Prenatal mTOR Inhibitors in Tuberous Sclerosis Complex: Current Insights and Future Directions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Animal Models
Nr. | Reference | Mutant Gene | GA at Therapy | Drug | Route of Administration | Dosage | Therapy after Birth | Age of Follow-Up | Follow-Up |
---|---|---|---|---|---|---|---|---|---|
1 | Tsai ’13 [52] | Wildtype | E16.5 | SIR | IP | 1 mg/kg once | no | 4–7 weeks | Delay in sensorimotor and motor milestones, anxious phenotype, no effects on social behaviour |
2 | Way ’12 [51] | TSC2 |
| SIR | IP | 0.1 mg/kg/day | Yes—IP (only combined and postnatal group) | P120 |
|
3 | Anderl ‘11 [50] | TSC1 | E15-17 | SIR | SC | 1 mg/kg once | Yes—IP (P8–P19: 1 mg/kg, every 3–4 days; >P21: 3 mg/kg, 3 times/week) | P40 | Reduction in the weight of the newborn, developmental delay, neurological symptoms |
3.2. Clinical Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Northrup, H.; Aronow, M.E.; Bebin, E.M.; Bissler, J.; Darling, T.N.; de Vries, P.J.; Frost, M.D.; Fuchs, Z.; Gosnell, E.S.; Gupta, N.; et al. International Tuberous Sclerosis Complex Consensus Group. Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Management Recommendations. Pediatr. Neurol. 2021, 123, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Izzedine, H.; Begum, F.; Kashfi, S.; Rouprêt, M.; Bridges, A.; Jhaveri, K.D. Renal involvement in genetic neurocutaneous syndromes. Clin. Nephrol. ahead of print. 2024. [Google Scholar] [CrossRef]
- Curatolo, P.; Moavero, R.; van Scheppingen, J.; Aronica, E. mTOR dysregulation and tuberous sclerosis-related epileps. Expert Rev. Neurother. 2018, 18, 185–201. [Google Scholar] [CrossRef] [PubMed]
- Curatolo, P. Mechanistic target of rapamycin (mTOR) in tuberous sclerosis complex-associated epilepsy. Pediatr. Neurol. 2015, 52, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Ma, A.; Wang, L.; Gao, Y.; Chang, Z.; Peng, H.; Zeng, N.; Gui, Y.S.; Tian, X.; Li, X.; Cai, B.; et al. Tsc1 deficiency-mediated mTOR hyperactivation in vascular endothelial cells causes angiogenesis defects and embryonic lethality. Hum. Mol. Genet. 2014, 23, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Crino, P.B. Evolving neurobiology of tuberous sclerosis complex. Acta Neuropathol. 2013, 125, 317–332. [Google Scholar] [CrossRef]
- Curatolo, P.; Bombardieri, R.; Jozwiak, S. Tuberous sclerosis. Lancet 2008, 372, 657–668. [Google Scholar] [CrossRef]
- Zimmer, T.S.; Broekaart, D.W.M.; Gruber, V.E.; van Vliet, E.A.; Mühlebner, A.; Aronica, E. Tuberous Sclerosis Complex as Disease Model for Investigating mTOR-Related Gliopathy During Epileptogenesis. Front. Neurol. 2020, 11, 1028. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moavero, R.; Kotulska, K.; Lagae, L.; Benvenuto, A.; Emberti Gialloreti, L.; Weschke, B.; Riney, K.; Feucht, M.; Krsek, P.; Nabbout, R.; et al. EPISTOP Consortium. Is autism driven by epilepsy in infants with Tuberous Sclerosis Complex? Ann. Clin. Transl. Neurol. 2020, 7, 1371–1381. [Google Scholar] [CrossRef]
