Evaluating Fitness in Older Acute Myeloid Leukemia Patients: Balancing Therapy and Treatment Risks
Abstract
:1. Introduction
2. Non-Intensive Therapy for Newly Diagnosed Patients
3. Definition of Fitness
4. Determination of Ongoing Criteria to Evaluate Fitness
4.1. Age and Comorbidities
4.2. Performance Status
4.3. Multi-Parameter Assessment Tools
5. Fitness Criteria
6. The Concept of Clinical Dynamic Fitness
7. The Concept of Biological Dynamic Fitness
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dohner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute myeloid leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. [Google Scholar] [CrossRef] [PubMed]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef] [PubMed]
- Juliusson, G.; Antunovic, P.; Derolf, Å.; Lehmann, S.; Möllgård, L.; Stockelberg, D.; Tidefelt, U.; Wahlin, A.; Hoglund, M. Age and acute myeloid leukemia: Real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood 2009, 113, 4179–4187. [Google Scholar] [CrossRef] [PubMed]
- Thein, M.S.; Ershler, W.B.; Jemal, A.; Yates, J.W.; Baer, M.R. Outcome of older patients with acute myeloid leukemia: An Analysis of SEER Data Over 3 Decades. Cancer 2013, 119, 2720–2727. [Google Scholar] [CrossRef]
- Ferrara, F.; Barosi, G.; Venditti, A.; Angelucci, E.; Gobbi, M.; Pane, F.; Tosi, P.; Zinzani, P.; Tura, S. Consensus-based definition of unfitness to intensive and non-intensive chemotherapy in acute myeloid leukemia: A project of SIE, SIES and GITMO group on a new tool for therapy decision making. Leukemia 2013, 27, 997–999. [Google Scholar] [CrossRef]
- Dombret, H.; Seymour, J.F.; Butrym, A.; Wierzbowska, A.; Selleslag, D.; Jang, J.H.; Kumar, R.; Cavenagh, J.; Schuh, A.C.; Candoni, A.; et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood 2015, 126, 291–299. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; Thomas, X.G.; Dmoszynska, A.; Wierzbowska, A.; Mazur, G.; Mayer, J.; Gau, J.-P.; Chou, W.-C.; Buckstein, R.; Cermak, J.; et al. Multicenter, Randomized, Open-Label, Phase III Trial of Decitabine Versus Patient Choice, With Physician Advice, of Either Supportive Care or Low-Dose Cytarabine for the Treatment of Older Patients With Newly Diagnosed Acute Myeloid Leukemia. J. Clin. Oncol. 2012, 30, 2670–2677. [Google Scholar] [CrossRef]
- Pollyea, D.A.; Pratz, K.; Letai, A.; Jonas, B.A.; Wei, A.H.; Pullarkat, V.; Konopleva, M.; Thirman, M.J.; Arellano, M.; Becker, P.S.; et al. Venetoclax with azacitidine or decitabine in patients with newly diagnosed acute myeloid leukemia: Long term follow-up from a phase 1b study. Am. J. Hematol. 2021, 96, 208–217. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.; Wei, A.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Aza-citidine and venetoclax in previously untreated acute myeloid leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef]
- Wei, A.H.; Montesinos, P.; Ivanov, V.; DiNardo, C.D.; Novak, J.; Laribi, K.; Kim, I.; Stevens, D.A.; Fiedler, W.; Pagoni, M.; et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: A phase 3 randomized placebo-controlled trial. Blood 2020, 135, 2137–2145. [Google Scholar] [CrossRef]
- Montesinos, P.; Recher, C.; Vives, S.; Zarzycka, E.; Wang, J.; Bertani, G.; Heuser, M.; Calado, R.T.; Schuh, A.C.; Yeh, S.-P.; et al. Ivosidenib and Azacitidine in IDH1 -Mutated Acute Myeloid Leukemia. N. Engl. J. Med. 2022, 386, 1519–1531. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Schuh, A.C.; Stein, E.M.; Montesinos, P.; Wei, A.H.; de Botton, S.; Zeidan, A.M.; Fathi, A.T.; Kantarjian, H.M.; Bennett, J.M.; et al. Enasidenib plus azacitidine versus azacitidine alone in patients with newly diagnosed, mutant-IDH2 acute myeloid leukaemia (AG221-AML-005): A single-arm, phase 1b and randomised, phase 2 trial. Lancet Oncol. 2021, 22, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.F.; Huang, Y.; Lance, J.R.; Mao, H.C.; Dunbar, A.J.; McNulty, S.N.; Druley, T.; Li, Y.; Baer, M.R.; Stock, W.; et al. A study to assess the efficacy of enasidenib and risk-adapted addition of azacitidine in newly diagnosed IDH2-mutant AML. Blood Adv. 2024, 8, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Daver, N.; Dinardo, C.D.; Kadia, T.; Nasr, L.F.; Macaron, W.; Yilmaz, M.; Borthakur, G.; Montalban-Bravo, G.; Garcia-Manero, G.; et al. Azacitidine, venetoclax, and gilteritinib in Newly Diagnosed and Relapsed or Refrac-tory FLT3-Mutated AML. J. Clin. Oncol. 2024, 13, 1499–1508. [Google Scholar] [CrossRef]
