Diagnosis and Classification of Pediatric Epilepsy in Sub-Saharan Africa: A Comprehensive Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Epidemiology: Incidence and Prevalence
3.2. Natural History, Prognosis, and Mortality of Epilepsy
3.3. Seizure Classification
Scheme | Primary Focus and Population | Seizure/Epilepsy Classification | EEG | Neuroimaging | Limitations |
---|---|---|---|---|---|
Burton et al., 2012 [29] | Tanzania. Prevalence and risk factors for epilepsy in children: 112 CWE age 6–14 y (males 50.9%). |
| Performed in 101 patients.
| CT performed in 90 patients (80.3%). Neuroradiological anomalies in 26 patients (28.9%), particularly:
|
|
Lagunju et al., 2015 [37] | Nigeria. EEG impact on epilepsy care in children referred to a pediatric neurology clinic with suspicion on epilepsy. CWE 329 age: 3 mos–16 y: males = 59.9%. |
| Performed in 329 patients. EEG anomalies in 108 (32.82%), particularly
| Not performed. |
|
Kariuki et al., 2024 [38] | Kenya. Determine incidence, DALYs, risk factors and causes of admissions in PWE in a rural hospital. 743 CWE age: 0–13 y, males = 60%. |
| Not performed. | Not performed. |
|
Reddy et al., 2017 [31] | South Africa. Pediatric CSE. 76 CWE age: 1 mo–13 y, males 62%. |
| Performed in 44 (58%) patients. Findings:
| Performed in 70 (92%) patients:
|
|
Matonda-ma-Nzuzi et al., 2018 [36] | Congo. Behavioural problems and cognitive impairment in CWE attending a mental health center. 104 CWE age: 6–17 y, males 58.6%. |
| Not performed. | Not performed. |
|
Lompo et al., 2018 [39] | Burkina Faso. Etiology of nongenetic epilepsies in CWE. 115 CWE age 0–18 y, males 62.6%. |
| Epileptic paroxysmal anomalies 86 (74%) | Performed:
Neuroradiological anomalies 72 (62.2%), particularly
|
|
Ahmad et al., 2018 [34] | Nigeria. Clinical seizure types and EEG findings in CWE seen in a pediatric neurology clinic. 303 CWE age: 3 mos–15 y, males 65.5%. |
| Performed in 176 (58.1%) patients. Epileptiform discharges found in 146 (83%) records. | Not performed. |
|
Ackermann et al., 2019 [32] | South Africa. Epidemiology of CWE referred to a tertiary service. 2407 CWE age: 0–12, males 56%. | Seizure types grouped by age and more detailed classification.
| Not performed. | Not performed. |
|
Egesa et al., 2022 [35] | Kenya. To Review seizure semiology and etiological data to fit ILAE-2017 criteria. 256 CWE, males 43.2%. | Seizure type:
| Performed. EEG anomalies 122 (60.1%). | Performed in 22% of the whole sample. No data on results. |
|
Samia et al., 2022 [9] | Childhood epilepsy care in Kenya and knowledge gap. |
| Any abnormality 20–39%.
| One study of neuroimaging included. No abnormal findings on 11 children with focal epilepsy and loss of awareness. |
|
Aricò et al., 2023 [33] | Impact of a newly established clinic for pediatric epilepsy. 143 CWE age 0–18; males 57.3%. | Seizure type:
| EEG performed on 48 cases. Findings:
| Not performed. |
|
3.4. Etiology
3.5. Nodding Syndrome
3.6. HIV-Related Epilepsy
Study | Population | Study Design | Seizure/Epilepsy Classification | Diagnostic Evaluation | Etiology | HIV WHO Stage | ART and/or ASMs | Main Findings |
---|---|---|---|---|---|---|---|---|
Bearden et al., 2015 [76] | Botswana; 29 HIV CWE aged 0–18 years and 58 matched controls. | Observational retrospective, case–control. | Not mentioned. |
|
| At enrollment: Cases WHO stage 4 66%. Controls WHO stage 4 38%. | All participants on cART during the study (median age 70 months for both case and controls). 39 patients (45%) received early treatment (8 cases and 31 controls). Not mentioned ASMs. | Early treatment with cART is likely to be protective against epilepsy in children with HIV. |
Wilmshurst J.M. et al., 2018; Chapter 8 of the Handbook of Neurology [71] | Children <15 years in Sub-Saharan Africa. | Review. | Focal onset seizures are more likely than generalized ones. |
| May be related to HIV damage or secondary to acquired pathology (neuroinfection). | Not mentioned. |
| Main features of epilepsy in HIV patients. |
Mpango et al., 2019 [72] | Uganda; 1070 participants: 677 (63.3%) aged 5–11 years and 393 (36.7%) adolescents aged 12–17 years (48% males). 43 (4%) with probable epilepsy. | Observational longitudinal. | Not mentioned. | Not mentioned. | Not mentioned. | 596 participants (55.7%): stage 2. | 1024 (95.7%): on ART. Not mentioned ASMs. | Prevalence of neurological disorders (enuresis/encopresis, motor or vocal tics, epilepsy) among children with HIV was 18.5%. Prevalence of probable epilepsy was 4%. |
Burman et al., 2019 [73] | South Africa; 227 participants (10–176 months), 131 males (57.7%); 23% at least one seizure, 14.2% diagnosis of epilepsy. | Observational retrospective, case–control. |
|
|
| 69%: stage 4. |
|
|
Michaelis et al., 2020 [75] | South Africa (Eastern Cape) 2137 HIV children (1 month–12 years). 53 (2.5%) with epilepsy; 26 (53%) males. | Observational retrospective study. | Not mentioned. | Not mentioned. | Most common: prior CNS infection (tuberculosis meningitis). |
|
|
|
Ravishankar et al., 2022 [74] | Zambia; 73 children (2.2–10 years) with HIV infection and new-onset seizure; 39 males (53%). | Observational longitudinal. |