- White, R.; Hua, Y.; Scheithauer, B.; Lynch, D.R.; Henske, E.P.; Crino, P.B. Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Ann. Neurol. 2001, 49, 67–78. [Google Scholar] [CrossRef]
- Valencia, I.; Legido, A.; Yelin, K.; Khurana, D.; Kothare, S.V.; Katsetos, C.D. Anomalous inhibitory circuits in cortical tubers of human tuberous sclerosis complex associated with refractory epilepsy: Aberrant expression of parvalbumin and calbindin-D28k in dysplastic cortex. J. Child. Neurol. 2006, 21, 1058–1063. [Google Scholar] [CrossRef]
- Moavero, R.; Mühlebner, A.; Luinenburg, M.J.; Craiu, D.; Aronica, E.; Curatolo, P. Genetic pathogenesis of the epileptogenic lesions in Tuberous Sclerosis Complex: Therapeutic targeting of the mTOR pathway. Epilepsy Behav. 2022, 131 Pt B, 107713. [Google Scholar] [CrossRef]
- Specchio, N.; Pietrafusa, N.; Trivisano, M.; Moavero, R.; De Palma, L.; Ferretti, A.; Vigevano, F.; Curatolo, P. Autism and Epilepsy in Patients With Tuberous Sclerosis Complex. Front. Neurol. 2020, 11, 639. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Curatolo, P.; Nabbout, R.; Lagae, L.; Aronica, E.; Ferreira, J.C.; Feucht, M.; Hertzberg, C.; Jansen, A.C.; Jansen, F.; Kotulska, K.; et al. Management of epilepsy associated with tuberous sclerosis complex: Updated clinical recommendations. Eur. J. Paediatr. Neurol. 2018, 22, 738–748. [Google Scholar] [CrossRef] [PubMed]
- de Vries, P.J.; Wilde, L.; de Vries, M.C.; Moavero, R.; Pearson, D.A.; Curatolo, P. A clinical update on tuberous sclerosis complex-associated neuropsychiatric disorders (TAND). Am. J. Med. Genet. C Semin. Med. Genet. 2018, 178, 309–320. [Google Scholar] [CrossRef] [PubMed]
- de Vries, P.J.; Prather, P.A. The tuberous sclerosis complex. N. Engl. J. Med. 2007, 356, 92, author reply 93–94. [Google Scholar] [CrossRef] [PubMed]
- Curatolo, P.; Moavero, R.; de Vries, P.J. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol. 2015, 14, 733–745. [Google Scholar] [CrossRef]
- de Vries, P.J.; Heunis, T.M.; Vanclooster, S.; Chambers, N.; Bissell, S.; Byars, A.W.; Flinn, J.; Gipson, T.T.; van Eeghen, A.M.; Waltereit, R.; et al. International consensus recommendations for the identification and treatment of tuberous sclerosis complex-associated neuropsychiatric disorders (TAND). J. Neurodev. Disord. 2023, 15, 32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moavero, R.; Benvenuto, A.; Emberti Gialloreti, L.; Siracusano, M.; Kotulska, K.; Weschke, B.; Riney, K.; Jansen, F.E.; Feucht, M.; Krsek, P.; et al. Early Clinical Predictors of Autism Spectrum Disorder in Infants with Tuberous Sclerosis Complex: Results from the EPISTOP Study. J. Clin. Med. 2019, 8, 788. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Canevini, M.P.; Kotulska-Jozwiak, K.; Curatolo, P.; La Briola, F.; Peron, A.; Słowińska, M.; Strzelecka, J.; Vignoli, A.; Jóźwiak, S. Current concepts on epilepsy management in tuberous sclerosis complex. Am. J. Med. Genet. C Semin. Med. Genet. 2018, 178, 299–308. [Google Scholar] [CrossRef]