- Heuser, M.; Smith, B.D.; Fiedler, W.; Sekeres, M.A.; Montesinos, P.; Leber, B.; Merchant, A.; Papayannidis, C.; Pérez-Simón, J.A.; Hoang, C.J.; et al. Clinical benefit of glasdegib plus low-dose cytarabine in patients with de novo and secondary acute myeloid leukemia: Long-term analysis of a phase II randomized trial. Ann. Hematol. 2021, 100, 1181–1194. [Google Scholar] [CrossRef]
- Appelbaum, F.R.; Gundacker, H.; Head, D.R.; Slovak, M.L.; Willman, C.L.; Godwin, J.E.; Anderson, J.E.; Petersdorf, S.H. Age and acute myeloid leukemia. Blood 2006, 107, 3481–3485. [Google Scholar] [CrossRef]
- Mangaonkar, A.A.; Patnaik, M.M. Patterns of Care and Survival for Elderly Acute Myeloid Leukemia—Challenges and Opportunities. Curr. Hematol. Malign.-Rep. 2017, 12, 290–299. [Google Scholar] [CrossRef]
- Medeiros, B.C.; Satram-Hoang, S.; Hurst, D.; Hoang, K.Q.; Momin, F.; Reyes, C. Big data analysis of treatment patterns and outcomes among elderly acute myeloid leukemia patients in the United States. Ann. Hematol. 2015, 94, 1127–1138. [Google Scholar] [CrossRef]
- Talati, C.; Dhulipala, V.C.; Extermann, M.T.; Ali, N.; Kim, J.; Komrokji, R.; Sweet, K.; Kuykendall, A.; Sehovic, M.; Reljic, T.; et al. Comparisons of commonly used front-line regimens on survival outcomes in patients aged 70 years and older with acute myeloid leukemia. Haematologica 2020, 105, 398–406. [Google Scholar] [CrossRef]
- Juliusson, G.; Höglund, M.; Lehmann, S. Hypo, Hyper, or Combo: New paradigm for treatment of acute myeloid leukemia in older people. Haematologica 2020, 105, 249–251. [Google Scholar] [CrossRef]
- Lazarevic, V.L.; Bredberg, A.; Lorenz, F.; Öhlander, E.; Antunovic, P.; Cammenga, J.; Wennström, L.; Möllgård, L.; Deneberg, S.; Derolf, A.; et al. Acute myeloid leukemia in very old patients. Haematologica 2018, 103, e578–e580. [Google Scholar] [CrossRef] [PubMed]
- Sabile, J.M.; Swords, R.; Tyner, J.W. Evaluating targeted therapies in older patients with TP53-mutated AML. Leuk. Lymphoma 2024, 65, 1201–1218. [Google Scholar] [CrossRef] [PubMed]
- Klepin, H.D. Geriatric perspective: How to assess fitness for chemotherapy in acute myeloid leukemia. Hematol. 2014, 2014, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Etienne, A.; Esterni, B.; Charbonnier, A.; Mozziconacci, M.; Arnoulet, C.; Coso, D.; Puig, B.; Gastaut, J.; Maraninchi, D.; Vey, N. Comorbidity is an independent predictor of complete remission in elderly patients receiving induction chemotherapy for acute myeloid leukemia. Cancer 2007, 109, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Giles, F.J.; Borthakur, G.; Ravandi, F.; Faderl, S.; Verstovsek, S.; Thomas, D.; Wierda, W.; Ferrajoli, A.; Kornblau, S.; Pierce, S.; et al. The haematopoietic cell transplantation comorbidity index score is predictive of early death and survival in patients over 60 years of age receiving induction therapy for acute myeloid leukaemia. Br. J. Haematol. 2007, 136, 624–627. [Google Scholar] [CrossRef]
- Sorror, M.L.; Maris, M.B.; Storb, R.; Baron, F.; Sandmaier, B.M.; Maloney, D.G.; Storer, B. Hematopoietic cell transplantation (HCT)-specific comorbidity index: A new tool for risk assessment before allogeneic HCT. Blood 2005, 106, 2912–2919. [Google Scholar] [CrossRef]
- Kadia, T.M.; Cortes, J.; Ravandi, F.; Jabbour, E.; Konopleva, M.; Benton, C.B.; Burger, J.; Sasaki, K.; Borthakur, G.; DiNardo, C.D.; et al. Cladribine and low-dose cytarabine alternating with decitabine as front-line therapy for elderly patients with acute myeloid leukaemia: A phase 2 single-arm trial. Lancet Haematol. 2018, 5, e411–e421. [Google Scholar] [CrossRef]
