The Clinical Utility of Pulmonary Function Tests in the Diagnosis and Characterization of Central Airway Obstruction: A Narrative Review
Abstract
:1. Introduction
2. Clinical Presentation and Diagnostic Workup of Patients with CAO
- Population: Patients with suspected central airway obstruction
- Intervention: PFTS, including spirometry and flow-volume curves, oscillometry and plethysmography
- Outcome: To identify the specificity and sensitivity of PFTs in characterizing the severity, and therefore the need of intervention, and location of airway obstruction
3. Overview of Terminology and Measurements of Pulmonary Function Tests in Patients with CAO
3.1. Spirometry—Quantitative Criteria
- FEF50%/FIF50%: ratio of the flow at the mid-point of the forced expiratory maneuver (FEF 50%) to the flow at the mid-point of the forced inspiratory maneuver (FIF 50%) [also denoted as MEF50%/MIF50%];
- FEV1/PEF: the ratio of forced expiratory volume in the first second (FEV1) to the peak expiratory flow (PEF) [also called Empey index];
- FEV1/PEFx100: ratio of forced expiratory volume in the first second (FEV1) to the peak expiratory flow (PEF) multiplied by 100 [also called the Expiratory Disproportional Index, a refined version of the Empey index];
- PEF: peak expiratory flow;
- PIF: peak inspiratory flow;
- FIF50%: flow at the mid-point of the forced inspiratory maneuver;
- FEV1/FEV0.5: ratio of forced expiratory volume in the first second (FEV1) to the forced expiratory effort in 0.5 s;
- MVV/FEV1: ratio of the maximum voluntary ventilation to the forced expiratory volume in the first second (FEV1);
- SVC—FVC: difference between slow vital capacity and forced vital capacity.
3.2. Spirometry—Qualitative Criteria
- Inspiratory curve truncation or flattening [plateau];
- Expiratory curve truncation or flattening [plateau];
- Inspiratory and expiratory curve truncation or flattening [plateau];
- Inspiratory or/and expiratory biphasic phase;
- Inspiratory or/and expiratory oscillations [saw-tooth pattern].
3.3. Body Box Plethysmography
- Raw: airway resistance,
- sGaw: specific airway conductance.
3.4. Volume-Pressure Curve and Compliance
3.5. Oscillometry
- Rrs: resistance of the respiratory system [measurements at 5 and 20 Hz];
- Xrs: reactance of the respiratory system [measurements at 5 Hz];
- Zrs: impedance of the respiratory system;
- Rf: resonance frequency [or Fres];
- ALX: low-frequency reactance area.
4. Relevant Clinical Questions
- The level of the stenosis [intrathoracic or extrathoracic];
- The wall region involved, when the trachea or main airways are investigated [membranous/posterior wall vs. cartilaginous wall];
- The pattern of the airway caliber changes [fixed or variable stenosis];
- The severity of the stenosis [usually expressed in percentages of the normal diameter of the airway];
- The improvement of the stenosis after an intervention;
- The coexistence of central and peripheral airway obstruction.
5. An Overview of the Sensitivity and Specificity of PFTs of the Spirometric Findings
6. Spirometric Quantitative Criteria—FEF50%/FIF50%:
- 0.85–1 can be indicative of fixed airway obstruction [intra or extra thoracic];
- ≥1 indicates extrathoracic obstruction;
- ≥2.2 is in keeping with variable extrathoracic obstruction;
- 0.32 demonstrates variable intrathoracic obstruction.
7. Spirometric Quantitative Criteria—Empey Index and Expiratory Disproportional Index [EDI]
8. Spirometric Quantitative Criteria—PIF and PEF
9. Spirometric Quantitative Criteria—Other Measurements
10. Spirometric Qualitative Criteria
- -
- Plateau of the curve of the forced inspiratory flow, with or without forced expiratory plateau, suggesting a variable central or upper extrathoracic obstruction;
- -
- Plateau of the curve of the forced expiratory flow, along with lack of forced inspiratory plateau, suggesting a variable intrathoracic obstruction;
- -
- Plateau, at a similar flow in both the inspiratory and expiratory phase, suggesting a fixed central or upper airway obstruction;
- -
- Flow oscillations [saw-tooth pattern], during either the inspiratory or expiratory phase, probably representing a mechanical instability of the wall, provided that the maneuver has appropriately been performed.
