Early Postoperative Outcomes of the Direct Superior Approach versus the Posterior Approach in Total Hip Arthroplasty: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.2.1. Inclusion Criteria
- Participants: Patients who underwent primary THA.
- Interventions: The intervention group (DSA group) received primary THA using the DSA.
- Comparisons: The control group (PA group) underwent primary THA using the conventional PA.
- Outcomes: Assessed outcomes included peri-operative parameters (operating time, estimated perioperative blood loss, transfusion rate, length of stay (LOS)), radiologic outcomes (cup inclination, femoral stem alignment, leg length discrepancy (LLD)), and functional outcomes (Oxford hip score (OHS), Harris hip score (HHS), EQ-5D score, visual analog scale (VAS) for pain).
- Follow-up: Studies required a minimum clinical follow-up of 3 months.
- Study design: Both randomized controlled trials (RCTs) and comparative studies were eligible.
2.2.2. Exclusion Criteria
2.3. Study Screening, Data Collection, Quality Assessment and Certainty of Evidence
2.4. Statistical Analysis
3. Results
3.1. Search Results
3.2. Study Characteristics
3.3. Quality Assessment
3.4. Meta-Analysis Results
3.4.1. Perioperative Parameters
3.4.2. Radiological and Functional Outcomes and Complications
3.4.3. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferguson, R.J.; Palmer, A.J.; Taylor, A.; Porter, M.L.; Malchau, H.; Glyn-Jones, S. Hip replacement. Lancet 2018, 392, 1662–1671. [Google Scholar] [CrossRef] [PubMed]
- Learmonth, I.D.; Young, C.; Rorabeck, C. The operation of the century: Total hip replacement. Lancet 2007, 370, 1508–1519. [Google Scholar] [CrossRef] [PubMed]
- Maempel, J.F.; Clement, N.D.; Ballantyne, J.A.; Dunstan, E. Enhanced recovery programmes after total hip arthroplasty can result in reduced length of hospital stay without compromising functional outcome. Bone Jt. J. 2016, 98, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Malek, I.A.; Royce, G.; Bhatti, S.U.; Whittaker, J.P.; Phillips, S.P.; Wilson, I.R.; Wootton, J.R.; Starks, I. A comparison between the direct anterior and posterior approaches for total hip arthroplasty: The role of an ‘Enhanced Recovery’ pathway. Bone Jt. J. 2016, 98, 754–760. [Google Scholar] [CrossRef] [PubMed]
- Huerfano, E.; Bautista, M.; Huerfano, M.; Nossa, J.M. Use of Surgical Approach Is Not Associated with Instability after Primary Total Hip Arthroplasty: A Meta-analysis Comparing Direct Anterior and Posterolateral Approaches. J. Am. Acad. Orthop. Surg. 2021, 29, e1126–e1140. [Google Scholar] [CrossRef]
- Bergin, P.F.; Doppelt, J.D.; Kephart, C.J.; Benke, M.T.; Graeter, J.H.; Holmes, A.S.; Haleem-Smith, H.; Tuan, R.S.; Unger, A.S. Comparison of minimally invasive direct anterior versus posterior total hip arthroplasty based on inflammation and muscle damage markers. J. Bone Jt. Surg. Am. 2011, 93, 1392–1398. [Google Scholar] [CrossRef]
- Hoskins, W.; Bingham, R.; Lorimer, M.; Hatton, A.; de Steiger, R.N. Early Rate of Revision of Total Hip Arthroplasty Related to Surgical Approach: An Analysis of 122,345 Primary Total Hip Arthroplasties. J. Bone Jt. Surg. Am. 2020, 102, 1874–1882. [Google Scholar] [CrossRef]
- Taunton, M.J.; Trousdale, R.T.; Sierra, R.J.; Sierra, R.J.; Kaufman, K.; Pagnano, M.W. John Charnley Award: Randomized Clinical Trial of Direct Anterior and Miniposterior Approach THA: Which Provides Better Functional Recovery? Clin. Orthop. Relat. Res. 2018, 476, 216–229. [Google Scholar] [CrossRef]