|
|
| 44 (60%): WHO stage 4. | 36 (49%) were on ART regimen (34 on cART); of these, 19 children (56%) on treatment for >1 year. Not mentioned ASMs. |
|
3.7. Diagnostic Tools
Study | Population | Type of Study | Intervention | Indicator of Accuracy | Outcome | Strengths | Limitations |
---|---|---|---|---|---|---|---|
Patel et al., 2016 [78] | Tanzania and Zambia; 6 months to 18 years. | Observational longitudinal. | Administered to patient’s caregiver by a nonmedical staff member. 15 most discriminating features of semiology characteristics. | Sensitivity of 78% and positive predictive value of 81.5%. | Discriminate focal from generalized seizures. | Translated into local dialects. |
|
Vergonjeanne et al., 2021 [79] | African population; all ages. | Review and observational longitudinal. | Questionnaire for investigation of epilepsy in tropical countries (IENT). 9 sections with a total of 213 items combining both binary and open answer. The first two sections can be filled by a nonmedical investigator. | The sensitivity and specificity were estimated to be 95.1% (95% CI: 87.3–98.4%) and 65.6% (95% CI: 57.5–72.9%), respectively. |
| Available in several languages (French, English, Spanish, and Portuguese). |
|
Jones et al., 2023 [55] | SSA; population over 6 years. | Observational retrospective, case–control. | Questionnaire for community-based healthcare workers. 8 binary questions. | Sensitivity, specificity, and positive and negative predictive values were 97.5% (93.7–99.3), 82.4% (71.2–90.5), 92.9% (87.9–96.3), and 93.3% (83.8–98.2; Table 2). | Diagnosis of convulsive epilepsy. |
|
|
4. Future Challenges and Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, J.H.; Elger, C.E.; Engel, J., Jr.; Forsgren, L.; French, J.A.; Glynn, M.; et al. ILAE official report: A practical clinical definition of epilepsy. Epilepsia 2014, 55, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.C.; Dua, T.; Ma, J.; Saxena, S.; Birbeck, G. Global disparities in the epilepsy treatment gap: A systematic review. Bull. World Health Organ. 2010, 88, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Epilepsy. Available online: https://www.who.int/news-room/fact-sheets/detail/epilepsy (accessed on 22 October 2022).
- Beghi, E. The Epidemiology of Epilepsy. Neuroepidemiology 2020, 54, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Beghi, E. Addressing the burden of epilepsy: Many unmet needs. Pharmacol. Res. 2016, 107, 79–84. [Google Scholar] [CrossRef]
- Magili, P.F.; Kakoko, D.C.; Bhwana, D.; Akyoo, W.O.; Amaral, L.J.; Massawe, I.S.; Colebunders, R.; Mmbando, B.P. Accessibility to formal education among persons with epilepsy in Mahenge, Tanzania. Epilepsy Behav. 2023, 148, 109445. [Google Scholar] [CrossRef]
- Gupta, N.; Singh, R.; Seas, A.; Antwi, P.; Kaddumukasa, M.N.; Kakooza Mwesige, A.; Kaddumukasa, M.; Haglund, M.M.; Fuller, A.T.; Koltai, D.C.; et al. Epilepsy among the older population of sub-Saharan Africa: Analysis of the global burden of disease database. Epilepsy Behav. 2023, 147, 109402. [Google Scholar] [CrossRef]
- Adedeji, I.A.; Adamu, A.S.; Bashir, F.M. Factors associated with seizure severity among children with epilepsy in Northern Nigeria. Ghana Med. J. 2022, 56, 23–27. [Google Scholar] [CrossRef]
- Samia, P.; Hassell, J.; Hudson, J.; Ahmed, A.; Shah, J.; Hammond, C.; Kija, E.; Auvin, S.; Wilmshurst, J. Epilepsy research in Africa: A scoping review by the ILAE Pediatric Commission Research Advocacy Task Force. Epilepsia 2022, 63, 2225–2241. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Fiest, K.M.; Sauro, K.M.; Wiebe, S.; Patten, S.B.; Kwon, C.S.; Dykeman, J.; Pringsheim, T.; Lorenzetti, D.L.; Jetté, N. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 2017, 88, 296–303. [Google Scholar] [CrossRef]
- Preux, P.M.; Druet-Cabanac, M. Epidemiology and aetiology of epilepsy in sub-Saharan Africa. Lancet Neurol. 2005, 4, 21–31. [Google Scholar] [CrossRef]
- Pisani, F.; Spagnoli, C.; Falsaperla, R.; Nagarajan, L.; Ramantani, G. Seizures in the neonate: A review of etiologies and outcomes. Seizure 2021, 85, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, C.; Asaba, G.; Leichsenring, M.; Kabagambe, G. High incidence of epilepsy related to onchocerciasis in West Uganda. Epilepsy Res. 1998, 30, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Rwiza, H.T.; Kilonzo, G.P.; Haule, J.; Matuja, W.B.P.; Mteza, I.; Mbena, P.; Kilima, P.M.; Mwaluko, G.; Mwang’ombola, R.; Mwaijande, F.; et al. Prevalence and Incidence of Epilepsy in Ulanga, a Rural Tanzanian District: A Community-Based Study. Epilepsia 1992, 33, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
- Tekle-Haimanot, R.; Forsgren, L.; Ekstedt, J. Incidence of Epilepsy in Rural Central Ethiopia. Epilepsia 1997, 38, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.; Scott, A.G.; Munyoki, G.; Odera, V.M.; Chengo, E.; Bauni, E.; Kwasa, T.; Sander, L.W.; Neville, B.G.; Newton, C.R. Active convulsive epilepsy in a rural district of Kenya: A study of prevalence and possible risk factors. Lancet Neurol. 2008, 7, 50–56. [Google Scholar] [CrossRef]