- Bombardieri, R.; Pinci, M.; Moavero, R.; Cerminara, C.; Curatolo, P. Early control of seizures improves long-term outcome in children with tuberous sclerosis complex. Eur. J. Paediatr. Neurol. 2010, 14, 146–149. [Google Scholar] [CrossRef]
- Chiron, C.; Dulac, O.; Luna, D.; Palacios, L.; Mondragon, S.; Beaumont, D.; Mumford, J. Vigabatrin in infantile spasms. Lancet 1990, 335, 363–364. [Google Scholar] [CrossRef] [PubMed]
- Hancock, E.; Osborne, J.P. Vigabatrin in the treatment of infantile spasms in tuberous sclerosis: Literature review. J. Child. Neurol. 1999, 14, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Specchio, N.; Nabbout, R.; Aronica, E.; Auvin, S.; Benvenuto, A.; de Palma, L.; Feucht, M.; Jansen, F.; Kotulska, K.; Sarnat, H.; et al. Updated clinical recommendations for the management of tuberous sclerosis complex associated epilepsy. Eur. J. Paediatr. Neurol. 2023, 47, 25–34. [Google Scholar] [CrossRef]
- Lortie, A.; Plouin, P.; Chiron, C.; Delalande, O.; Dulac, O. Characteristics of epilepsy in focal cortical dysplasia in infancy. Epilepsy Res. 2002, 51, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; McDaniel, S.S.; Rensing, N.R.; Wong, M. Vigabatrin inhibits seizures and mTOR pathway activation in a mouse model of tuberous sclerosis complex. PLoS ONE 2013, 8, e57445. [Google Scholar] [CrossRef] [PubMed]
- Kotulska, K.; Kwiatkowski, D.J.; Curatolo, P.; Weschke, B.; Riney, K.; Jansen, F.; Feucht, M.; Krsek, P.; Nabbout, R.; Jansen, A.C.; et al. Prevention of Epilepsy in Infants with Tuberous Sclerosis Complex in the EPISTOP Trial. Ann. Neurol. 2021, 89, 304–314. [Google Scholar] [CrossRef]
- Wang, X.; Ding, Y.; Zhou, Y.; Yu, L.; Zhou, S.; Wang, Y.; Wang, J. Prenatal diagnosis and intervention improve developmental outcomes and epilepsy prognosis in children with tuberous sclerosis complex. Dev. Med. Child. Neurol. 2022, 64, 1230–1236. [Google Scholar] [CrossRef]
- Pucko, E.; Sulejczak, D.; Ostrowski, R.P. Subependymal Giant Cell Astrocytoma: The Molecular Landscape and Treatment Advances. Cancers 2024, 16, 3406. [Google Scholar] [CrossRef] [PubMed]
- Schuler, W.; Sedrani, R.; Cottens, S.; Häberlin, B.; Schulz, M.; Schuurman, H.J.; Zenke, G.; Zerwes, H.G.; Schreier, M.H. SDZ RAD, a new rapamycin derivative: Pharmacological properties in vitro and in vivo. Transplantation 1997, 64, 36–42. [Google Scholar] [CrossRef]
- Edwards, S.R.; Wandless, T.J. The Rapamycin-binding Domain of the Protein Kinase Mammalian Target of Rapamycin Is a Destabilizing Domain. J. Biol. Chem. 2007, 282, 13395–13401. [Google Scholar] [CrossRef]
- Becker, L.-L.; Agricola, K.; Ritter, D.M.; Krueger, D.A.; Franz, D.N. Mammalian Target of Rapamycin Inhibitor Levels Decrease Under Cenobamate Treatment. Pediatr. Neurol. 2024, 161, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.H.; Xu, L.; Gutmann, D.H.; Wong, M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann. Neurol. 2008, 63, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Ehninger, D.; Han, S.; Shilyansky, C.; Zhou, Y.; Li, W.; Kwiatkowski, D.J.; Ramesh, V.; Silva, A.J. Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat. Med. 2008, 14, 843–848. [Google Scholar] [CrossRef]
