J.R.; Fine, D.; McDonald, R.J.; Rodby, R.A.; Wang, C.L.; Weinreb, J.C. Use of Intravenous Iodinated Contrast Media in Patients with Kidney Disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation. Kidney Med. 2020, 2, 85–93. [Google Scholar] [CrossRef]
- Lim, P.H.C.; Chng, H.C. Initial management of acute urethral injuries. Br. J. Urol. 1989, 64, 165–168. [Google Scholar] [CrossRef]
- Bichler, K.H. Das urologische Gutachten, 2nd ed.; Springer: Heidelberg, Germany, 2004. [Google Scholar]
- Stengel, D.; Rademacher, G.; Ekkernkamp, A.; Guethoff, C.; Mutze, S. Emergency ultrasound-based algorithms for diagnosing blunt abdominal trauma. Cochrane Database Syst. Rev. 2015, 9, CD4446. [Google Scholar] [CrossRef]
- Gäble, A.; Mück, F.; Mühlmann, M.; Wirth, S. Traumatisches akutes Abdomen. Radiologe 2019, 59, 139–145. [Google Scholar] [CrossRef]
- Søvik, S.; Isachsen, M.S.; Nordhuus, K.M.; Tveiten, C.K.; Eken, T.; Sunde, K.; Brurberg, K.G.; Beitland, S. Acute kidney injury in trauma patients admitted to the ICU: A systematic review and meta-analysis. Intensive Care Med. 2019, 45, 407–419. [Google Scholar] [CrossRef]
- Perkins, Z.B.; Captur, G.; Bird, R.; Gleeson, L.; Singer, B.; O’brien, B. Trauma induced acute kidney injury. PLoS ONE 2019, 14, e0211001. [Google Scholar] [CrossRef]
- Lai, W.H.; Rau, C.S.; Wu, S.C.; Chen, Y.C.; Kuo, P.J.; Hsu, S.Y.; Hsieh, C.H.; Hsieh, H.Y. Post-traumatic acute kidney injury: A cross-sectional study of trauma patients. Scand. J. Trauma. Resusc. Emerg. Med. 2016, 24, 136. [Google Scholar] [CrossRef]
- Ravn, B.; Rimes-Stigare, C.; Bell, M.; Hansson, M.; Hansson, L.O.; Martling, C.R.; Larsson, A.; Mårtensson, J. Creatinine versus cystatin C based glomerular filtration rate in critically ill patients. J. Crit. Care 2019, 52, 136–140. [Google Scholar] [CrossRef]
- Stevens, L.A.; Coresh, J.; Schmid, C.H.; Feldman, H.I.; Froissart, M.; Kusek, J.; Rossert, J.; Van Lente, F.; Bruce, R.D., III; Zhang, Y. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: A pooled analysis of 3418 individuals with CKD. Am. J. Kidney Dis. 2008, 51, 395–406. [Google Scholar] [CrossRef]
- Voth, M.; Verboket, R.; Henrich, D.; Marzi, I. L-FABP and NGAL are novel biomarkers for detection of abdominal injury and hemorrhagic shock. Injury 2023, 54, 1246–1256. [Google Scholar] [CrossRef]
- Albert, C.; Albert, A.; Bellomo, R.; Kropf, S.; Devarajan, P.; Westphal, S.; Baraki, H.; Kutschka, I.; Butter, C.; Haase, M.; et al. Urinary neutrophil gelatinase-associated lipocalin-guided risk assessment for major adverse kidney events after open-heart surgery. Biomark. Med. 2018, 12, 975–985. [Google Scholar] [CrossRef]
- Göcze, I.; Jauch, D.; Götz, M.; Kennedy, P.; Jung, B.; Zeman, F.; Gnewuch, C.; Graf, B.M.; Gnann, W.; Banas, B.; et al. Biomarker-guided Intervention to Prevent Acute Kidney Injury after Major Surgery: The Prospective Randomized BigpAK Study. Ann. Surg. 2018, 267, 1013–1020. [Google Scholar] [CrossRef]
- Albert, C.; Zapf, A.; Haase, M.; Röver, C.; Pickering, J.W.; Albert, A.; Bellomo, R.; Breidthardt, T.; Camou, F.; Chen, Z.; et al. Neutrophil Gelatinase-Associated Lipocalin Measured on Clinical Laboratory Platforms for the Prediction of Acute Kidney Injury and the Associated Need for Dialysis Therapy: A Systematic Review and Meta-analysis. Am. J. Kidney Dis. 2020, 76, 826–841. [Google Scholar] [CrossRef]