- Garrez, I.; Teuwen, D.E.; Sebera, F.; Mutungirehe, S.; Ndayisenga, A.; Kajeneza, D.; Umuhoza, G.; Kayirangwa, J.; Düll, U.E.; Dedeken, P.; et al. Very high epilepsy prevalence in rural Southern Rwanda: The underestimated burden of epilepsy in sub-Saharan Africa. Trop. Med. Int. Health 2024, 29, 214–225. [Google Scholar] [CrossRef]
- Mwanga, D.M.; Kadengye, D.T.; Otieno, P.O.; Wekesah, F.M.; Kipchirchir, I.C.; Muhua, G.O.; Kinuthia, J.W.; Kwasa, T.; Machuka, A.; Mongare, Q.; et al. Asiki G Prevalence of all epilepsies in urban informal settlements in Nairobi, Kenya: A two-stage population-based study. Lancet Glob. Health 2024, 12, e1323–e1330. [Google Scholar] [CrossRef]
- Biset, G.; Abebaw, N.; Gebeyehu, N.A.; Estifanos, N.; Birrie, E.; Tegegne, K.D. Prevalence, incidence, and trends of epilepsy among children and adolescents in Africa: A systematic review and meta-analysis. BMC Public Health 2024, 24, 771. [Google Scholar] [CrossRef]
- Thurman, D.J.; Beghi, E.; Begley, C.E.; Berg, A.T.; Buchhalter, J.R.; Ding, D.; Hesdorffer, D.C.; Hauser, W.A.; Kazis, L.; Kobau, R.; et al. Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 2011, 52 (Suppl. S7), 2–26. [Google Scholar] [CrossRef]
- Sander, J.W.A.S. Some aspects of prognosis in the epilepsies: A review. Epilepsia 1993, 34, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Mbuba, C.K.; Ngugi, A.K.; Newton, C.R.; Carter, J.A. The epilepsy treatment gap in developing countries: A systematic review of the magnitude, causes, and intervention strategies. Epilepsia 2008, 49, 1491–1503. [Google Scholar] [CrossRef] [PubMed]
- Placencia, M.; Shorvon, S.D.; Paredes, V.; Bimos, C.; Sander, J.W.; Suarez, J.; Cascante, S.M. Epileptic Seizures In An Andean Region Of Ecuador: Incidence And Prevalence And Regional Variation. Brain 1992, 115, 771–782. [Google Scholar] [CrossRef]
- Watts, A.E. The natural history of untreated epilepsy in a rural community in Africa. Epilepsia 1992, 33, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Kwon, C.S.; Wagner, R.G.; Carpio, A.; Jetté, N.; Newton, C.R.; Thurman, D.J. The worldwide epilepsy treatment gap: A systematic review and recommendations for revised definitions—A report from the ILAE Epidemiology Commission. Epilepsia 2022, 63, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Mbizvo, G.K.; Bennett, K.; Simpson, C.R.; Duncan, S.E.; Chin, R.F.M. Epilepsy-related and other causes of mortality in people with epilepsy: A systematic review of systematic reviews. Epilepsy Res. 2019, 157, 106192. [Google Scholar] [CrossRef] [PubMed]
- Levira, F.; Thurman, D.J.; Sander, J.W.; Hauser, W.A.; Hesdorffer, D.C.; Masanja, H.; Odermatt, P.; Logroscino, G.; Newton, C.R. Premature mortality of epilepsy in low- and middle-income countries: A systematic review from the Mortality Task Force of the International League Against Epilepsy. Epilepsia 2017, 58, 6–16. [Google Scholar] [CrossRef]
- Burton, K.J.; Rogathe, J.; Whittaker, R.; Mankad, K.; Hunter, E.; Burton, M.J.; Todd, J.; Neville, B.G.; Walker, R.; Newton, C.R. Epilepsy in Tanzanian children: Association with perinatal events and other risk factors. Epilepsia 2012, 53, 752–760. [Google Scholar] [CrossRef]
- Samia, P.; Hassell, J.; Hudson, J.A.; Murithi, M.K.; Kariuki, S.M.; Newton, C.R.; Wilmshurst, J.M. Epilepsy diagnosis and management of children in Kenya: Review of current literature. Res. Rep. Trop. Med. 2019, 10, 91. [Google Scholar] [CrossRef]
- Reddy, Y.; Balakrishna, Y.; Mubaiwa, L. Convulsive status epilepticus in a quaternary hospital paediatric intensive care unit (PICU) in South Africa: An 8 year review. Seizure 2017, 51, 55–60. [Google Scholar] [CrossRef]
- Ackermann, S.; Le Roux, S.; Wilmshurst, J.M. Epidemiology of children with epilepsy at a tertiary referral centre in South Africa. Seizure 2019, 70, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Aricò, M.; Mastrangelo, M.; Di Noia, S.P.; Mabusi, M.S.; Kalolo, A.; Pisani, F. The impact of a newly established specialized pediatric epilepsy center in Tanzania: An observational study. Epilepsy Behav. 2023, 148, 109454. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.M.; Ahmed, H.; Jiya, N.M.; Baba, J.; Abubakar, M.; Yusuf, A.; Abubakar, F.I.; Ahmed, H.K. Pattern of Childhood Seizure Disorder and Inter-Ictal Electroencephalographic Correlates among Children in Sokoto, Nigeria. Int. J. Med. Res. Health Sci. 2018, 7, 152–155. [Google Scholar]
- Egesa, I.J.; Newton, C.R.J.C.; Kariuki, S.M. Evaluation of the International League Against Epilepsy 1981, 1989, and 2017 classifications of seizure semiology and etiology in a population-based cohort of children and adults with epilepsy. Epilepsia Open 2022, 7, 98–109. [Google Scholar] [CrossRef]
- Matonda-Ma-Nzuzi, T.; Mampunza Ma Miezi, S.; Mpembi, M.N.; Mvumbi, D.M.; Aloni, M.N.; Malendakana, F.; Mpaka Mbeya, D.; Lelo, G.M.; Charlier-Mikolajczak, D. Factors associated with behavioral problems and cognitive impairment in children with epilepsy of Kinshasa, Democratic Republic of the Congo. Epilepsy Behav. 2018, 78, 78–83. [Google Scholar] [CrossRef]