11. The Role of Body Box Plethysmography
12. Volume-Pressure Curves and Compliance
13. Oscillometry
14. Answering the Key Clinical Questions and Limitations
15. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Murgu, S.D.; Egressy, K.; Laxmanan, B.; Doblare, G.; Ortiz-Comino, R.; Hogarth, D.K. Central Airway Obstruction: Benign Strictures, Tracheobronchomalacia, and Malignancy-related Obstruction. Chest 2016, 150, 426–441. [Google Scholar] [CrossRef] [PubMed]
- Guedes, F.; Branquinho, M.V.; Sousa, A.C.; Alvites, R.D.; Bugalho, A.; Maurício, A.C. Central airway obstruction: Is it time to move forward? BMC Pulm. Med. 2022, 22, 68. [Google Scholar] [CrossRef] [PubMed]
- Handa, H.; Huang, J.; Murgu, S.D.; Mineshita, M.; Kurimoto, N.; Colt, H.G.; Miyazawa, T. Assessment of central airway obstruction using impulse oscillometry before and after interventional bronchoscopy. Respir. Care 2014, 59, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Daneshvar, C.; Falconer, W.E.; Ahmed, M.; Sibly, A.; Hindle, M.; Nicholson, T.W.; Aldik, G.; A Telisinghe, L.; Riordan, R.D.; Marchbank, A.; et al. Prevalence and outcome of central airway obstruction in patients with lung cancer. BMJ Open Respir. Res. 2019, 6, e000429. [Google Scholar] [CrossRef]
- Marchioni, A.; Lasagni, A.; Busca, A.; Cavazza, A.; Agostini, L.; Migaldi, M.; Corradini, P.; Rossi, G. Endobronchial metastasis: An epidemiologic and clinicopathologic study of 174 consecutive cases. Lung Cancer 2014, 84, 222–228. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, T.; Yin, X.; Zhao, J.; Li, X.; Zhou, Y. Update on the diagnosis and treatment of tracheal and bronchial injury. J. Thorac. Dis. 2017, 9, E50–E56. [Google Scholar] [CrossRef]
- Mehta, P.A.S.G. Congenital Pulmonary Airway Malformation; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Wallis, C.; Alexopoulou, E.; Antón-Pacheco, J.L.; Bhatt, J.M.; Bush, A.; Chang, A.B.; Charatsi, A.-M.; Coleman, C.; Depiazzi, J.; Douros, K.; et al. ERS statement on tracheomalacia and bronchomalacia in children. Eur. Respir. J. 2019, 54, 1900382. [Google Scholar] [CrossRef]
- Ernst, A.; Feller-Kopman, D.; Becker, H.D.; Mehta, A.C. Central airway obstruction. Am. J. Respir. Crit. Care Med. 2004, 169, 1278–1297. [Google Scholar] [CrossRef]
- Barros Casas, D.; Fernández-Bussy, S.; Folch, E.; Flandes Aldeyturriaga, J.; Majid, A. Non-malignant central airway obstruction. Arch. Bronconeumol. 2014, 50, 345–354. [Google Scholar] [CrossRef]
- Nouraei, S.A.; Ghufoor, K.; Patel, A.; Ferguson, T.; Howard, D.J.; Sandhu, G.S. Outcome of endoscopic treatment of adult postintubation tracheal stenosis. Laryngoscope 2007, 117, 1073–1079. [Google Scholar] [CrossRef]
- Sherani, K.; Vakil, A.; Dodhia, C.; Fein, A. Malignant tracheal tumors: A review of current diagnostic and management strategies. Curr. Opin. Pulm. Med. 2015, 21, 322–326. [Google Scholar] [CrossRef]
- Grippi, M.A.; Elias, J.A.; Fishman, J.A.; Kotloff, R.M.; Pack, A.I.; Senior, R.M.; Siegel, M.D. Fishman’s Pulmonary Diseases and Disorders, 5e; McGraw-Hill Education: New York, NY, USA, 2015. [Google Scholar]
- Harris, K.; Alraiyes, A.H.; Attwood, K.; Modi, K.; Dhillon, S.S. Reporting of central airway obstruction on radiology reports and impact on bronchoscopic airway interventions and patient outcomes. Ther. Adv. Respir. Dis. 2016, 10, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, S.E.; Summers, R.M.; Nguyen, D.M.; Schrump, D.S. Virtual bronchoscopy for evaluation of airway disease. Thorac. Surg. Clin. 2004, 14, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Raposo, L.B.; Bugalho, A.; Gomes, M.J. Contribution of flow-volume curves to the detection of central airway obstruction. J. Bras. Pneumol. 2013, 39, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, R.; Viegi, G.; Brusasco, V.; Crapo, R.O.; Burgos, F.; Casaburi, R.; Coates, A.; Van Der Grinten, C.P.M.; Gustafsson, P.; Hankinson, J.; et al. Interpretative strategies for lung function tests. Eur. Respir. J. 2005, 26, 948–968. [Google Scholar] [CrossRef] [PubMed]