- Albert, C.; Haase, M.; Albert, A.; Zapf, A.; Braun-Dullaeus, R.C.; Haase-Fielitz, A. Biomarker-guided Risk Assessment for Acute Kidney Injury: Time for clinical implementation? Ann. Lab. Med. 2021, 41, 1–15. [Google Scholar] [CrossRef]
- Golino, G.; Greco, M.; Rigobello, A.; Danzi, V.; De Cal, M.; Malchiorna, N.; Zannella, M.; Navalesi, P.; Costa-Pinto, R.; Ronco, C.; et al. Incidence of Acute Kidney Injury in Polytrauma Patients and Predictive Performance of TIMP2 × IGFBP7 Biomarkers for Early Identification of Acute Kidney Injury. Diagnostics 2022, 12, 2481. [Google Scholar] [CrossRef]
- Albert, A.; Radtke, S.; Blume, L.; Bellomo, R.; Haase, M.; Stieger, P.; Hinkel, U.P.; Braun-Dullaeus, R.C.; Albert, C. Neutrophil gelatinase-associated lipocalin cutoff value selection and acute kidney injury classification system determine phenotype allocation and associated outcomes. Ann. Lab. Med. 2023, 43, 539–553. [Google Scholar] [CrossRef]
- Nickolas, T.L.; Schmidt-Ott, K.M.; Canetta, P.; Forster, C.; Singer, E.; Sise, M.; Elger, A.; Maarouf, O.; Valle, D.A.S.-D.; O’Rourke, M.; et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: A multicenter prospective cohort study. J. Am. Coll. Cardiol. 2012, 59, 246–255. [Google Scholar] [CrossRef]
- Xie, Y.; Ankawi, G.; Yang, B.; Garzotto, F.; Passannante, A.; Breglia, A.; Digvijay, K.; Ferrari, F.; Brendolan, A.; Raffaele, B.; et al. Tissue inhibitor metalloproteinase-2 (TIMP-2) • IGF-binding protein-7 (IGFBP7) levels are associated with adverse outcomes in patients in the intensive care unit with acute kidney injury. Kidney Int. 2019, 95, 1486–1493. [Google Scholar] [CrossRef]
- Albert, C.; Albert, A.; Kube, J.; Bellomo, R.; Wettersten, N.; Kuppe, H.; Westphal, S.; Haase, M.; Haase-Fielitz, A. Urinary biomarkers may provide prognostic information for subclinical acute kidney injury after cardiac surgery. J. Thorac. Cardiovasc. Surg. 2018, 155, 2441–2452.e13. [Google Scholar] [CrossRef]
- Guzzi, L.M.; Bergler, T.; Binnall, B.; Engelman, D.T.; Forni, L.; Germain, M.J.; Gluck, E.; Göcze, I.; Joannidis, M.; Koyner, J.L.; et al. Clinical use of [TIMP-2]•[IGFBP7] biomarker testing to assess risk of acute kidney injuryin critical care: Guidance from an expert panel. Crit. Care. 2019, 23, 225. [Google Scholar] [CrossRef]
- Zarbock, A.; Küllmar, M.; Ostermann, M.; Lucchese, G.; Baig, K.; Cennamo, A.; Rajani, R.; McCorkell, S.; Arndt, C.; Wulf, H.; et al. Prevention of Cardiac Surgery-Associated Acute Kidney Injury by Implementing the KDIGO Guidelines in High-Risk Patients Identified by Biomarkers: The PrevAKI-Multicenter Randomized Controlled Trial. Anesth Analg. 2012, 133, 292–302. [Google Scholar] [CrossRef]
- Khabiri, S.S.; Keihani, S.; Myers, J.B. Extraperitoneal bladder injuries associated with pelvic fracture requiring internal fixation: What is the evidence? Am. Surg. 2021, 87, 1203–1206. [Google Scholar] [CrossRef]
