Enhanced Recovery After Surgery Protocols in One- or Two-Level Posterior Lumbar Fusion: Improving Postoperative Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Outcome Measures
2.3. Statistical Analysis
3. Results
3.1. Demographics
3.2. Primary Outcomes
3.3. Secondary Outcomes
3.4. Perioperative Medication
3.5. Postoperative Outcomes
3.5.1. Hospital Stay and Postoperative Days
3.5.2. Complication and Re-Admission Rates
3.5.3. Fusion Rates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kehlet, H. Multimodal approach to control postoperative pathophysiology and rehabilitation. Br. J. Anaesth. 1997, 78, 606–617. [Google Scholar] [CrossRef] [PubMed]
- Debono, B.; Wainwright, T.W.; Wang, M.Y.; Sigmundsson, F.G.; Yang, M.M.H.; Smid-Nanninga, H.; Bonnal, A.; Le Huec, J.C.; Fawcett, W.J.; Ljungqvist, O.; et al. Consensus statement for perioperative care in lumbar spinal fusion: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Spine J. 2021, 21, 729–752. [Google Scholar] [CrossRef] [PubMed]
- Ljungqvist, O.; Scott, M.; Fearon, K.C. Enhanced Recovery After Surgery: A Review. JAMA Surg. 2017, 152, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Steinhaus, M.; Punyala, A.; Shah, S.; Elysee, J.C.; Lafage, R.; Riviera, T.; Mendez, G.; Ojadi, A.; Tuohy, S.; et al. Enhanced recovery pathway in adult patients undergoing thoracolumbar deformity surgery. Spine J. 2021, 21, 753–764. [Google Scholar] [CrossRef]
- Porche, K.; Yan, S.; Mohamed, B.; Garvan, C.; Samra, R.; Melnick, K.; Vaziri, S.; Seubert, C.; Decker, M.; Polifka, A.; et al. Enhanced recovery after surgery (ERAS) improves return of physiological function in frail patients undergoing one- to two-level TLIFs: An observational retrospective cohort study. Spine J. 2022, 22, 1513–1522. [Google Scholar] [CrossRef]
- Devin, C.J.; McGirt, M.J. Best evidence in multimodal pain management in spine surgery and means of assessing postoperative pain and functional outcomes. J. Clin. Neurosci. 2015, 22, 930–938. [Google Scholar] [CrossRef]
- Gerbershagen, H.J.; Aduckathil, S.; van Wijck, A.J.; Peelen, L.M.; Kalkman, C.J.; Meissner, W. Pain intensity on the first day after surgery: A prospective cohort study comparing 179 surgical procedures. Anesthesiology 2013, 118, 934–944. [Google Scholar] [CrossRef]
- Sethi, R.K.; Pong, R.P.; Leveque, J.C.; Dean, T.C.; Olivar, S.J.; Rupp, S.M. The Seattle Spine Team Approach to Adult Deformity Surgery: A Systems-Based Approach to Perioperative Care and Subsequent Reduction in Perioperative Complication Rates. Spine Deform. 2014, 2, 95–103. [Google Scholar] [CrossRef]
- Carli, F. Physiologic considerations of Enhanced Recovery After Surgery (ERAS) programs: Implications of the stress response. Can. J. Anaesth. 2015, 62, 110–119. [Google Scholar] [CrossRef]
- Mendivil, A.A.; Busch, J.R.; Richards, D.C.; Vittori, H.; Goldstein, B.H. The Impact of an Enhanced Recovery After Surgery Program on Patients Treated for Gynecologic Cancer in the Community Hospital Setting. Int. J. Gynecol. Cancer 2018, 28, 581–585. [Google Scholar] [CrossRef]