- Sterner, J.B.; Morris, M.J.; Sill, J.M.; Hayes, J.A. Inspiratory flow-volume curve evaluation for detecting upper airway disease. Respir. Care 2009, 54, 461–466. [Google Scholar]
- Le-Khac, B.; Nguyen-Dang, K.; Vu-Hoai, N.; Nguyen-Thanh, N.; Duong-Minh, N.; Tran-Ngoc, T.-H.; Nguyen-Ho, L. Challenges in diagnosis and management of central airway obstruction: Case series. SAGE Open Med. Case Rep. 2024, 12, 2050313X231225327. [Google Scholar] [CrossRef]
- Majid, A.; Sosa, A.F.; Ernst, A.; Feller-Kopman, D.; Folch, E.; Singh, A.K.; Gangadharan, S. Pulmonary function and flow-volume loop patterns in patients with tracheobronchomalacia. Respir. Care 2013, 58, 1521–1526. [Google Scholar] [CrossRef]
- Miller, M.R.; Pincock, A.C.; Oates, G.D.; Wilkinson, R.; Skene-Smith, H. Upper airway obstruction due to goitre: Detection, prevalence and results of surgical management. Qjm: Int. J. Med. 1990, 74, 177–188. [Google Scholar]
- Modrykamien, A.M.; Gudavalli, R.; McCarthy, K.; Liu, X.; Stoller, J.K. Detection of upper airway obstruction with spirometry results and the flow-volume loop: A comparison of quantitative and visual inspection criteria. Respir. Care 2009, 54, 474–479. [Google Scholar]
- Nouraei, S.A.; Ma, E.; Patel, A.; Howard, D.J.; Sandhu, G.S. Estimating the population incidence of adult post-intubation laryngotracheal stenosis. Clin. Otolaryngol. 2007, 32, 411–412. [Google Scholar] [CrossRef] [PubMed]
- Schuering, J.H.; Halperin, I.J.Y.; Ninaber, M.K.; Willems, L.N.; van Benthem, P.P.G.; Sjögren, E.V.; Langeveld, A.P. The diagnostic accuracy of spirometry as screening tool for adult patients with a benign subglottic stenosis. BMC Pulm. Med. 2023, 23, 314. [Google Scholar] [CrossRef] [PubMed]
- Calamari, K.; Politano, S.; Matrka, L. Does the Expiratory Disproportion Index Remain Predictive of Airway Stenosis in Obese Patients? Laryngoscope 2021, 131, 606–609. [Google Scholar] [CrossRef]
- Ntouniadakis, E.; Sundh, J.; Söderqvist, J.; von Beckerath, M. How can we identify subglottic stenosis in patients with suspected obstructive disease? Eur. Arch. Otorhinolaryngol. 2023, 280, 4995–5001. [Google Scholar] [CrossRef]
- Garcia-Pachon, E.; Casan, P.; Sanchis, J. Indices of upper airway obstruction in patients with simultaneous chronic airflow limitation. Respiration 1994, 61, 121–125. [Google Scholar] [CrossRef]
- Brouns, M.; Jayaraju, S.T.; Lacor, C.; De Mey, J.; Noppen, M.; Vincken, W.; Verbanck, S. Tracheal stenosis: A flow dynamics study. J. Appl. Physiol. 2007, 102, 1178–1184. [Google Scholar] [CrossRef]
- Ellingsen, I.; Holmedahl, N.H. Does excessive dynamic airway collapse have any impact on dynamic pulmonary function tests? J. Bronchol. Interv. Pulmonol. 2014, 21, 40–46. [Google Scholar] [CrossRef]
- Miller, R.D.; Hyatt, R.E. Evaluation of obstructing lesions of the trachea and larynx by flow-volume loops. Am. Rev. Respir. Dis. 1973, 108, 475–481. [Google Scholar]
- Stoller, J.K. Spirometry: A key diagnostic test in pulmonary medicine. Cleve Clin. J. Med. 1992, 59, 75–78. [Google Scholar] [CrossRef]