- Lagunju, I.O.; Oyinlade, A.O.; Atalabi, O.M.; Ogbole, G.; Tedimola, O.; Famosaya, A.; Ogunniyi, A.; Ogunseyinde, A.O.; Ragin, A. Electroencephalography as a tool for evidence-based diagnosis and improved outcomes in children with epilepsy in a resource-poor setting. Pan. Afr. Med. J. 2015, 22, 328. [Google Scholar]
- Kariuki, S.M.; Wagner, R.G.; Gunny, R.; D’Arco, F.; Kombe, M.; Ngugi, A.K.; White, S.; Odhiambo, R.; Cross, J.H.; Sander, J.W.; et al. Magnetic resonance imaging findings in Kenyans and South Africans with active convulsive epilepsy: An observational study. Epilepsia 2024, 65, 165–176. [Google Scholar] [CrossRef]
- Lompo, D.L.; Diallo, O.; Dao, B.A.; Bassole, R.; Napon, C.; Kabore, J. Etiologies of non-genetic epilepsies of child and adolescent, newly diagnosed in Ouagadougou, Burkina Faso. Pan. Afr. Med. J. 2018, 31, 175. [Google Scholar] [CrossRef]
- Shorvon, S.D. The etiologic classification of epilepsy. Epilepsia 2011, 52, 1052–1057. [Google Scholar] [CrossRef]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef]
- Ngugi, A.K.; Bottomley, C.; Kleinschmidt, I.; Wagner, R.G.; Kakooza-Mwesige, A.; Ae-Ngibise, K.; Owusu-Agyei, S.; Masanja, H.; Kamuyu, G.; Odhiambo, R.; et al. Prevalence of active convulsive epilepsy in sub-Saharan Africa and associated risk factors: Cross-sectional and case-control studies. Lancet Neurol. 2013, 12, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Ba-Diop, A.; Marin, B.; Druet-Cabanac, M.; Ngoungou, E.B.; Newton, C.R.; Preux, P.M. Epidemiology, causes, and treatment of epilepsy in sub-Saharan Africa. Lancet Neurol. 2014, 13, 1029–1044. [Google Scholar] [CrossRef] [PubMed]
- Edridge, A.; Namazzi, R.; Tebulo, A.; Mfizi, A.; Deijs, M.; Koekkoek, S.; de Wever, B.; van der Ende, A.; Umiwana, J.; de Jong, M.D.; et al. Viral, Bacterial, Metabolic, and Autoimmune Causes of Severe Acute Encephalopathy in Sub-Saharan Africa: A Multicenter Cohort Study. J. Pediatr. 2023, 258, 113360. [Google Scholar] [CrossRef] [PubMed]
- Kamuyu, G.; Bottomley, C.; Mageto, J.; Lowe, B.; Wilkins, P.P.; Noh, J.C.; Nutman, T.B.; Ngugi, A.K.; Odhiambo, R.; Wagner, R.G.; et al. Exposure to Multiple Parasites Is Associated with the Prevalence of Active Convulsive Epilepsy in Sub-Saharan Africa. PLoS Negl. Trop. Dis. 2014, 8, e2908. [Google Scholar] [CrossRef]
- Christensen, S.S.; Eslick, G.D. Cerebral malaria as a risk factor for the development of epilepsy and other long-term neurological conditions: A meta-analysis. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 233–238. [Google Scholar] [CrossRef]
- Jada, S.R.; Amaral, L.J.; Lakwo, T.; Carter, J.Y.; Rovarini, J.; Bol, Y.Y.; Logora, M.Y.; Hadermann, A.; Hopkins, A.; Fodjo, J.N.S.; et al. Effect of onchocerciasis elimination measures on the incidence of epilepsy in Maridi, South Sudan: A 3-year longitudinal, prospective, population-based study. Lancet Glob. Health 2023, 11, e1260–e1268. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Vinkeles Melchers, N.V.S.; Siewe Fodjo, J.N.; Vutha, A.; Coffeng, L.E.; Logora, M.Y.; Colebunders, R.; Stolk, W.A. Onchocerciasis-associated epilepsy in Maridi, South Sudan: Modelling and exploring the impact of control measures against river blindness. PLoS Negl. Trop. Dis. 2023, 17, e0011320. [Google Scholar] [CrossRef]
- Colebunders, R.; Siewe Fodjo, J.N.; Kamoen, O.; Amaral, L.J.; Hadermann, A.; Trevisan, C.; Taylor, M.J.; Gauglitz, J.; Hoerauf, A.; Sato, Y.; et al. Treatment and prevention of epilepsy in onchocerciasis-endemic areas is urgently needed. Infect. Dis. Poverty 2024, 13, 5. [Google Scholar] [CrossRef]
- Kamoen, O.; Jada, S.R.; Rovarini, J.M.; Abd-Elfarag, G.; Amaral, L.J.; Bol, Y.; Siewe Fodjo, J.N.; Colebunders, R. Evaluating epilepsy management in an onchocerciasis-endemic area: Case of Maridi, South Sudan. Seizure, 2024; in press. [Google Scholar] [CrossRef]
- Mazumder, R.; Lagoro, D.K.; Nariai, H.; Danieli, A.; Eliashiv, D.; Engel JJr Dalla Bernardina, B.; Kegele, J.; Lerche, H.; Sejvar, J.; Matuja, W.; et al. Ictal Electroencephalographic Characteristics of Nodding Syndrome: A Comparative Case-Series from South Sudan, Tanzania, and Uganda. Ann. Neurol. 2022, 92, 75–80. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amaral, L.J.; Jada, S.R.; Ndjanfa, A.K.; Carter, J.Y.; Abd-Elfarag, G.; Okaro, S.; Logora, M.Y.; Bol, Y.Y.; Lakwo, T.; Fodjo, J.N.S.; et al. Impact of annual community-directed treatment with ivermectin on the incidence of epilepsy in Mvolo, a two-year prospective study. PLoS Negl. Trop. Dis. 2024, 18, e0012059. [Google Scholar] [CrossRef]
- Siewe Fodjo, J.N.; Ngarka, L.; Njamnshi, W.Y.; Enyong, P.A.; Zoung-Kanyi Bissek, A.C.; Njamnshi, A.K. Onchocerciasis in the Ntui Health District of Cameroon: Epidemiological, entomological and parasitological findings in relation to elimination prospects. Parasites Vectors 2022, 15, 444. [Google Scholar] [CrossRef] [PubMed]
- Apolot, D.; Erem, G.; Nassanga, R.; Kiggundu, D.; Tumusiime, C.M.; Teu, A.; Mugisha, A.M.; Sebunya, R. Brain magnetic resonance imaging findings among children with epilepsy in two urban hospital settings, Kampala-Uganda: A descriptive study. BMC Med. Imaging 2022, 22, 175. [Google Scholar] [CrossRef] [PubMed]