- Adamina, M.; Kehlet, H.; Tomlinson, G.A.; Senagore, A.J.; Delaney, C.P. Enhanced recovery pathways optimize health outcomes and resource utilization: A meta-analysis of randomized controlled trials in colorectal surgery. Surgery 2011, 149, 830–840. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, T.W.; Immins, T.; Middleton, R.G. Enhanced recovery after surgery (ERAS) and its applicability for major spine surgery. Best. Pract. Res. Clin. Anaesthesiol. 2016, 30, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Ha, K.Y.; Kim, Y.S.; Kim, K.W.; Rhyu, K.W.; Park, J.B.; Shin, J.H.; Kim, Y.Y.; Lee, J.S.; Park, H.Y.; et al. Lumbar Interbody Fusion and Osteobiologics for Lumbar Fusion. Asian Spine J. 2022, 16, 1022–1033. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.; Marya, S.; Carrasco, R.; Sabou, S.; Leach, J. Comparative Outcome Data Using Different Techniques for Posterior Lumbar Fusion: A Large Single-Center Study. Asian Spine J. 2023, 17, 807–817. [Google Scholar] [CrossRef]
- Thomas, D.A.; Chang, D.; Zhu, R.; Rayaz, H.; Vadivelu, N. Concept of the Ambulatory Pain Physician. Curr. Pain. Headache Rep. 2017, 21, 7. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.H.; Park, J.W.; Lee, H.S. Fusion rates of a morselized local bone graft in polyetheretherketone cages in posterior lumbar interbody fusion by quantitative analysis using consecutive three-dimensional computed tomography scans. Spine J. 2011, 11, 647–653. [Google Scholar] [CrossRef]
- Joshi, G.P.; Kehlet, H. Enhanced Recovery Pathways: Looking into the Future. Anesth. Analg. 2019, 128, 5–7. [Google Scholar] [CrossRef]
- Gan, T.J.; Diemunsch, P.; Habib, A.S.; Kovac, A.; Kranke, P.; Meyer, T.A.; Watcha, M.; Chung, F.; Angus, S.; Apfel, C.C.; et al. Consensus guidelines for the management of postoperative nausea and vomiting. Anesth. Analg. 2014, 118, 85–113. [Google Scholar] [CrossRef] [PubMed]
- Rajan, N.; Joshi, G.P. Management of postoperative nausea and vomiting in adults: Current controversies. Curr. Opin. Anaesthesiol. 2021, 34, 695–702. [Google Scholar] [CrossRef]
- Soffin, E.M.; Waldman, S.A.; Stack, R.J.; Liguori, G.A. An Evidence-Based Approach to the Prescription Opioid Epidemic in Orthopedic Surgery. Anesth. Analg. 2017, 125, 1704–1713. [Google Scholar] [CrossRef]
- Odom-Forren, J.; Rayens, M.K.; Gokun, Y.; Jalota, L.; Radke, O.; Hooper, V.; Wiggins, A.T.; Apfel, C.C. The Relationship of Pain and Nausea in Postoperative Patients for 1 Week After Ambulatory Surgery. Clin. J. Pain. 2015, 31, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Rosén, H.I.; Bergh, I.H.; Odén, A.; Mårtensson, L.B. Patients’ experiences of pain following day surgery—At 48 hours, seven days, and three months. Open Nurs. J. 2011, 5, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Apfel, C.; Jahr, J.R.; Kelly, C.L.; Ang, R.Y.; Oderda, G.M. Effect of i.v. acetaminophen on total hip or knee replacement surgery: A case-matched evaluation of a national patient database. Am. J. Health Syst. Pharm. 2015, 72, 1961–1968. [Google Scholar] [CrossRef]
- American Society of Anesthesiologists Task Force on Acute Pain Management. Practice guidelines for acute pain management in the perioperative setting: An updated report by the American Society of Anesthesiologists Task Force on Acute Pain Management. Anesthesiology 2012, 116, 248–273. [Google Scholar] [CrossRef]