- Murgu, S.D.; Colt, H.G. Tracheobronchomalacia and excessive dynamic airway collapse. Respirology 2006, 11, 388–406. [Google Scholar] [CrossRef]
- Yernault, J.C.; Englert, M.; Sergysels, R.; De Coster, A. Upper airway stenosis: A physiologic study. Am. Rev. Respir. Dis. 1973, 108, 996–1000. [Google Scholar] [PubMed]
- Rotman, H.H.; Liss, H.P.; Weg, J.G. Diagnosis of upper airway obstruction by pulmonary function testing. Chest 1975, 68, 796–799. [Google Scholar] [CrossRef] [PubMed]
- Hira, H.S.; Singh, H. Assessment of upper airway obstruction by pulmonary function testing. J. Assoc. Physicians India. 1994, 42, 531–534. [Google Scholar] [PubMed]
- Das, A.K.; Davanzo, L.D.; Poiani, G.J.; Zazzali, P.G.; Scardella, A.T.; Warnock, M.L.; Edelman, N.H. Variable extrathoracic airflow obstruction and chronic laryngotracheitis in Gulf War veterans. Chest 1999, 115, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Bugalho, A. Management of Subglottic Stenosis and Subglottic Stenosis in Systemic Disease. In Principles and Practice of Interventional Pulmonology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 409–420. [Google Scholar]
- Wu, X.; Zhang, X.; Zhang, W.; Huang, H.; Li, Q. Long-Term Outcome of Metallic Stenting for Central Airway Involvement in Relapsing Polychondritis. Ann. Thorac. Surg. 2019, 108, 897–904. [Google Scholar] [CrossRef]
- Ryu, Y.J.; Kim, H.; Yu, C.-M.; Choi, J.C.; Kwon, Y.S.; Kim, J.; Suh, S.W. Comparison of natural and Dumon airway stents for the management of benign tracheobronchial stenoses. Respirology 2006, 11, 748–754. [Google Scholar] [CrossRef]
- Cavaliere, S.; Venuta, F.; Foccoli, P.; Toninelli, C.; Face, B.L. Endoscopic Treatment of Malignant Airway Obstructions in 2008 Patients. Chest 1996, 110, 1536–1542. [Google Scholar] [CrossRef]
- Miller, R.D.; Hyatt, R.E. Obstructing lesions of the larynx and trachea: Clinical and physiologic characteristics. Mayo Clin. Proc. 1969, 44, 145–161. [Google Scholar]
- Yanai, M.; Sekizawa, K.; Ohrui, T.; Sasaki, H.; Takishima, T. Site of airway obstruction in pulmonary disease: Direct measurement of intrabronchial pressure. J Appl Physiol 1992, 72, 1016–1023. [Google Scholar] [CrossRef]
- Brookes, G.B.; Fairfax, A.J. Chronic upper airway obstruction: Value of the flow volume loop examination in assessment and management. J. R. Soc. Med. 1982, 75, 425–434. [Google Scholar] [CrossRef]
- Empey, D.W. Assessment of upper airways obstruction. Br. Med. J. 1972, 3, 503–505. [Google Scholar] [CrossRef] [PubMed]
- Topham, J.H.; Empey, D.W. Practical assessment of obstruction in the larynx and trachea. J. Laryngol. Otol. 1974, 88, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Linhas, R.; Lima, F.; Coutinho, D.; Almeida, J.; Neves, S.; Oliveira, A.; Ladeira, I.; Lima, R.; Campainha, S.; Guimarães, M. Role of the impulse oscillometry in the evaluation of tracheal stenosis. Pulmonology 2018, 24, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Nouraei, S.A.R.; Patel, A.; Murphy, K.; Giussani, D.A.; Koury, E.F.; Brown, J.M.; George, P.J.; Cummins, A.C.; Sandhu, G.S. Diagnosis of laryngotracheal stenosis from routine pulmonary physiology using the expiratory disproportion index. Laryngoscope 2013, 123, 3099–3104. [Google Scholar] [CrossRef]
- Nouraei, S.M.; Patel, A.; Virk, J.S.; Butler, C.R.; Sandhu, G.S.; Nouraei, S.A.R. Use of pressure-volume loops for physiological assessment of adult laryngotracheal stenosis. Laryngoscope 2013, 123, 2735–2741. [Google Scholar] [CrossRef]
- Gelb, A.F.; Tashkin, D.P.; Epstein, J.D.; Zamel, N. Nd-YAG laser surgery for severe tracheal stenosis physiologically and clinically masked by severe diffuse obstructive pulmonary disease. Chest 1987, 91, 166–170. [Google Scholar] [CrossRef]