- Zijlstra, W.P.; De Hartog, B.; Van Steenbergen, L.N.; Scheurs, B.W.; Nelissen, R.G.H.H. Effect of femoral head size and surgical approach on risk of revision for dislocation after total hip arthroplasty. Acta Orthop. 2017, 88, 395–401. [Google Scholar] [CrossRef]
- De Steiger, R.N.; Lorimer, M.; Solomon, M. What is the learning curve for the anterior approach for total hip arthroplasty? Clin. Orthop. Relat. Res. 2015, 473, 3860–3866. [Google Scholar] [CrossRef]
- Den Hartog, Y.M.; Mathijssen, N.M.; Vehmeijer, S.B. The less invasive anterior approach for total hip arthroplasty: A comparison to other approaches and an evaluation of the learning curve—A systematic review. Hip. Int. 2016, 26, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.M.; Ten Have, B.; Rykov, K.; Van Steenbergen, L.; Putter, H.; Rutgers, M.; Vos, S.; Van Steijnen, B.; Poolman, R.W.; Vehmeijer, S.B.W.; et al. The learning curve of the direct anterior approach is 100 cases: An analysis based on 15,875 total hip arthroplasties in the Dutch Arthroplasty Register. Acta Orthop. 2022, 93, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Barrett, A.A.; Ezzibdeh, R.M.; Horst, P.K.; Roger, D.J.; Amanatullah, D.F. Direct Superior Approach to the Hip for Total Hip Arthroplasty. JBJS Essent. Surg. Tech. 2019, 9, e17. [Google Scholar] [CrossRef]
- Roger, D.J.; Hill, D. Minimally invasive total hip arthroplasty using a transpiriformis approach: A preliminary report. Clin. Orthop. Relat. Res. 2012, 470, 2227–2234. [Google Scholar] [CrossRef] [PubMed]
- Somford, M.P.; Hoornenborg, D.; Wiegerinck, J.I.; Bolder, S.B.; Schreurs, B.W. Eponymous hip joint approaches. Arch. Orthop. Trauma Surg. 2016, 136, 1007–1014. [Google Scholar] [CrossRef]
- Duijnisveld, B.J.; van den Hout, J.; Wagenmakers, R.; Koenraadt, K.L.M.; Bolder, S.B.T. No Learning Curve of the Direct Superior Approach in Total Hip Arthroplasty. Orthop. Surg. 2020, 12, 852–860. [Google Scholar] [CrossRef]
- Ezzibdeh, R.M.; Barrett, A.A.; Arora, P.; Amanatullah, D.F. Learning Curve for the Direct Superior Approach to Total Hip Arthroplasty. Orthopedics 2020, 43, e237–e243. [Google Scholar] [CrossRef]
- Siljander, M.P.; Whaley, J.D.; Koueiter, D.M.; Alsaleh, M.; Karadsheh, M.S. Length of Stay, Discharge Disposition, and 90-Day Complications and Revisions Following Primary Total Hip Arthroplasty: A Comparison of the Direct Anterior, Posterolateral, and Direct Superior Approaches. J. Arthroplast. 2020, 35, 1658–1661. [Google Scholar] [CrossRef]
- Ulivi, M.; Orlandini, L.; Vitale, J.A.; Meroni, V.; Prandoni, L.; Mangiavini, L.; Rossi, N.; Peretti, G.M. Direct superior approach versus posterolateral approach in total hip arthroplasty: A randomized controlled trial on early outcomes on gait, risk of fall, clinical and self-reported measurements. Acta Orthop. 2021, 92, 274–279. [Google Scholar] [CrossRef]
- Leonard, H.J.; Ohly, N.E. Direct superior approach for total hip arthroplasty. Bone Jt. J. 2021, 103, 500–506. [Google Scholar] [CrossRef]
- Nam, D.; Meyer, Z.; Rames, R.D.; Nunley, R.M.; Barrack, R.L.; Roger, D.J. Is the Direct Superior, Iliotibial Band-Sparing Approach Associated With Decreased Pain After Total Hip Arthroplasty? J. Arthroplast. 2017, 32, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, F.; Yang, X.; Fan, H.; Cheng, Q.; Guo, H. The efficacy and safety of direct superior approach (DSA) for total hip arthroplasty: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2023, 18, 764. [Google Scholar] [CrossRef] [PubMed]