- Sato, A.; Kasai, S.; Kobayashi, T.; Takamatsu, Y.; Hino, O.; Ikeda, K.; Mizuguchi, M. Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex. Nat. Commun. 2012, 3, 1292. [Google Scholar] [CrossRef]
- Krueger, D.A.; Sadhwani, A.; Byars, A.W.; de Vries, P.J.; Franz, D.N.; Whittemore, V.H.; Filip-Dhima, R.; Murray, D.; Kapur, K.; Sahin, M. Everolimus for treatment of tuberous sclerosis complex-associated neuropsychiatric disorders. Ann. Clin. Transl. Neurol. 2017, 4, 877–887. [Google Scholar] [CrossRef]
- Mizuguchi, M.; Ikeda, H.; Kagitani-Shimono, K.; Yoshinaga, H.; Suzuki, Y.; Aoki, M.; Endo, M.; Yonemura, M.; Kubota, M. Everolimus for epilepsy and autism spectrum disorder in tuberous sclerosis complex: EXIST-3 substudy in Japan. Brain Dev. 2019, 41, 1–10. [Google Scholar] [CrossRef]
- Hwang, S.K.; Lee, J.-H.; Yang, J.-E.; Lim, C.-S.; Lee, J.-A.; Lee, Y.-S.; Lee, K.; Kaang, B.-K. Everolimus improves neuropsychiatric symptoms in a patient with tuberous sclerosis carrying a novel TSC2 mutation. Mol. Brain 2016, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Kilincaslan, A.; Kok, B.E.; Tekturk, P.; Yalcinkaya, C.; Ozkara, C.; Yapici, Z. Beneficial Effects of Everolimus on Autism and Attention-Deficit/Hyperactivity Disorder Symptoms in a Group of Patients with Tuberous Sclerosis Complex. J. Child. Adolesc. Psychopharmacol. 2017, 27, 383–388. [Google Scholar] [CrossRef]
- Behram, M.; Oğlak, S.C.; Acar, Z.; Sezer, S.; Bornaun, H.; Çorbacıoğlu, A.; Özdemir, I. Foetal cardiac tumors: Prenatal diagnosis, management and prognosis in 18 cases. J. Turk. Ger. Gynecol. Assoc. 2020, 21, 255–259. [Google Scholar] [CrossRef]
- Nir, A.; Ekstein, S.; Nadjari, M.; Raas-Rothschild, A.; Rein, A.J. Rhabdomyoma in the fetus: Illustration of tumor growth during the second half of gestation. Pediatr. Cardiol. 2001, 22, 515–518. [Google Scholar] [CrossRef]
- Bader, R.S.; Chitayat, D.; Kelly, E.; Ryan, G.; Smallhorn, J.F.; Toi, A.; Hornberger, L.K. Fetal rhabdomyoma: Prenatal diagnosis, clinical outcome, and incidence of associated tuberous sclerosis complex. J. Pediatr. 2003, 143, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Borkowska, J.; Schwartz, R.A.; Kotulska, K.; Jozwiak, S. Tuberous sclerosis complex: Tumors and tumorigenesis. Int. J. Dermatol. 2011, 50, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Fesslova, V.; Villa, L.; Rizzuti, T.; Mastrangelo, M.; Mosca, F. Natural history and long-term outcome of cardiac rhabdomyomas detected prenatally. Prenat. Diagn. 2004, 24, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Relan, J.; Swami, M.; Rana, A.; Chaudhary, P.; Ojha, V.; Devarapalli, S.; Dadhwal, V.; Verma, A.; Jagia, P.; Saxena, A. Prenatal Pericardiocentesis and Postnatal Sirolimus for a Giant Inoperable Cardiac Rhabdomyoma. JACC Case Rep. 2021, 3, 1473–1479. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, C.; Abraham, S.; Ferdman, D. Rapid Regression of Prenatally Identified Intrapericardial Giant Rhabdomyomas with Sirolimus. CASE 2018, 2, 258–261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weiland, M.D.; Bonello, K.; Hill, K.D. Rapid regression of large cardiac rhabdomyomas in neonates after sirolimus therapy. Cardiol. Young 2018, 28, 485–489. [Google Scholar] [CrossRef]