- Haase-Fielitz, A.; Elitok, S.; Schostak, M.; Ernst, M.; Isermann, B.; Albert, C.; Robra, B.-P.; Kribben, A.; Haase, M. The Effects of Intensive Versus Routine Treatment in Patients with Acute Kidney Injury. Dtsch. Aerzteblatt Online 2020, 117, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Küllmar, M.; Weiß, R.; Ostermann, M.; Campos, S.; Novellas, N.G.; Thomson, G.; Haffner, M.; Arndt, C.; Wulf, H.; Irqsusi, M.; et al. A Multinational Observational Study Exploring Adherence with the Kidney Disease: Improving Global Outcomes Recommendations for Prevention of Acute Kidney Injury After Cardiac Surgery. Anesth. Analg. 2020, 130, 910–916. [Google Scholar] [CrossRef] [PubMed]
- See, C.Y.; Pan, H.C.; Chen, J.Y.; Wu, C.Y.; Liao, H.W.; Huang, Y.T.; Liu, J.H.; Wu, V.C.; Ostermann, M. Improvement of composite kidney outcomes by AKI care bundles: A systematic review and meta-analysis. Crit. Care 2023, 27, 390. [Google Scholar] [CrossRef]
- Kawashima, S.; Takano, H.; Iino, Y.; Takayama, M.; Takano, T. Prophylactic hemodialysis does not prevent contrast-induced nephropathy after cardiac catheterization in patients with chronic renal insufficiency. Circ. J. 2006, 70, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Cruz, D.N.; Goh, C.Y.; Marenzi, G.; Corradi, V.; Ronco, C.; Perazella, M.A. Renal replacement therapies for prevention of radiocontrast-induced nephropathy: A systematic review. Am. J. Med. 2012, 125, 66–78.e3. [Google Scholar] [CrossRef]
- Eng, J.; Subramaniam, R.M.; Wilson, R.F.; Turban, S.; Choi, M.J.; Zhang, A.; Suarez-Cuervo, C.; Sherrod, C.; Hutfless, S.; Iyoha, E.E.; et al. Contrast-Induced Nephropathy: Comparative Effects of Different Contrast Media; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2015; Volume 15, p. EHC022EF. [Google Scholar]
- Fochtmann, U.; Jungbluth, P.; Maek, M.; Zimmermann, W.; Lefering, R.; Lendemans, S.; Hussmann, B. TraumaRegister DGU Sektion Notfall- Intensivmedizin und Schwerverletztenversorgung (Sektion NIS) der Deutschen Gesellschaft für Unfallchirurgie (DGU). Führt eine urologische Begleitverletzung beim Schwerstverletzten zu einer Outcomeverschlechterung?: Eine multivariate Risikoanalyse [Do concomitant urological injuries in severely injured patients lead to poorer outcomes?: A multivariate risk analysis]. Urologie 2022, 61, 629–637. [Google Scholar]
- Sun, H.H.; An, C.; Drozd, A.; Rhodes, S.; Sellke, N.; Tay, K.; Mishra, K.; Scarberry, K.; Gupta, S.; Thirumavalavan, N. Legal Outcomes of Litigation After Iatrogenic Genitourinary Trauma. Urology 2024, 189, 49–54. [Google Scholar] [CrossRef]
- Rassweiler, J.; Teber, D.; Probst, K.; Fiedler, M.; Klein, J. Kapitel 64—Urologische Traumatologie. In (Hrsg) Praxis der Urologie; Jocham, D., Miller, K., Burger, M., Schrader, M., Eds.; Thieme: New York, NY, USA, 2020; ISBN 9783132026445. [Google Scholar]
- Sujenthiran, A.; Elshout, P.J.; Veskimae, E.; MacLennan, S.; Yuan, Y.; Serafetinidis, E.; Sharma, D.M.; Kitrey, N.D.; Djakovic, N.; Lumen, N.; et al. Is nonoperative management the best first-line option for high-grade renal trauma? A systematic review. Eur. Urol. Focus. 2017, 5, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Mingoli, A.; La Torre, M.; Migliori, E.; Cirillo, B.; Zambon, M.; Sapienza, P.; Brachini, G. Operative and nonoperative management for renal trauma: Comparison of outcomes. A systematic review and meta-analysis. Ther. Clin. Risk Manag. 2017, 31, 1127–1138. [Google Scholar] [CrossRef]