- Yasuo, M.; Kitaguchi, Y.; Tokoro, Y.; Kosaka, M.; Wada, Y.; Kinjo, T.; Ushiki, A.; Yamamoto, H.; Hanaoka, M. Differences Between Central Airway Obstruction and Chronic Obstructive Pulmonary Disease Detected with the Forced Oscillation Technique. Int. J. Chron. Obs. Pulmon Dis. 2020, 15, 1425–1434. [Google Scholar] [CrossRef]
- Clark, T.J. Inspiratory obstruction. Br. Med. J. 1970, 3, 682–684. [Google Scholar] [CrossRef]
- Criée, C.; Sorichter, S.; Smith, H.; Kardos, P.; Merget, R.; Heise, D.; Berdel, D.; Köhler, D.; Magnussen, H.; Marek, W.; et al. Body plethysmography—Its principles and clinical use. Respir. Med. 2011, 105, 959–971. [Google Scholar] [CrossRef]
- Gabathuler, M.; Bühlmann, A.A. Functional diagnosis of laryngeal and tracheal stenoses. Schweiz. Med. Wochenschr. 1976, 106, 334–339. [Google Scholar]
- Jamaati, H.R.; Shadmehr, M.B.; Aloosh, O.; Radmand, G.; Mohajerani, S.A.; Hashemian, S.M. Evaluation of plethysmography for diagnosis of postintubation tracheal stenosis. Asian Cardiovasc. Thorac. Ann. 2013, 21, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Rigau, J.; Farré, R.; Trepat, X.; Shusterman, D.; Navajas, D. Oscillometric assessment of airway obstruction in a mechanical model of vocal cord dysfunction. J. Biomech. 2004, 37, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Komarow, H.D.; Young, M.; Nelson, C.; Metcalfe, D.D. Vocal cord dysfunction as demonstrated by impulse oscillometry. J. Allergy Clin. Immunol. Pract. 2013, 1, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Que, C.; Wang, G.; He, B. Effect of posture on airway resistance in obstructive sleep apnea-hypopnea syndrome by means of impulse oscillation. Respiration 2009, 77, 38–43. [Google Scholar] [CrossRef]
- Navajas, D.; Farré, R.; Rotger, M.; Badia, R.; Puig-de-Morales, M.; Montserrat, J.M. Assessment of airflow obstruction during CPAP by means of forced oscillation in patients with sleep apnea. Am. J. Respir. Crit. Care Med. 1998, 157, 1526–1530. [Google Scholar] [CrossRef]
- Verbanck, S.; de Keukeleire, T.; Schuermans, D.; Meysman, M.; Vincken, W.; Thompson, B. Detecting upper airway obstruction in patients with tracheal stenosis. J Appl Physiol 2010, 109, 47–52. [Google Scholar] [CrossRef]
- Yasuo, M.; Kitaguchi, Y.; Kinota, F.; Kosaka, M.; Urushihata, K.; Ushiki, A.; Yamamoto, H.; Kawakami, S.; Hanaoka, M. Usefulness of the forced oscillation technique in assessing the therapeutic result of tracheobronchial central airway obstruction. Respir. Investig. 2018, 56, 222–229. [Google Scholar] [CrossRef]
- Horan, T.; Mateus, S.; Beraldo, P.; Araújo, L.; Urschel, J.; Urmenyi, E.; Santiago, F. Forced oscillation technique to evaluate tracheostenosis in patients with neurologic injury. Chest 2001, 120, 69–73. [Google Scholar] [CrossRef]
Study Authors | Study Details | Objective of Study | Sensitivity | Specificity | Main Conclusion |
---|---|---|---|---|---|
Raposo et al. [16] | 82 patients assessed with PFTs and bronchoscopy; Clinicians assessed f-v curves, being blind for the quantitative criteria | f-v curves and correlation with quantitative parameters; accuracy in identifying CAO | f-v curves alone; 30.6% quantitative criteria alone; 88.9% f-v curves combined with quantitative criteria; 93.9% | f-v curves alone; 91.3% quantitative criteria alone; 93.5% f-v curves combined with quantitative criteria; 89.8% | Sensitivity and specificity improve by combining qualitative with quantitative criteria FEF50%/FIF50% ≥ 1 is the most accurate quantitative criterion in identifying location of CAO Empey index ≥ 10 is the most accurate quantitative criterion in identifying extraluminal and mixed obstruction f-v curves are better in identifying intraluminal obstruction FEF50%/FIF50% ≥ 1 and Empey index ≥ 8 are more accurate in identifying the degree of stenosis |