- Kenanidis, E.; Paparoidamis, G.; Pegios, V.F.; Anagnostis, P.; Potoupnis, M.; Tsiridis, E. Earlier functional recovery and discharge from hospital for THA patients operated on via direct superior compared to standard posterior approach: A retrospective frequency-matched case-control study. Hip. Int. 2023, 33, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Van Dooren, B.; Peters, R.M.; van Steenbergen, L.N.; Post, R.A.J.; Ettema, H.B.; Bolder, S.B.T.; Schreurs, B.W.; Zijlstra, W.P. No clinically relevant difference in patient-reported outcomes between the direct superior approach and the posterolateral or anterior approach for primary total hip arthroplasty: Analysis of 37,976 primary hip arthroplasties in the Dutch Arthroplasty Registry. Acta Orthop. 2023, 94, 543–549. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Morrison, A.; Polisena, J.; Husereau, D.; Moulton, K.; Clark, M.; Fiander, M.; Mierzwinski-Urban, M.; Clifford, T.; Hutton, B.; Rabb, D. The effect of English-language restriction on systematic review-based meta-analyses: A systematic review of empirical studies. Int. J. Technol. Assess Health Care 2012, 28, 138–144. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernan, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savovic, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef]
- Cumpston, M.; Li, T.; Page, M.J.; Chandler, J.; Welch, V.A.; Higgins, J.P.; Thomas, J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst. Rev. 2019, 10, ED000142. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- LeRoy, T.E.; Hayden, B.L.; Desmarais, J.; Menendez, M.E.; Ward, D. Early Outcome Comparison of the Posterior Approach and the Superior Approach for Primary Total Hip Arthroplasty. Arthroplast. Today 2020, 6, 508–512. [Google Scholar] [CrossRef]
- Xiao, C.; Gao, Z.; Zhang, S.; Long, N.; Yao, K.; Cai, P.; He, F.; Liu, L.; Jiang, Y. Comparative prospective randomized study of minimally invasive transpiriformis approach versus conventional posterolateral approach in total hip arthroplasty as measured by biology markers. Int. Orthop. 2021, 45, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Sloan, M.; Premkumar, A.; Sheth, N.P. Projected Volume of Primary Total Joint Arthroplasty in the U.S., 2014 to 2030. J. Bone Jt. Surg. Am. 2018, 100, 1455–1460. [Google Scholar] [CrossRef] [PubMed]
- Molloy, I.B.; Martin, B.I.; Moschetti, W.E.; Jevsevar, D.S. Effects of the Length of Stay on the Cost of Total Knee and Total Hip Arthroplasty from 2002 to 2013. J. Bone Jt. Surg. Am. 2017, 99, 402–407. [Google Scholar] [CrossRef]
- Bert, J.M.; Hooper, J.; Moen, S. Outpatient Total Joint Arthroplasty. Curr. Rev. Musculoskelet. Med. 2017, 10, 567–574. [Google Scholar] [CrossRef]
- Rozell, J.C.; Ast, M.P.; Jiranek, W.A.; Kim, R.H.; Della Valle, C.J. Outpatient Total Joint Arthroplasty: The New Reality. J. Arthroplast. 2021, 36, S33–S39. [Google Scholar] [CrossRef]
- Berstock, J.R.; Blom, A.W.; Beswick, A.D. A systematic review and meta-analysis of the standard versus mini-incision posterior approach to total hip arthroplasty. J. Arthroplast. 2014, 29, 1970–1982. [Google Scholar] [CrossRef]
- Lawson, K.A.; Ayala, A.E.; Larkin, K.; Seidel, M.J. Anterior Percutaneous-Assisted Total Hip Arthroplasty: Surgical Technique and Early Outcomes. Arthroplast. Today 2020, 6, 716–720. [Google Scholar] [CrossRef]