- Keihani, S.; Rogers, D.M.; Putbrese, B.E.; Moses, R.A.; Zhang, C.; Presson, A.P.; Hotaling, J.M.; Nirula, R.; Luo-Owen, X.; Mukherjee, K.; et al. A nomogram predicting the need for bleeding interventions after high-grade renal trauma: Results from the American Association for the Surgery of Trauma Multi-institutional Genito-Urinary Trauma Study (MiGUTS). J. Trauma. Acute Care Surg. 2019, 86, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Liguori, G.; Rebez, G.; Larcher, A.; Rizzo, M.; Cai, T.; Trombetta, C.; Salonia, A. The role of angioembolization in the management of blunt renal injuries: A systematic review. BMC Urol. 2021, 21, 104. [Google Scholar] [CrossRef]
- Hotaling, J.M.; Sorensen, M.D.; Smith TG 3rd Rivara, F.P.; Wessells, H.; Voelzke, B.B. Analysis of diagnostic angiography and angioembolization in the acute management of renal trauma using a national data set. J. Urol. 2011, 185, 1316–1320. [Google Scholar] [CrossRef]
- Lopera, J.E.; Suri, R.; Kroma, G.; Gadani, S.; Dolmatch, B. Traumatic occlusion and dissection of the main renal artery: Endovascular treatment. J. Vasc. Interv. Radiol. 2011, 22, 1570–1574. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.A.; Reed RL 2nd Santaniello, J.; Abodeely, A.; Esposito, T.J.; Poulakidas, S.J.; Luchette, F.A. Predictors of the need for nephrectomy after renal trauma. J. Trauma. 2006, 60, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Mendonca, S.J.; Jessica Pan, S.M.; Li, G.; Brandes, S.B. Real-world practice patterns favor minimally invasive methods over Ureteral reconstruction in the initial treatment of severe blunt Ureteral trauma: A national trauma data bank analysis. J. Urol. 2021, 205, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Elawdy, M.M.; Osman, Y.; Awad, B.; El-Mekresh, M.; El-Halwagy, S. Iatrogenic ureteral injuries: A case series analysis with an emphasis on the predictors of late ureteral strictures and unfavorable outcome in different surgical specialties. Int. Urogynecol J. 2021, 32, 3031–3036. [Google Scholar] [CrossRef]
- Janitzky, A.; Borski, J.; Porsch, M.; Wendler, J.J.; Baumunk, D.; Liehr, U.B.; Schostak, M. Langzeitergebnisse zur subkutanen Detour®-Harnleiterprothese bei Ureterobstruktion: Erfahrungen zu Implantation, Nachsorge und Komplikationsmanagement. Urol. A 2012, 51, 1714–1721. [Google Scholar] [CrossRef] [PubMed]
- Matlock, K.A.; Tyroch, A.H.; Kronfol, Z.N.; McLean, S.F.; Pirela-Cruz, M.A. Blunt traumatic bladder rupture: A 10-year perspective. Am. Surg. 2013, 79, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.H.; Esser, M.; Grummet, J.; Atkins, C.; Royce, P.; Hanegbi, U. Lower risk of pelvic metalware infection with operative repair of concurrent bladder rupture. ANZ J. Surg. 2018, 88, 560–564. [Google Scholar] [CrossRef]
- Yao, J.; Chu, L.C.; Patlas, M. Applications of Artificial Intelligence in Acute Abdominal Imaging. Can. Assoc. Radiol. J. 2024, 7, 8465371241250197. [Google Scholar] [CrossRef]
- Shen, X.; Zhou, Y.; Shi, X.; Zhang, S.; Ding, S.; Ni, L.; Dou, X.; Chen, L. The application of deep learning in abdominal trauma diagnosis by CT imaging. World J. Emerg. Surg. 2024, 19, 17. [Google Scholar] [CrossRef] [PubMed]