- Chalermkitpanit, P.; Yingsakmongkol, W.; Limthongkul, W.; Tanasansomboon, T.; Pannangpetch, P.; Tangchitcharoen, N.; Singhatanadgige, W. Perioperative Intravenous Nefopam on Pain Management and Ambulation after Open Spine Surgery: A Randomized Double-Blind Controlled Study. Asian Spine J. 2023, 17, 632–638. [Google Scholar] [CrossRef]
- Jeong, Y.B.; Lee, M.S.; Choi, B.M.; Chin, J.H.; Noh, G.J. A Clinical Study to Evaluate the Safety and Efficacy of a Patient-Controlled Analgesia Pump in Post-Surgical Patients. Korean J. Anesthesiol. 2007, 52, 161–165. [Google Scholar] [CrossRef]
- Jin, X.; Xu, Y. Differences in postoperative knee joint function and prognostic quality of life in patients undergoing posterior cruciate ligament reconstruction at different surgical timing under enhanced recovery after surgery. Medicine 2023, 102, e34345. [Google Scholar] [CrossRef]
- Burgess, L.C.; Wainwright, T.W. What Is the Evidence for Early Mobilisation in Elective Spine Surgery? A Narrative Review. Healthcare 2019, 7, 92. [Google Scholar] [CrossRef]
- Epstein, N.E. A review article on the benefits of early mobilization following spinal surgery and other medical/surgical procedures. Surg. Neurol. Int. 2014, 5, S66–S73. [Google Scholar] [CrossRef]
Stage | Pre-ERAS Protocol | ERAS Protocol |
---|---|---|
Pre-operative Management |
|
|
Intraoperative Management |
|
|
Postoperative Management |
|
|
Pre-ERAS (n = 41) | Post-ERAS (n = 47) | p-Value | |
---|---|---|---|
Male | 14 (34.1) | 14 (29.8) | 0.666 |
Age | 65.2 (±11.1) | 67.8 (±8.0) | 0.201 |
Height | 158.67 (±8.06) | 157.52 (±7.80) | 0.501 |
Weight | 63.98 (±12.66) | 62.96 (±10.21) | 0.678 |
BMI | 25.30 (±3.81) | 25.32 (±3.44) | 0.980 |
HTN | 22 (53.7) | 25 (53.2) | 0.966 |
DM | 6 (14.6) | 14 (29.8) | 0.087 |
Heart disease | 2 (4.9) | 4 (8.5) | 0.506 |
Liver disease | 1 (2.4) | 1 (2.1) | 0.353 |
Pulmonary disease | 1 (2.4) | 3 (6.4) | 0.381 |
Cancer | 4 (9.8) | 4 (8.5) | 0.842 |
MDD | 2 (4.9) | 2 (4.3) | 0.890 |
Smoking | 5 (12.2) | 5 (10.6) | 0.678 |
Pre-ERAS | Post-ERAS | p Value | ||
---|---|---|---|---|
NRS Back pain | Preop | 7.20 (±0.22) | 6.63 (±0.20) | 0.056 |
Postop#1D | 3.20 (±0.21) | 2.93 (±0.20) | 0.358 | |
Postop#2D | 2.87 (±0.21) | 2.25 (±0.20) | 0.266 | |
Postop#3D | 2.59 (±0.21) | 2.35 (±0.20) | 0.060 | |
Postop#4D | 2.57 (±0.21) | 2.36 (±0.20) | 0.446 | |
Postop#6M | 2.70 (±0.30) | 2.06 (±0.28) | 0.119 | |
NRS Leg pain | Preop | 6.68 (±0.27) | 6.88 (±0.26) | 0.256 |
Postop#1D | 2.19 (±0.31) | 2.33 (±0.30) | 0.661 | |
Postop#2D | 2.29 (±0.31) | 2.03 (±0.31) | 0.301 | |
Postop#3D | 2.31 (±0.30) | 2.14 (±0.30) | 0.496 | |
Postop#4D | 2.22 (±0.30) | 1.77 (±0.30) | 0.404 | |
Postop#6M | 3.60 (±0.40) * | 2.64 (±0.36) * | 0.002 |
ODI | Pre-Operative | Postoperative 6 m | p-Value |
---|---|---|---|
Pain | 3.25 (±0.775) | 2.38 (±1.746) | 0.084 |
Personal care | 2.00 (±0.632) * | 0.69 (±0.793) * | 0.000 |
Lifting | 3.25 (±1.065) | 3.44 (±1.209) | 0.676 |
Walking | 2.57 (±1.284) * | 1.07 (±1.439) * | 0.016 |
Sitting | 2.50 (±1.095) | 1.69 (±1.352) | 0.055 |
Standing | 3.56 (±1.153) * | 2.06 (±1.526) * | 0.005 |
Sleeping | 2.50 (±1.414) * | 0.63 (±1.025) * | 0.001 |
Social life | 2.94 (±0.854) * | 1.50 (±1.211) * | 0.000 |
Traveling | 3.00 (±1.195) * | 1.07 (±1.223) * | 0.001 |
Sex life | - | - | |
Total | 27.00 (±7.598) * | 14.50 (±7.755) * | 0.000 |
EQ-5D | |||
Mobility | 3.44 (±0.814) * | 1.81 (±0.834) * | 0.000 |