- Sahlu, I.; Bauer, C.; Ganaba, R.; Preux, P.M.; Cowan, L.D.; Dorny, P.; Millogo, A.; Carabin, H. The impact of imperfect screening tools on measuring the prevalence of epilepsy and headaches in Burkina Faso. PLoS Negl. Trop. Dis. 2019, 13, e0007109. [Google Scholar] [CrossRef]
- Essajee, F.; Urban, M.; Smit, L.; Wilmshurst, J.M.; Solomons, R.; van Toorn, R.; Moosa, S. Utility of genetic testing in children with developmental and epileptic encephalopathy (DEE) at a tertiary hospital in South Africa: A prospective study. Seizure Eur. J. Epilepsy 2022, 101, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Esterhuizen, A.I.; Tiffin, N.; Riordan, G.; Wessels, M.; Burman, R.J.; Aziz, M.C.; Calhoun, J.D.; Gunti, J.; Amiri, E.E.; Ramamurthy, A.; et al. Precision medicine for developmental and epileptic encephalopathies in Africa—Strategies for a resource-limited setting. Genet. Med. 2023, 25, 100333. [Google Scholar] [CrossRef] [PubMed]
- Idro, R.; Ogwang, R.; Kayongo, E.; Gumisiriza, N.; Lanyero, A.; Kakooza-Mwesige, A.; Opar, B. The natural history of nodding syndrome. Epileptic Disord. 2018, 20, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Benedek, G.; Abed El Latif, M.; Miller, K.; Rivkin, M.; Ramadhan Lasu, A.A.; Riek, L.P.; Lako, R.; Edvardson, S.; Alon, S.A.; Galun, E.; et al. Protection or susceptibility to devastating childhood epilepsy: Nodding Syndrome associates with immunogenetic fingerprints in the HLA binding groove. PLoS Negl. Trop. Dis. 2020, 14, e0008436. [Google Scholar] [CrossRef]
- Johnson, T.P.; Sejvar, J.; Nutman, T.B.; Nath, A. The Pathogenesis of Nodding Syndrome. Annu. Rev. Pathol. Mech. Dis. 2020, 15, 395–417. [Google Scholar] [CrossRef]
- Abd-Elfarag, G.O.E.; Edridge, A.W.D.; Spijker, R.; Sebit, M.B.; van Hensbroek, M.B. Nodding Syndrome: A Scoping Review. Trop. Med. Infect. Dis. 2021, 6, 211. [Google Scholar] [CrossRef]
- Sejvar, J.J.; Kakooza, A.M.; Foltz, J.L.; Makumbi, I.; Atai-Omoruto, A.D.; Malimbo, M.; Ndyomugyenyi, R.; Alexander, L.N.; Abang, B.; Downing, R.G.; et al. Clinical, neurological, and electrophysiological features of nodding syndrome in Kitgum, Uganda: An observational case series. Lancet Neurol. 2013, 12, 166–174. [Google Scholar] [CrossRef]
- De Polo, G.; Romaniello, R.; Otim, A.; Benjamin, K.; Bonanni, P.; Borgatti, R. Neurophysiological and clinical findings on Nodding Syndrome in 21 South Sudanese children and a review of the literature. Seizure. 2015, 31, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Kegele, J.; Wagner, T.; Kowenski, T.; Wiesmayr, M.; Gatterer, C.; Alber, M.; Matuja, W.; Schmutzhard, E.; Lerche, H.; Winkler, A.S. Long-term clinical course and treatment outcomes of individuals with Nodding Syndrome. J. Neurol. Sci. 2024, 457, 122893. [Google Scholar] [CrossRef] [PubMed]
- Colebunders, R.; Hadermann, A.; Fodjo, J.N.S. The onchocerciasis hypothesis of nodding syndrome. PLoS Negl. Trop. Dis. 2023, 17, e0011523. [Google Scholar] [CrossRef] [PubMed]
- Obol, J.H.; Arony, D.A.; Wanyama, R.; Moi, K.L.; Bodo, B.; Odong, P.O.; Odida, M. Reduced plasma concentrations of vitamin B6 and increased plasma concentrations of the neurotoxin 3-hydroxykynurenine are associated with nodding syndrome: A case control study in Gulu and Amuru districts, Northern Uganda. Pan. Afr. Med. J. 2016, 24, 123. [Google Scholar] [CrossRef]
- Spencer, P.S.; Mazumder, R.; Palmer, V.S.; Lasarev, M.R.; Stadnik, R.C.; King, P.; Kabahenda, M.; Kitara, D.L.; Stadler, D.; McArdle, B.; et al. Environmental, dietary and case-control study of Nodding Syndrome in Uganda: A post-measles brain disorder triggered by malnutrition? J. Neurol. Sci. 2016, 369, 191–203. [Google Scholar] [CrossRef]
- Pollanen, M.S.; Onzivua, S.; McKeever, P.M.; Robertson, J.; Mackenzie, I.R.; Kovacs, G.G.; Olwa, F.; Kitara, D.L.; Fong, A. The spectrum of disease and tau pathology of nodding syndrome in Uganda. Brain 2023, 146, 954–967. [Google Scholar] [CrossRef]
- Wilmshurst, J.M.; Hammond, C.K.; Donald, K.; Hoare, J.; Cohen, K.; Eley, B. NeuroAIDS in children. Handb. Clin. Neurol. 2018, 152, 99–116. [Google Scholar]
- Mpango, R.S.; Rukundo, G.Z.; Muyingo, S.K.; Gadow, K.D.; Patel, V.; Kinyanda, E. Prevalence, correlates for early neurological disorders and association with functioning among children and adolescents with HIV/AIDS in Uganda. BMC Psychiatry 2019, 19, 34. [Google Scholar] [CrossRef]
- Burman, R.J.; Wilmshurst, J.M.; Gebauer, S.; Weise, L.; Walker, K.G.; Donald, K.A. Seizures in Children with HIV infection in South Africa: A retrospective case control study. Seizure 2019, 65, 159–165. [Google Scholar] [CrossRef]
- Ravishankar, M.; Dallah, I.; Mathews, M.; Bositis, C.M.; Mwenechanya, M.; Kalungwana-Mambwe, L.; Bearden, D.; Navis, A.; Elafros, M.A.; Gelbard, H.; et al. Clinical characteristics and outcomes after new-onset seizure among Zambian children with HIV during the antiretroviral therapy era. Epilepsia Open 2022, 7, 315. [Google Scholar] [CrossRef]
- Michaelis, I.A.; Nielsen, M.; Carty, C.; Wolff, M.; Sabin, C.A.; Lambert, J.S. Late diagnosis of human immunodeficiency virus infection is linked to higher rates of epilepsy in children in the Eastern Cape of South Africa. S. Afr. J. HIV Med. 2020, 21, 6. [Google Scholar] [CrossRef] [PubMed]