- Loftus, T.J.; Croft, C.A.; Rosenthal, M.D.; Mohr, A.M.; Efron, P.A.; Moore, F.A.; Upchurch, G.R., Jr.; Smith, R.S. Clinical Impact of a Dedicated Trauma Hybrid Operating Room. J. Am. Coll. Surg. 2021, 232, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Aziz, H.A.; Bugaev, N.; Baltazar, G.; Brown, Z.; Haines, K.; Gupta, S.; Yeung, L.; Posluszny, J.; Como, J.; Freeman, J.; et al. Management of adult renal trauma: A practice management guideline from the eastern association for the surgery of trauma. BMC Surg. 2023, 23, 22. [Google Scholar] [CrossRef] [PubMed]
- Lassola, S.; Cundari, F.; Marini, G.; Corradi, F.; De Rosa, S. Advancements in Trauma-Induced Acute Kidney Injury: Diagnostic and Therapeutic Innovations. Life 2024, 14, 1005. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Chen, J.J.; Cheng, C.T.; Chang, C.H. Does Artificial Intelligence Make Clinical Decision Better? A Review of Artificial Intelligence and Machine Learning in Acute Kidney Injury Prediction. Healthcare 2021, 9, 1662. [Google Scholar] [CrossRef]
AAST-OIS Grade a | Type of Injury | Pattern of Injury |
---|---|---|
1 a | Haematoma and/or contusion | Subcapsular, constant-size haematoma, and/or parenchymal contusion without parenchymal rupture, micro- or macrohaematuria, urological status normal |
2 a | Haematoma | Perirenal haematoma of constant size limited to the renal fascia |
Laceration | Cortical parenchymal rupture ≤1.0 cm in depth without urine extralumination | |
3 | Laceration | Parenchymal rupture >1.0 cm in depth without rupture of the renal pelvic calyx system and without urine extralumination |
Any parenchymal vascular injury (interlobar artery/arcuatae renis) or any active bleeding within the renal fascia | ||
4 | Laceration | Parenchymal tear extending into the renal pelvic calyx system with urine extralumination; a rupture of the renal pelvis and/or complete avulsion of the pyeloureteral junction |
Vascular | Segmental artery or segmental vein injury | |
Active bleeding via renal fascia into the retroperitoneum or peritoneum | ||
Segmental or complete renal infarction due to vascular thrombosis without active bleeding | ||
5 | Laceration | Shattered kidney with loss of recognisable parenchymatous renal anatomy |
Vascular | Rupture of the main renal artery or vein | |
Avulsion of the renal hilum; devascularised kidney with active bleeding |
AAST-OIS Grade a | Type of Injury | Pattern of Injury |
---|---|---|
1 a | Haematoma | Contusion or haematoma without devascularisation and without urine extralumination |
2 a | Laceration | Transection <50% of the circumference, urine extralumination |
3 | Laceration | Transection ≥50% of the circumference, urine extralumination |
4 | Laceration | Complete transection with <2 cm of devascularisation |
5 | Laceration | Complete avulsion with >2 cm of devascularisation, discontinuity/dislocation |
AAST-OIS Grade a | Type of Injury | Pattern of Injury b |
---|---|---|
1 a | Haematoma | Contusion, intramural haematoma (of the bladder wall) |
Laceration | Partial tear in bladder wall thickness, not continuous | |
2 a | Laceration | Extraperitoneal bladder wall rupture <2 cm, extraperitoneal urine extralumination |
3 | Laceration | Extraperitoneal bladder wall rupture ≥2 cm, extraperitoneal urine extralumination |