- Purcell, R.L.; Parks, N.L.; Cody, J.P.; Hamilton, W.G. Comparison of Wound Complications and Deep Infections With Direct Anterior and Posterior Approaches in Obese Hip Arthroplasty Patients. J. Arthroplast. 2018, 33, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Amanatullah, D.F.; Masini, M.A.; Roger, D.J.; Pagnano, M.W. Greater inadvertent muscle damage in direct anterior approach when compared with the direct superior approach for total hip arthroplasty. Bone Jt. J. 2016, 98, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Van Dooren, B.; Peters, R.M.; Ettema, H.B.; Schreurs, B.W.; Van Steenbergen, L.N.; Bolder, S.B.T.; Zijlstra, W.P. Revision risk by using the direct superior approach (DSA) for total hip arthroplasty compared with postero-lateral approach: Early nationwide results from the Dutch Arthroplasty Register (LROI). Acta Orthop. 2023, 94, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Shrier, I.; Boivin, J.F.; Steele, R.J.; Platt, R.W.; Furlan, A.; Kakuma, R.; Brophy, J.; Rossignol, M. Should meta-analyses of interventions include observational studies in addition to randomized controlled trials? A critical examination of underlying principles. Am. J. Epidemiol. 2007, 166, 1203–1209. [Google Scholar] [CrossRef]
First Author (Year) | Study Design | Country | Level of Evidence | Sample Size (n) | Mean Age (Years) | Male n (%) | BMI (kg/m2) | Follow Up | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DSA | PA | DSA | PA | DSA | PA | DSA | PA | DSA | PA | ||||
Nam et al. (2017) [21] | Prospective comparative study | USA | II | 42 | 196 | 63.9 | 49.9 | NR | NR | NR | NR | 12 months | |
Duijnisveld et al. (2020) [16] | Prospective comparative study | Netherlands | II | 52 | 52 | 69 | 69 | 24 (46) | 18 (35) | 25 | 25 | 12 months | |
Ezzibdeh et al. (2020) [17] | Retrospective comparative study | USA | III | 20 | 20 | 51 | 64 | 10 (50) | 13 (65) | 26 | 29 | Mean 3.1 months | Mean 3.0 months |
LeRoy et al. (2020) [33] | Retrospective comparative study | USA | III | 403 | 273 | 63.4 | 63.4 | 190 (47.1) | 138 (50.5) | 28.1 | 31.6 | 12 months | |
Siljander et al. (2020) [18] | Retrospective comparative study | USA | III | 333 | 3162 | 62 | 64 | 154 (46.2) | 1363 (43.1) | 28.8 | 30.2 | 3 months | |
Leonard et al. (2021) [20] | Retrospective comparative study | UK | III | 100 | 100 | 68 | 68.1 | 61 (61) | 61 (61) | 28.0 | 28.9 | 12 months | |
Ulivi et al. (2021) [19] | Randomized controlled trial | Italy | II | 22 | 23 | 74 | 72 | 7 (31.8) | 10 (43.5) | 23.1 | 23.8 | 6 months | |
Xiao et al. (2021) [34] | Randomized controlled trial | China | II | 49 | 57 | 71.1 | 73.9 | 16 (32.7) | 26 (45.6) | 26.7 | 26.4 | 3 months | |
Kenanidis et al. (2023) [23] | Retrospective comparative study | Greece | III | 100 | 100 | 65.4 | 65.5 | 42 (42) | 37 (37) | 28.4 | 27.9 | 12 months | |
Van Dooren et al. (2023) [24] | Retrospective comparative study | Netherlands | III | 343 | 22,616 | <60; 57 (17%) 60–74; 199 (58%) ≥75; 87 (25%) | <60; 3277 (15%) 60–74; 12,973 (57%) ≥75; 6361 (28%) | 120 (35) | 8655 (38) | <18.5; 3 (1%) 18.5–25; 155 (45%) 25–30; 131 (38%) 30–40; 53 (16%) >40; 1 (0.3%) | <18.5; 122 (1%) 18.5–25; 6859 (30%) 25–30; 9811 (44%) 30–40; 5486 (24%) >40; 277 (1%) | 12 months |
OR or SMD | LL 95%CI | UL 95%CI | p Value | Heterogeneity (%) | Analysis Model | Egger’s Test (p Value) | Grading of Recommendation Assessment, Development, and Evaluation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of Studies | Study Design | Risk of Bias | Inconsist-ency | Indirect- ness | Impreci-sion | Other Consideration | Certainty of Evidence with Explanations for Downgrading of Evidence | ||||||||