- Bearden, D.R.; Monokwane, B.; Khurana, E.; Baier, J.; Baranov, E.; Westmoreland, K.; Mazhani, L.; Steenhoff, A.P. Pediatric Cerebral Palsy in Botswana: Etiology, Outcomes, and Comorbidities. Pediatr Neurol. 2016, 59, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Bearden, D.; Steenhoff, A.P.; Dlugos, D.J.; Kolson, D.; Mehta, P.; Kessler, S.; Lowenthal, E.; Monokwane, B.; Anabwani, G.; Bisson, G.P. Early antiretroviral therapy is protective against epilepsy in children with human immunodeficiency virus infection in Botswana. J. Acquir. Immune Defic. Syndr. 2015, 69, 193–199. [Google Scholar] [CrossRef]
- Patel, A.A.; Ciccone, O.; Njau, A.; Shanungu, S.; Grollnek, A.K.; Fredrick, F.; Hodgeman, R.; Sideridis, G.D.; Kapur, K.; Harini, C.; et al. A pediatric epilepsy diagnostic tool for use in resource-limited settings: A pilot study. Epilepsy Behav. 2016, 59, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Wilmshurst, J.M.; Cross, J.H.; Newton, C.; Kakooza, A.M.; Wammanda, R.D.; Mallewa, M.; Samia, P.; Venter, A.; Hirtz, D.; Chugani, H. Children with epilepsy in Africa: Recommendations from the International Child Neurology Association/African Child Neurology Association Workshop. Epilepsia 2017, 58 (Suppl. S5), 42–48. [Google Scholar] [CrossRef]
- Vergonjeanne, M.; Auditeau, E.; Erazo, D.; Luna, J.; Gelle, T.; Gbessemehlan, A.; Boumediene, F.; Preux, P.M.; QUINET Collaboration. Epidemiology of Epilepsy in Low-and Middle-Income Countries: Experience of a Standardized Questionnaire over the Past Two Decades. Neuroepidemiology 2021, 55, 369–380. [Google Scholar] [CrossRef]
- Jones, G.D.; Kariuki, S.M.; Ngugi, A.K.; Mwesige, A.K.; Masanja, H.; Owusu-Agyei, S.; Wagner, R.; Cross, J.H.; Sander, J.W.; Newton, C.R.; et al. Development and validation of a diagnostic aid for convulsive epilepsy in sub-Saharan Africa: A retrospective case-control study. Lancet Digit. Health 2023, 5, e185–e193. [Google Scholar] [CrossRef]
- Kander, V.; Hardman, J.; Wilmshurst, J.M. Understanding the landscape of electrophysiology services for children in sub-Saharan Africa. Epileptic Disord. 2021, 23, 812–822. [Google Scholar] [CrossRef]
- Kassahun Bekele, B.; Nebieridze, A.; Moses Daniel, I.; Byiringiro, C.; Nazir, A.; Algawork Kibru, E.; Wojtara, M.; Uwishema, O. Epilepsy in Africa: A multifaceted perspective on diagnosis, treatment, and community support. Ann. Med. Surg. 2023, 86, 624–627. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Armand Larsen, S.; Klok, L.; Lehn-Schiøler, W.; Gatej, R.; Beniczky, S. Low-cost portable EEG device for bridging the diagnostic gap in resource-limited areas. Epileptic Disord. 2024, 26, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Dekker, M.C.J.; Urasa, S.J.; Kellogg, M.; Howlett, W.P. Psychogenic non-epileptic seizures among patients with functional neurological disorder: A case series from a Tanzanian referral hospital and literature review. Epilepsia Open 2018, 3, 66–72. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bartolini, E.; Bell, G.S.; Sander, J.W. Multicultural challenges in epilepsy. Epilepsy Behav. 2011, 20, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Souirti, Z.; Hmidani, M.; Lamkadddem, A.; Khabbach, K.; Belakhdar, S.; Charkani, D.; Mhandez Tlemcani, D.; Lahmadi, N.; El Akramine, M.; Erriouiche, S.; et al. Prevalence of epilepsy in Morocco: A population-based study. Epilepsia Open. 2023, 8, 1340–1349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ngugi, A.K.; Kariuki, S.M.; Bottomley, C.; Kleinschmidt, I.; Sander, J.W.; Newton, C.R. Incidence of epilepsy: A systematic review and meta-analysis. Neurology 2011, 77, 1005–1012. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aaberg, K.M.; Gunnes, N.; Bakken, I.J.; Lund Søraas, C.; Berntsen, A.; Magnus, P.; Lossius, M.I.; Stoltenberg, C.; Chin, R.; Surén, P. Incidence and Prevalence of Childhood Epilepsy: A Nationwide Cohort Study. Pediatrics 2017, 139, e20163908. [Google Scholar] [CrossRef] [PubMed]
- Amudhan, S.; Gururaj, G.; Satishchandra, P. Epilepsy in India I: Epidemiology and public health. Ann. Indian Acad. Neurol. 2015, 18, 263–277. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Assis, T.R.; Bacellar, A.; Costa, G.; Nascimento, O.J. Etiological prevalence of epilepsy and epileptic seizures in hospitalized elderly in a Brazilian tertiary center—Salvador–Brazil. Arq. Neuro-Psiquiatr. 2015, 73, 83–89. [Google Scholar] [CrossRef] [PubMed]
Study | Topic and Type of Study | Main Findings |
---|---|---|
Fiest et al., 2017 [11] | International prevalence and incidence of epilepsy, systematic review and meta-analysis. | Worldwide pooled point prevalence of active epilepsy 6.38 per 1000 persons and pooled incidence rate of epilepsy 61.44 per 100,000 person-years. LMIC prevalence of active epilepsy 6.68 per 1000 persons compared to HIC prevalence of active epilepsy 5.49 per 1000 persons. |