- Mlczoch, E.; Hanslik, A.; Luckner, D.; Kitzmuller, E.; Prayer, D.; Michel-Behnke, I. Prenatal diagnosis of giant cardiac rhabdomyoma in tuberous sclerosis complex: A new therapeutic option with everolimus. Ultrasound Obstet. Gynecol. 2015, 45, 618–621. [Google Scholar] [CrossRef]
- Yuan, S.-M. Foetal Primary Cardiac Tumors During Perinatal Period. Pediatr. Neonatol. 2017, 58, 205–210. [Google Scholar] [CrossRef]
- Anderl, S.; Freeland, M.; Kwiatkowski, D.J.; Goto, J. Therapeutic value of prenatal rapamycin treatment in a mouse brain model of tuberous sclerosis complex. Hum. Mol. Genet. 2011, 20, 4597–4604. [Google Scholar] [CrossRef]
- Way, S.W.; Rozas, N.S.; Wu, H.C.; McKenna, J.I.I.I.; Reith, R.M.; Hashmi, S.S.; Dash, P.K.; Gambello, M.J. The differential effects of prenatal and/or postnatal rapamycin on neurodevelopmental defects and cognition in a neuroglial mouse model of tuberous sclerosis complex. Hum. Mol. Genet. 2012, 21, 3226–3236. [Google Scholar] [CrossRef]
- Tsai, P.T.; Green-Colozzi, E.; Goto, J.; Anderl, S.; Kwiatkowski, D.; Sahin, M. Prenatal rapamycin results in early and late behavioral abnormalities in wildtype C57Bl/6 mice. Behav. Genet. 2013, 43, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Will, C.; Siedentopf, N.; Schmid, O.; Gruber, T.M.; Henrich, W.; Hertzberg, C.; Weschke, B. Successful Prenatal Treatment of Cardiac Rhabdomyoma in a Foetus with Tuberous Sclerosis. Pediatr. Rep. 2023, 15, 245–253. [Google Scholar] [CrossRef]
- Daggea, A.; Silvab, L.A.; Jorgec, S.; Nogueirac, E.; Rebeloc, M.; Pinto, L. Foetal Tuberous Sclerosis: Sirolimus for the Treatment of Foetal rhabdomyoma. Foetal Pediatr. Pathol. 2022, 41, 800–806. [Google Scholar] [CrossRef]
- Cavalheiro, S.; Devanir Silva da Costa, M.; Richtmann, R. Everolimus as a possible prenatal treatment of in utero diagnosed subependymal lesions in tuberous sclerosis complex: A case report. Child’s Nerv. Syst. 2021, 37, 3897–3899. [Google Scholar] [CrossRef]
- Ebrahimi-Fakhari, D.; Stires, G.; Hahn, E.; Krueger, D.; Franz, D.N. Prenatal Sirolimus Treatment for Rhabdomyomas in Tuberous Sclerosis. Pediatr. Neurol. 2021, 125, 26–31. [Google Scholar] [CrossRef]
- Pluym, I.D.; Sklansky, M.; Wu, J.Y.; Afshar, Y.; Holliman, K.; Devore, G.R.; Walden, A.; Platt, L.D.; Krakow, D. Foetal cardiac rhabdomyomas treated with maternal sirolimus. Prenat. Diagn. 2020, 40, 358–364. [Google Scholar] [CrossRef]
- Vachon-Marceau, C.; Guerra, V.; Jaeggi, E.; Chau, V.; Ryan, G.; van Mieghem, T. In-utero treatment of large symptomatic rhabdomyoma with sirolimus. Ultrasound Obstet. Gynecol. 2019, 53, 421–422. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Chang, C.S.; Choi, S.-J.; Oh, S.-Y.; Roh, C.-R. Sirolimus therapy for foetal cardiac rhabdomyoma in a pregnant woman with tuberous sclerosis. Obstet. Gynecol. Sci. 2019, 62, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Barnes, B.T.; Procaccini, D.; Crino, J.; Blakemore, K.; Sekar, P.; Sagaser, K.G.; Jelin, A.C.; Gaur, L. Maternal Sirolimus Therapy for Foetal Cardiac Rhabdomyomas. N. Engl. J. Med. 2018, 378, 1844–1845. [Google Scholar] [CrossRef]