Operating time | −0.1 | −0.62 | 0.42 | 0.70 | 95 | Random | 0.72 | 7 | RCTs and Non-RCTs | Not serious | Serious a | Not serious | Not serious | None | Low a |
Estimated perioperative blood loss | −0.26 | −0.43 | −0.09 | <0.01 | 43 | Fixed | 0.22 | 4 | RCTs and Non-RCTs | Not serious | Not serious | Not serious | Not serious | None | Moderate |
Hgb Drop | −0.08 | −0.35 | 0.19 | 0.55 | 0 | Fixed | NA | 2 | RCTs and Non-RCTs | Not serious | Not serious | Not serious | Serious b | None | Low b |
Transfusion rate | 0.59 | 0.36 | 0.94 | 0.03 | 0 | Fixed | 0.63 | 3 | Non-RCTs | Not serious | Not serious | Not serious | Not serious | None | Moderate |
Length of stay | −0.59 | −0.77 | −0.41 | <0.01 | 69 | Random | 0.23 | 6 | Non-RCTs | Not serious | Serious c | Not serious | Not serious | None | Low c |
Discharge to home | 2.32 | 1.75 | 3.07 | <0.01 | 15 | Fixed | 0.44 | 5 | Non-RCTs | Not serious | Not serious | Not serious | Not serious | None | Moderate |
Cup inclination | −0.32 | −0.65 | 0.01 | 0.06 | 43 | Fixed | NA | 2 | Non-RCTs | Not serious | Not serious | Not serious | Serious d | None | Low d |
Femoral stem alignment | 0.06 | −0.17 | 0.28 | 0.61 | 0 | Fixed | NA | 2 | Non-RCTs | Not serious | Not serious | Not serious | Serious e | None | Low e |
Leg length discrepancy | 0.29 | 0.07 | 0.52 | 0.01 | 0 | Fixed | NA | 2 | Non-RCTs | Not serious | Not serious | Not serious | Serious f | None | Low f |
Incision length | −2.75 | −3.21 | −2.30 | <0.01 | 0 | Random | NA | 2 | RCTs and Non-RCTs | Not serious | Not serious | Not serious | Serious g | None | Low g |
EQ–5D score at 3 months | 0.01 | −0.09 | 0.11 | 0.88 | 0 | Fixed | NA | 2 | Non-RCTs | Not serious | Not serious | Not serious | Serious h | None | Low h |
EQ–5D score at 12 months | 0.00 | −0.10 | 0.11 | 0.93 | 0 | Fixed | NA | 2 | Non-RCTs | Not serious | Not serious | Not serious | Serious i | None | Low i |
HHS at 1 month | 0.77 | 0.24 | 1.30 | <0.01 | 79 | Random | NA | 2 | RCTs and Non-RCTs | Not serious | Serious j | Not serious | Serious k | None | Low j,k |
HHS at 3 months | 0.17 | −0.02 | 0.36 | 0.07 | 0 | Fixed | 0.10 | 4 | RCTs and Non-RCTs | Not serious | Not serious | Not serious | Not serious | None | Moderate |
HHS at 12 months | −0.09 | −0.31 | 0.14 | 0.45 | 0 | Fixed | NA | 2 | Non-RCTs | Not serious | Not serious | Not serious | Serious l | None | Low l |
OHS at 3 months | 0.01 | −0.09 | 0.10 | 0.90 | 0 | Fixed | 0.70 | 3 | Non-RCTs | Not serious | Not serious | Not serious | Not serious | None | Moderate |
OHS at 12 months | 0.01 | −0.08 | 0.11 | 0.78 | 0 | Fixed | 0.49 | 3 | Non-RCTs | Not serious | Not serious | Not serious | Not serious | None | Moderate |
VAS during activity at 3 months | −0.01 | −0.11 | 0.09 | 0.83 | 0 | Fixed | NA | 2 | Non-RCTs | Not serious | Not serious | Not serious | Serious m | None | Low m |
VAS during rest at 3 months | 0.01 | −0.10 | 0.11 | 0.89 | 42 | Fixed | NA | 2 | Non-RCTs | Not serious | Not serious | Not serious | Serious n | None | Low n |
First Author (Year) | Complications | |
---|---|---|
DSA | PA | |
Nam et al. (2017) [21] | Patients were excluded if they had a history of postoperative infection, fracture, dislocation, or revisional surgery. | |