Preux et al., 2005 [12] | Review of epidemiology and etiology of epilepsy in Sub-Saharan Africa. | Annual incidences of 63–158 per 100,000 inhabitants, higher than industrialized countries in nontropical areas of 40–70 per 100,000 inhabitants. Prevalence of epilepsy variable even in the same country with a median prevalence found in door-to-door studies of 15 per 1000 people. |
Beghi et al., 2020 [4] | Review of global epidemiology of epilepsy. | Incidence higher in LMICs than HICs, 139.0 vs. 48.9. As the incidence of epilepsy appears higher in most LMICs, the overlapping prevalence can be explained by misdiagnosis, acute symptomatic seizures and premature mortality. |
Kaiser et al., 1998 [14] | Incidence of epilepsy in Uganda, related to onchocerciasis. | Crude incidence rate of 215 per 100,000 person-years with a significant difference between zones of high and low onchocerciasis endemicity. |
Rwiza et al., 1992 [15] | Prevalence and incidence of epilepsy in a rural Tanzanian District. | Prevalence of active epilepsy 10.2 in 1000, ranging from 5.1 to 37.1 in 1000 (age-adjusted 5.8–37.0). In a 10-year period (1979–1988), annual incidence of 73.3 in 100,000. |
Tekle-Haimanot et al., 1997 [16] | Incidence of Epilepsy in Rural Central Ethiopia. | Annual incidence of 64 in 100,000 inhabitants. The corresponding rate for males was 72 (CI 42–102); for females, it was 57 (CI 31–84). The highest age-specific incidence occurred in the youngest age groups (0–9 years). |
Edwards et al., 2008 [17] | Prevalence and risk factors for ACE in a rural district of Kenya. | Overall prevalence of ACE 2.9 per 1000 people. On a 5 year cut off for date of last seizure, unadjusted prevalence of ACE 3.1 per 1000 (2.8–3.4 per 1000). |
Garrez et al., 2024 [18] | Epilepsy prevalence in rural Southern Rwanda. | Crude, unadjusted prevalence of lifetime epilepsy 76.2 per 1000 people. Prevalence adjusted for screening sensitivity 80.1 per 1000 people when. Crude prevalence standardized to the age distribution from Rwanda 78.3 per 1000 when, 89.1 per 1000 from the United States, and 85.3 per 1000 worldwide. |
Mwanga et al., 2024 [19] | Prevalence epilepsy in urban informal settlements in Kenya. | Crude prevalence of epilepsy 9.4 per 1000 people. Prevalence adjusted for attrition 11.5 per 1000 people and 11.9 per 1000 people (11.0–12.8) when adjusted for attrition and sensitivity. |
Biset et al., 2024 [20] | Systematic review and meta-analysis of prevalence, incidence, and trends of epilepsy among children and adolescents in Africa. | Pooled prevalence of cumulative epilepsy was 17.3 per 1000 children. Pooled prevalence of lifetime and ACE were 18.6 and 6.8 per 1000 children respectively. Pooled prevalence of unclassified epilepsy was 45.5 per 1000 children. Pooled prevalence of epilepsy in high parasite endemic areas was 44 per 1000 children. Pooled prevalence of epilepsy in the general population was 8 per 1000 children. The highest prevalence of epilepsy was reported in Southern African countries (129.3/1000) followed by Central African countries (32.3/1000) and Northern African countries (24.1/1000). |
Study | Population | Type of Study | Main Findings |
---|---|---|---|
Ngugi et al., 2013 [42] | South Africa, Ghana, Kenya, Tanzania, Uganda. | Observational cross-sectional, case–control. | Risk factors for active convulsive epilepsy in children (aged < 18 y) (p < 0.0001): seizure in the family; abnormal antenatal period; difficulties feeding, crying, or breathing; any other problems after birth. |
Kamuyu et al., 2014 [45] | South Africa, Ghana, Kenya, Tanzania, Uganda. | Observational cross-sectional, case–control. | Association between individual parasites (O. volvulus, T. canis and T. gondii) and ACE prevalence. Greater combined effect for coinfection with T. gondii and O. volvulus. |
Christensen et al., 2015 [46] | Malawi, Kenya, Uganda, Gabon, Mali. | Review. | Cerebral malaria is associated with an increased risk of epilepsy as a long-term adverse outcome (OR 4.68, 95% CI 2.52–8.70). |
Lompo et al., 2018 [39] | Burkina Faso. | Observational cross-sectional. | Main etiologies among nongenetic epilepsies:
|
Samia et al., 2019 [30] | Kenya. | Review. | Common risk factors in children for both epilepsy and acute seizures included adverse perinatal events, meningitis, malaria, febrile seizures, and family history of epilepsy. |
Sahlu et al., 2019 [55] | Burkina Faso. | Randomized, case–control. | Positive association between seropositivity to cysticercal antigens and active epilepsy (prevalence odds ratio: 2.40 (95% CI: 1.15–5.00)). |
Egesa et al., 2022 [35] | Kenya. | Review. | The most common etiologies of epilepsy: infectious (44.8%) and structural (36.4%). Structural causes were higher in CWE (44.9%) than in adults (26.9%), (p < 0.001). About 24.6% of persons had undetermined epilepsy causes. |
Essajee et al., 2022 [56] | South Africa. | Observational prospective. | A genetic underlying cause for DEE was identified in 18 of 41 CWE (diagnostic yield 43.9%) by performing a targeted next generation sequencing analysis. The more common pathogenic variants were found in SCN1A (n = 7), KANSL1 (n = 2), KCNQ2 (n = 2) and CDKL5 (n = 2). |