Intraperitoneal bladder wall rupture <2 cm, intraperitoneal urine extralumination | ||
4 | Laceration | Intraperitoneal bladder wall rupture ≥2 cm, intraperitoneal urine extralumination |
5 | Laceration | Intraperitoneal or extraperitoneal bladder wall rupture extending into the bladder neck or the trigone/ureteral ostium |
AAST-OIS Grade a | Type of Injury | Pattern of Injury (Determined by Retrograde Urethrocystography) |
---|---|---|
1 a | Contusion | Bleeding from the meatus urethrae, without extraluminate |
2 a | Stretch injury | Elongation of the urethra, without extraluminate |
3 | Partial rupture | Extraluminate from the urethral lesion, but with contrast transfer into the urinary bladder |
4 | Complete rupture | Urethral dislocation <2 cm, extraluminate without transfer of CM into the urinary bladder |
5 | Complete rupture | Urethral dislocation ≥2 cm or extension into the prostate, extraluminate without CM transfer into the urinary bladder |
WSES Grade | AAST-OIS Grade a | Haemodynamic Situation |
---|---|---|
1 a | 1–2 | Stable |
2 a | 3 or segmental vascular injury | |
3 | 4–5 or any type of parenchymal lesion with dissection or occlusion of major vessels | |
4 | Any (1–5) | Unstable (short-term stabilisation may be possible) |
Functional Criteria | Stage | Damage Criteria |
---|---|---|
No change or SCr level increase <0.3 mg/dL, and no UO criteria | 1S | Biomarker positive |
Increase in SCr level by ≥0.3 mg/dL for ≤48 h or ≥150% for 7 days and/or UO <5 mL/kg/h for >6 h | 1A | Biomarker negative |
1B | Biomarker positive | |
Increase in SCr level by >200% and/or UO <5 mL/kg/h for >12 h | 2A | Biomarker negative |
2B | Biomarker positive | |
Increase in SCr level by >300% (≥4.0 mg/dL with an acute increase of ≥0.5 mg/dL) and/or UO <0.3 mL/kg/h for >24 h or anuria for >12 hand/or acute KRT | 3A | Biomarker negative |
3B | Biomarker positive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wendler, J.J.; Albert, C.; Cash, H.; Meyer, F.; Pech, M.; Schostak, M.; Mertens, P.R.; Porsch, M. Interdisciplinary Management of Traumatic Injuries to the Kidneys and Urinary Tract Caused by Blunt Abdominopelvic Trauma. J. Clin. Med. 2024, 13, 5765. https://doi.org/10.3390/jcm13195765
Wendler JJ, Albert C, Cash H, Meyer F, Pech M, Schostak M, Mertens PR, Porsch M. Interdisciplinary Management of Traumatic Injuries to the Kidneys and Urinary Tract Caused by Blunt Abdominopelvic Trauma. Journal of Clinical Medicine. 2024; 13(19):5765. https://doi.org/10.3390/jcm13195765
Chicago/Turabian StyleWendler, Johann J., Christian Albert, Hannes Cash, Frank Meyer, Maciej Pech, Martin Schostak, Peter R. Mertens, and Markus Porsch. 2024. "Interdisciplinary Management of Traumatic Injuries to the Kidneys and Urinary Tract Caused by Blunt Abdominopelvic Trauma" Journal of Clinical Medicine 13, no. 19: 5765. https://doi.org/10.3390/jcm13195765
APA StyleWendler, J. J., Albert, C., Cash, H., Meyer, F., Pech, M., Schostak, M., Mertens, P. R., & Porsch, M. (2024). Interdisciplinary Management of Traumatic Injuries to the Kidneys and Urinary Tract Caused by Blunt Abdominopelvic Trauma. Journal of Clinical Medicine, 13(19), 5765. https://doi.org/10.3390/jcm13195765