Duijnisveld et al. (2020) [16] | Two patients with postoperative Vancouver B2 periprosthetic femoral fractures requiring femoral stem revision occurred. One occurred after a traffic accident, and the other was regarded as surgery related because of no adequate trauma at 3 weeks follow up. No infection and thromboembolic events were observed. | One postoperative Vancouver B2 periprosthetic femoral fracture requiring femoral stem revision occurred without an adequate trauma 4 weeks postoperatively. Two dislocations, with one patient who received revision to a longer femoral head, and the other who received a closed reduction. No infection or thromboembolic events were observed. One ischial neuropathy occurred. |
Ezzibdeh et al. (2020) [17] | No dislocation, periprosthetic fracture, periprosthetic joint infection, or other postoperative surgical complications were observed. | No dislocation, periprosthetic fracture, periprosthetic joint infection, or other postoperative surgical complications were observed. |
LeRoy et al. (2020) [33] | No dislocations, wound infections, or neuropraxias were observed during follow-up. | No dislocations, wound infections, or neuropraxias were observed during follow-up. |
Siljander et al. (2020) [18] | Readmission 4.5% ED visit 5.1% Intraoperative fracture 0.9% Postoperative fracture 1.2% Dislocation 0.6% DVT/PE 0.6% No periprosthetic joint infection | Readmission 4.9% ED visit 6.8% Intraoperative fracture 0.6% Postoperative fracture 0.6% Dislocation 0.8% DVT/PE 0.7% Periprosthetic joint infection 0.3% |
Leonard et al. (2021) [20] | No intraoperative complications were observed. One postoperative Vancouver B2 periprosthetic femoral fracture requiring femoral stem revision occurred due to a syncopal episode. | No intraoperative complications were observed. |
Ulivi et al. (2021) [19] | One periprosthetic fracture and two anterior dislocations due to falls. No other adverse events were observed. | One ischemic stroke occurred. No other adverse events were observed. |
Xiao et al. (2021) [34] | NR | NR |
Kenanidis et al. (2023) [23] | One dislocation requiring a closed reduction occurred 3 weeks postoperatively. One superficial wound infection occurred. No periprosthetic joint infections, sciatic nerve palsies, intraoperative fractures, or thromboembolic events were observed. | One superficial wound infection occurred. No periprosthetic joint infections, sciatic nerve palsies, intraoperative fractures, or thromboembolic events were observed. |
Van Dooren et al. (2023) [24] | NR | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, K.-H.; Kim, J.-U.; Jang, I.-T. Early Postoperative Outcomes of the Direct Superior Approach versus the Posterior Approach in Total Hip Arthroplasty: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 6291. https://doi.org/10.3390/jcm13216291
Shin K-H, Kim J-U, Jang I-T. Early Postoperative Outcomes of the Direct Superior Approach versus the Posterior Approach in Total Hip Arthroplasty: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2024; 13(21):6291. https://doi.org/10.3390/jcm13216291
Chicago/Turabian StyleShin, Kyun-Ho, Jin-Uk Kim, and Il-Tae Jang. 2024. "Early Postoperative Outcomes of the Direct Superior Approach versus the Posterior Approach in Total Hip Arthroplasty: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 13, no. 21: 6291. https://doi.org/10.3390/jcm13216291
APA StyleShin, K.-H., Kim, J.-U., & Jang, I.-T. (2024). Early Postoperative Outcomes of the Direct Superior Approach versus the Posterior Approach in Total Hip Arthroplasty: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 13(21), 6291. https://doi.org/10.3390/jcm13216291