- Chai, P.Y.; Lin, C.; Kao, C.C.; Lin, L.M.; Chen, Y.H.; Sun, C.Y. Use of everolimus following kidney transplantation during pregnancy: A case report and systematic review. Taiwan. J. Obstet. Gynecol. 2023, 62, 774–778. [Google Scholar] [CrossRef] [PubMed]
N | Reference | GA at Therapy Start–Stop (Weeks) | GA at Birth (Weeks) | Genetics | Drug | Dosage (mg) | Maternal Bood Level (ng/mL) | Adverse Prenatal Events | Postnatal Therapy | Adverse Postnatal Events | Last Follow-Up (Months) | Epileptic Seizures | EEG Abnormalities | Psychomotor Delay |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Carsten-Will, ’23 [53] | 27–38 | 39 + 1 | TSC2 (familial, father) | SIR | 4 | 8.4–9.9 | NO | EVE (to 20 months) | Recurrent infections: viral pneumonia stopped therapy | 13 | N | Y | Y |
2 | Dagge, ’22 [54] | 26–birth | 39 | NA | SIR | 4–10 | 13.8 | NO | NO | / | / | / | / | / |
3 | Cavalheiro, ’21 [55] | / | 39 | NA | EVE | 10 | 8.4 | NO | EVE (at 4 days) | / | 36 | N | N | N |
4 | Ebrahimi-Fakhari, ’21 [56] |
|
| NA | SIR |
|
| / | NO | / |
| N | N | Y (delayed speech) |
5 | Pluym, ’19 [57] | 28–35 | 36 | TSC2 (de novo) | SIR | 6–10 | 11.6–18.6 | IUGR | NO | / | 6 | N | N | N |
6 | Vachon-Marceau, ’19 [58] | 31 + 4–36 | 39 | TSC2 (de novo) | SIR | 5–8 | TARGET (not specified) | NO | NO | / | / | N | Y | N |
7 | Park, ’19 [59] | 23–birth | 39 | TSC2 (familial, mother) | SIR | 4–12 | 12.1 | NO | NO | / | / | / | / | / |
8 | Barnes, ‘18 [60] | 30–birth | 36 | TSC1 | SIR | / | / | NO | SIR (at 2 months) | / | 9 | N | N | N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Racioppi, G.; Proietti Checchi, M.; Sforza, G.; Voci, A.; Mazzone, L.; Valeriani, M.; Moavero, R. Prenatal mTOR Inhibitors in Tuberous Sclerosis Complex: Current Insights and Future Directions. J. Clin. Med. 2024, 13, 6335. https://doi.org/10.3390/jcm13216335
Racioppi G, Proietti Checchi M, Sforza G, Voci A, Mazzone L, Valeriani M, Moavero R. Prenatal mTOR Inhibitors in Tuberous Sclerosis Complex: Current Insights and Future Directions. Journal of Clinical Medicine. 2024; 13(21):6335. https://doi.org/10.3390/jcm13216335
Chicago/Turabian StyleRacioppi, Giacomo, Martina Proietti Checchi, Giorgia Sforza, Alessandra Voci, Luigi Mazzone, Massimiliano Valeriani, and Romina Moavero. 2024. "Prenatal mTOR Inhibitors in Tuberous Sclerosis Complex: Current Insights and Future Directions" Journal of Clinical Medicine 13, no. 21: 6335. https://doi.org/10.3390/jcm13216335
APA StyleRacioppi, G., Proietti Checchi, M., Sforza, G., Voci, A., Mazzone, L., Valeriani, M., & Moavero, R. (2024). Prenatal mTOR Inhibitors in Tuberous Sclerosis Complex: Current Insights and Future Directions. Journal of Clinical Medicine, 13(21), 6335. https://doi.org/10.3390/jcm13216335