Miller et al. [21] | 144 patients with goiter assessed with f-v curves; 44 patients were identified with possible CAO Further assessment with f-v curves post-intervention | Correlation of f-v curves with suspected external CAO due to goiter Empey index also assessed | f-v curves; 100% Empey index ≥ 8; 64% | f-v curves; 78% Empey index ≥ 8; 94% | f-v curves are sensitive in identifying external CAO due to goiter |
Modrykamien et al. [22] | 995 PFTs assessed regarding qualitative criteria [f-v curves] and quantitative criteria [Empey index ≥ 10, FEF50%/FIF50% < 0.3 or >1, PIF < 100, FEV1/FEV0.5 > 1.5]; 475 f-v curves met inclusion quality criteria | Evaluation of f-v curves and quantitative parameters in accurately identifying CAO/UAO | f-v curves; 5.5% Empey index ≥ 10; 8.3% FEF50%/FIF50% < 0.3 or >1; 47.2% PIF < 100; 8.3% FEV1/FEV0.5 >1.5; 30.5% | f-v curves; 93.8% Empey index ≥ 10; 96.8% FEF50%/FIF50% < 0.3 or >1; 55.2% PIF < 100; 91.1% FEV1/FEV0.5 >1.5; 60.5% | f-v curves have low sensitivity in detecting CAO/UAO Quantitative criteria have better sensitivity than the f-v curves but still not good enough in accurately identifying CAO/UAO |
Nouraei et al. [23] | 9357 PFTs from normal and non-UAO individuals and 217 PFTs from individuals with CAO due to laryngotracheal stenosis | Evaluation of the EDI in differentiating laryngotracheal stenosis from other diagnosis | EDI > 50; 95.9% | EDI > 50; 94.2% | EDI can reliably identify CAO due to tracheolaryngeal stenosis |
Schuering et al. [24] | 50 patients with subglottic stenosis and 32 asthma patients were included | Evaluation of the EDI in accurately identifying CAO due to subglottic stenosis vs. asthma patients | EDI > 48; 88% | EDI > 48; 84.4% | EDI has good diagnostic accuracy in differentiating CAO due to subglottic stenosis from asthma patients |
Calamari et al. [25] | 44 patients with UAO and 895 patients without UAO compared regarding the EDI | Evaluation of the EDI regarding its ability to identify UAO when body habitus/BMI is taken into consideration | EDI > 50 Non-obese; 83.3% EDI > 50 Obese; 50% | EDI > 50 Non-obese; 56.2% EDI > 50 Obese; 71.9% | EDI has low sensitivity in obese patients in identifying UAO but has better specificity EDI alone is not a reliable criterion in accurately identifying UAO in obese patients |
Ntouniadakis et al. [26] | 43 asthma patients, 31 COPD patients and 50 patients with subglottic stenosis were assessed. | Evaluation of spirometry parameters—with a specific focus on the EDI—and of the dyspnea index in accurately identifying CAO due to subglottic stenosis when compared to cases with peripheral airway obstruction due to asthma and COPD | EDI > 39; 98% | EDI > 39; 96% | Increased dyspnea index when combined with EDI > 39 can raise suspicion for subglottic stenosis and justify further investigation with endoscopic evaluation |