Apolot et al., 2022 [54] | Uganda. | Observational cross-sectional. | The prevalence of structural abnormalities among CWE was 74.15%. Acquired structural brain abnormalities were the commonest at 69.22% with hippocampal sclerosis (HS) leading while disorders of cortical development were the most common congenital causes. |
Mazumder et al., 2022 [51] | Uganda. | Observational longitudinal, case–control. | Comparison between structural changes in the brain MRI between nodding syndrome and other forms of OAE; relation between structural changes to the OV-induced immune responses and level of disability. Treatment of onchocerciasis reduces the seizure burden. |
Siewe Fodjo et al., 2022 [53] | Cameroon. | Observational longitudinal. | Documented ongoing transmission of onchocerciasis alongside a suboptimal ivermectin coverage: the patients with epilepsy were more Ov-infected than participants without epilepsy, supporting the existence of an association between onchocerciasis and epilepsy. Having O. volvulus infection and especially higher microfilarial loads was significantly associated with epilepsy. |
Esterhuizen et al., 2023 [57] | South Africa. | Observational longitudinal. | Tested genetically 234 naive South African children diagnosed with/possible DEE: 41 (of 234) children with likely/pathogenic variants, 26 had variants supporting precision therapy. Importance of early genetic diagnosis in DEE. We designed the “Think-Genetics” strategy for early recognition, appropriate interim management, and genetic testing for DEE in resource-constrained settings. |
Bhattacharyya et al., 2023 [48] | South Sudan. | Diagnostic/prognostic. | Development of a mathematical model to quantified transmission, disease parameters and predict the impact of ivermectin mass drug administration (MDA) and vector control. The model estimated an OAE prevalence of 4.1% in Maridi County. The OAE incidence is expected to rapidly decrease by >50% within the first five years of implementing annual MDA with good coverage (≥70%). With vector control at a high efficacy level (around 80% reduction in blackfly biting rates) as the sole strategy, the reduction is slower, requiring about 10 years to halve the OAE incidence. Increasing the efficacy levels of vector control, simultaneously with MDA, yielded better results in preventing new cases of OAE. |
Edridge et al., 2023 [44] | Uganda, Malawi, and Rwanda. | Observational. | Viral and bacterial CNS infections and IMDs are prevalent causes of severe acute encephalopathy in children in Uganda, Malawi, and Rwanda. These causes are likely to be missed by conventional diagnostics and are associated with poor outcome of disease. |
Jada et al., 2023 [47] | Sudan. | Longitudinal, population-based. | Onchocerciasis may induce seizures through direct or indirect mechanisms: strengthening onchocerciasis elimination interventions can decrease the incidence of epilepsy, including nodding syndrome. |
Kariuki et al., 2024 [38] | Kenya and South Africa. | Observational retrospective. | MRI abnormalities were found in 140 of 240 of PWE in Kenya, and in 62 of 91 in South Africa (pooled modeled prevalence = 61%) Abnormalities were common in those with a history of adverse perinatal events (65%, exposure to parasitic infections (69%) and focal electroencephalographic features (68%), 95% CI: 60%–76%). Mesial temporal sclerosis (43%) and gliosis (34%) were the most frequent abnormalities found. |
Colebunders et al., 2024 [49] | Sub-Saharan Africa. | Review. | Underline the strong association between onchocerciasis and seizures, reinforcing the concept of OAE; need for case definition to estimate the burden of disease and identify onchocerciasis-endemic areas requiring intensification of elimination programs and integration of epilepsy care. To reduce OAE burden, enhance collaboration with mental health programs at community, national, and international levels is required. |
Amaral et al., 2024 [52] | Sudan. | Observational prospective. | Observed decrease in epilepsy incidence despite suboptimal cumulative community-directed treatment with ivermectin coverage highlights the potential impact of onchocerciasis control efforts and underscores the need to strengthen these efforts. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Noia, S.; Bonezzi, L.; Accorinti, I.; Bartolini, E. Diagnosis and Classification of Pediatric Epilepsy in Sub-Saharan Africa: A Comprehensive Review. J. Clin. Med. 2024, 13, 6396. https://doi.org/10.3390/jcm13216396
Di Noia S, Bonezzi L, Accorinti I, Bartolini E. Diagnosis and Classification of Pediatric Epilepsy in Sub-Saharan Africa: A Comprehensive Review. Journal of Clinical Medicine. 2024; 13(21):6396. https://doi.org/10.3390/jcm13216396
Chicago/Turabian StyleDi Noia, Sofia, Linda Bonezzi, Ilaria Accorinti, and Emanuele Bartolini. 2024. "Diagnosis and Classification of Pediatric Epilepsy in Sub-Saharan Africa: A Comprehensive Review" Journal of Clinical Medicine 13, no. 21: 6396. https://doi.org/10.3390/jcm13216396
APA StyleDi Noia, S., Bonezzi, L., Accorinti, I., & Bartolini, E. (2024). Diagnosis and Classification of Pediatric Epilepsy in Sub-Saharan Africa: A Comprehensive Review. Journal of Clinical Medicine, 13(21), 6396. https://doi.org/10.3390/jcm13216396