Self-care | 2.19 (±0.750) * | 1.38 (±0.619) * | 0.001 |
Usual activity | 3.19 (±0.911) * | 1.69 (±0.704) * | 0.000 |
Pain discomfort | 3.88 (±0.719) * | 3.00 (±1.265) * | 0.039 |
Anxiety depression | 2.25 (±1.000) * | 1.38 (±0.619) * | 0.001 |
ODI | Pre-Operative | Postoperative 6 m | p-Value |
---|---|---|---|
Pain | 3.35 (±1.115) * | 1.41 (±1.004) * | 0.000 |
Personal care | 2.35 (±1.412) * | 0.47 (±0.624) * | 0.000 |
Lifting | 3.35 (±1.272) | 3.00 (±1.803) | 0.524 |
Walking | 2.59 (±1.417) * | 1.47 (±1.663) * | 0.025 |
Sitting | 2.65 (±1.057) * | 1.29 (±1.404) * | 0.001 |
Standing | 3.35 (±1.367) * | 1.29 (±1.448) * | 0.000 |
Sleeping | 1.65 (±1.169) * | 0.76 (±0.903) * | 0.020 |
Social life | 2.82 (±1.185) * | 1.41 (±1.661) * | 0.008 |
Traveling | 2.35 (±1.539) | 2.12 (±2.118) | 0.660 |
Sex life | 4.00 (±0.000) | 4.00 (±0.000) | 1.000 |
Total | 27.33 (±7.898) * | 15.27 (±9.098) * | 0.003 |
EQ-5D | |||
Mobility | 3.44 (±1.094) * | 1.94 (±0.854) * | 0.000 |
Self-care | 2.38 (±1.025) * | 1.19 (±0.403) * | 0.001 |
Usual activity | 2.63 (±0.806) * | 1.75 (±0.683) * | 0.002 |
Pain discomfort | 3.75 (±0.931) * | 2.13 (±0.719) * | 0.000 |
Anxiety depression | 2.44 (±1.153) * | 1.75 (±1.000) * | 0.036 |
Antiemetic Drug | Pre-ERAS | Post-ERAS | p-Value | ||
---|---|---|---|---|---|
Patient Number | Ampule | Patient Number | Ampule | ||
1. Ramosetron | 41 | 2.32 (±0.82) | 8 | 1.75 (±0.71) | 0.074 |
2. Palonosetron | 10 | 1.50 (±0.71) | 37 | 1.14 (±0.48) | 0.151 |
3. Macperan | 2 | 1.00 (±0.00) | 2 | 2.50 (±0.71) | 0.095 |
4. Onseran | 0 | . | 1 | 1.00 (±0.00) | |
Total | 41 | 2.73 (±1.34) * | 44 | 1.41 (±1.15) * | <0.001 |
Opioid | Pre-ERAS | Post-ERAS | p-value | ||
Patient number | Ampule | Patient number | Ampule | ||
Hydromorphone and Pethidine | 23 | 3.13 * (±2.32) | 14 | 1.64 * (±0.93) | 0.005 |
Pre-ERAS | Post-ERAS | p-Value | |
---|---|---|---|
HD | 9.49 (±1.33) | 9.43 (±1.16) | 0.814 |
POD | 5.59 (±1.07) | 5.23 (±0.87) | 0.098 |
Re-admission rate | 7.3% | 4.3% | 0.549 |
Complication rate | 19.5% * | 4.3% * | 0.024 |
Fusion rate | 91.7% | 94.7% | 0.607 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.U.; Kee, T.-H.; Lee, D.-H.; Hwang, C.J.; Park, S.; Cho, J.H. Enhanced Recovery After Surgery Protocols in One- or Two-Level Posterior Lumbar Fusion: Improving Postoperative Outcomes. J. Clin. Med. 2024, 13, 6285. https://doi.org/10.3390/jcm13206285
Choi JU, Kee T-H, Lee D-H, Hwang CJ, Park S, Cho JH. Enhanced Recovery After Surgery Protocols in One- or Two-Level Posterior Lumbar Fusion: Improving Postoperative Outcomes. Journal of Clinical Medicine. 2024; 13(20):6285. https://doi.org/10.3390/jcm13206285
Chicago/Turabian StyleChoi, Ji Uk, Tae-Hong Kee, Dong-Ho Lee, Chang Ju Hwang, Sehan Park, and Jae Hwan Cho. 2024. "Enhanced Recovery After Surgery Protocols in One- or Two-Level Posterior Lumbar Fusion: Improving Postoperative Outcomes" Journal of Clinical Medicine 13, no. 20: 6285. https://doi.org/10.3390/jcm13206285
APA StyleChoi, J. U., Kee, T. -H., Lee, D. -H., Hwang, C. J., Park, S., & Cho, J. H. (2024). Enhanced Recovery After Surgery Protocols in One- or Two-Level Posterior Lumbar Fusion: Improving Postoperative Outcomes. Journal of Clinical Medicine, 13(20), 6285. https://doi.org/10.3390/jcm13206285