Garcia-Pachon et al. [27] | 54 UAO patients, 60 peripheral chronic airflow limitation [CAL] patients and 23 with mixed UAO and CAL patients assessed with PFTs focusing on the following parameters; FIF50%, FEF50%/FIF50% ≥ 1, Empey Index ≥ 10, FEV1/FEV0.5 ≥ 1.5, MVV/FEV1 < 25 | Evaluation of several PFT parameters in accurately identifying UAO in patients that also have peripheral airway obstruction | Best values with: FEF50%/FIF50%; UAO alone; 85% UAO + CAL; 35% Empey index; UAO alone; 72% UAO + CAL; 52% MVV/FEV1; UAO alone; 74% UAO + CAL; 56% | Best values with: FEF50%/FIF50%; UAO alone; 100% UAO + CAL; 100% Empey index; UAO alone; 93% UAO + CAL; 93% MVV/FEV1; UAO alone; 100% UAO + CAL; 100% | Sensitivity of the several indices is low when UAO is combined with CAL When at least 3 indices are combined the presence of UAO, in patients with CAL, can be suspected and justify further investigation The most specific criterion in all cases is MVV/FEV1 |
Clinical Question | PFT | Type of Correlation |
---|---|---|
Level of stenosis [intra vs. extra thoracic] | FEF50%/FIF50% | Any part of the airway excluding mid-trachea |
Empey index | Lower 1/3 of trachea | |
EDI | UAO | |
PIF | Extrathoracic | |
PEF | Subglottic stenosis | |
MVV/FEV1 | UAO | |
F-V curves | Lower 2/3 of trachea and RMB | |
UAO | ||
Body box plethysmography | UAO | |
Oscillometry | UAO (OSA, VCD) | |
Tracheal stenosis | ||
Wall region involved [cartilaginous vs. membranous] | Non-sensitive or specific | - |
Fixed vs. Variable | Empey index | Fixed external extrathoracic obstruction |
EDI | Variable obstruction, primarily at BMI > 30 | |
F-V curve | Flattened inspiratory and expiratory phase | |
Oscillometry | Variable obstruction, primarily of UAO | |
Severity of stenosis | FEF50%/FIF50% | ≥1, when correlated with f-v curves |
Empey index | ≥8 mL/L/min | |
EDI | ≥75 | |
Body box plethysmography | Severe strictures increase upper airway resistance | |
V-P curves and Compliance | Severity of stricture when measured intra-operatively with closed circuit | |
F-V curves | If CAO is ≥ 70% | |
PEF | Severe tracheal stenosis | |
Oscillometry | Increased DR/DV, Rrs when tracheal stenosis | |
Increased Zrs, Rrs in supine position in OSA | ||
Identify improvement of CAO after intervention | FEF50%/FIF50% | decrease |
Empey index | decrease | |
EDI | decrease | |
PEF | increase | |
V-P curves and Compliance | increase | |
Oscillometry | Decrease of DR/DV, Rrs, Fres | |
Increase of Xrs | ||
Identify CAO when coexistent with peripheral airway disease | EDI | ≥48 when asthma is present |
MVV/FEV1 | <25 when UAO with peripheral obstruction | |
Oscillometry | DR/DV, ΔFres |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ampazis, D.; Vlachakos, V.; Anagnostopoulos, N.; Tzouvelekis, A.; Sampsonas, F. The Clinical Utility of Pulmonary Function Tests in the Diagnosis and Characterization of Central Airway Obstruction: A Narrative Review. J. Clin. Med. 2024, 13, 6299. https://doi.org/10.3390/jcm13216299
Ampazis D, Vlachakos V, Anagnostopoulos N, Tzouvelekis A, Sampsonas F. The Clinical Utility of Pulmonary Function Tests in the Diagnosis and Characterization of Central Airway Obstruction: A Narrative Review. Journal of Clinical Medicine. 2024; 13(21):6299. https://doi.org/10.3390/jcm13216299
Chicago/Turabian StyleAmpazis, Dimitrios, Vasileios Vlachakos, Nektarios Anagnostopoulos, Argyrios Tzouvelekis, and Fotios Sampsonas. 2024. "The Clinical Utility of Pulmonary Function Tests in the Diagnosis and Characterization of Central Airway Obstruction: A Narrative Review" Journal of Clinical Medicine 13, no. 21: 6299. https://doi.org/10.3390/jcm13216299
APA StyleAmpazis, D., Vlachakos, V., Anagnostopoulos, N., Tzouvelekis, A., & Sampsonas, F. (2024). The Clinical Utility of Pulmonary Function Tests in the Diagnosis and Characterization of Central Airway Obstruction: A Narrative Review. Journal of Clinical Medicine, 13(21), 6299. https://doi.org/10.3390/jcm13216299