- Bonanad, S.; De la Rubia, J.; Gironella, M.; Persona, E.P.; González, B.; Lago, C.F.; Arnan, M.; Zudaire, M.; Rivas, J.H.; Soler, A.; et al. Development and psychometric validation of a brief comprehensive health status assessment scale in older patients with hematological malignancies: The GAH Scale. J. Geriatr. Oncol. 2015, 6, 353–361. [Google Scholar] [CrossRef]
- Klepin, H.D.; Geiger, A.M.; Tooze, J.A.; Kritchevsky, S.B.; Williamson, J.D.; Pardee, T.S.; Ellis, L.R.; Powell, B.L. Geriatric assessment predicts survival for older adults receiving induction chemotherapy for acute myelogenous leukemia. Blood 2013, 121, 4287–4294. [Google Scholar] [CrossRef]
- Deschler, B.; Ihorst, G.; Platzbecker, U.; Germing, U.; März, E.; de Figuerido, M.; Fritzsche, K.; Haas, P.; Salih, H.R.; Giagounidis, A.; et al. Parameters detected by geriatric and quality of life assessment in 195 older patients with myelodysplastic syndromes and acute myeloid leukemia are highly predictive for outcome. Haematologica 2013, 98, 208–216. [Google Scholar] [CrossRef]
- Klepin, H.D. Toward consensus on geriatric assessment in AML. Blood 2022, 139, 1605–1606. [Google Scholar] [CrossRef]
- Min, G.-J.; Cho, B.-S.; Park, S.-S.; Park, S.; Jeon, Y.-W.; Shin, S.-H.; Yahng, S.-A.; Yoon, J.-H.; Lee, S.-E.; Eom, K.-S.; et al. Geriatric assessment predicts nonfatal toxicities and survival for intensively treated older adults with AML. Blood 2022, 139, 1646–1658. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, V.R.; Wichman, C.; Al-Kadhimi, Z.S.; Koll, T.T.; Fisher, A.L.; Mahato, R.I.; Hyde, R.K.; Berger, A.; Armitage, J.O.; Holstein, S.A.; et al. Integrating geriatric assessment and genetic profiling to personalize therapy selection in older adults with acute myeloid leukemia. J. Geriatr. Oncol. 2022, 13, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.; O'Brien, S.; Cortes, J.; Giles, F.; Faderl, S.; Jabbour, E.; Garcia-Manero, G.; Wierda, W.; Pierce, S.; Shan, J.; et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syn-drome: Predictive prognostic models for outcome. Cancer 2006, 106, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- Röllig, C.; Thiede, C.; Gramatzki, M.; Aulitzky, W.; Bodenstein, H.; Bornhäuser, M.; Platzbecker, U.; Stuhlmann, R.; Schuler, U.; Soucek, S.; et al. A novel prognostic model in elderly patients with acute myeloid leukemia: Results of 909 patients entered into the pro-spective AML96 trial. Blood 2010, 116, 971–978. [Google Scholar] [CrossRef]
- Krug, U.; Röllig, C.; Koschmieder, A.; Heinecke, A.; Sauerland, M.C.; Schaich, M.; Thiede, C.; Kramer, M.; Braess, J.; Spiekermann, K.; et al. Complete remission and early death after intensive chemotherapy in patients aged 60 years or older with acute myeloid leu-kaemia: A web-based application for prediction of outcomes. Lancet 2010, 376, 2000–2008. [Google Scholar] [CrossRef]
- Borlenghi, E.; Pagani, C.; Zappasodi, P.; Bernardi, M.; Basilico, C.; Cairoli, R.; Fracchiolla, N.; Todisco, E.; Turrini, M.; Cattaneo, C.; et al. Validation of the “fitness criteria” for the treatment of older patients with acute myeloid leukemia: A multicenter study on a series of 699 patients by the Network Rete Ematologica Lombarda (REL). J. Geriatr Oncol. 2021, 12, 550–556. [Google Scholar] [CrossRef]
- Borlenghi, E.; Pagani, C.; Zappasodi, P.; Bernardi, M.; Basilico, C.; Todisco, E.; Fracchiolla, N.; Mancini, V.; Turrini, M.; Da Vià, M.; et al. Secondary acute myeloid leukaemia in elderly patients: Patient’s fitness criteria and ELN prognostic stratification can be applied to guide treatment decisions. An analysis of 280 patients by the network rete ematologica lombarda (REL). Am. J Hematol. 2018, 93, E54–E57. [Google Scholar] [CrossRef]
- Palmieri, R.; Paterno, G.; De Bellis, E.; Buzzatti, E.; Rossi, V.; Di Veroli, A.; Esposito, F.; Mercante, L.; Gurnari, C.; Casciani, P.; et al. Validation of SIE, Sies, GITMO Operational Criteria for the Definition of Fitness in Elderly Patients Affected with Acute Myeloid Leukemia: A Six-Years Retrospective Real-Life Experience. Blood 2019, 134, 2150. [Google Scholar] [CrossRef]
- Palmieri, R.; Othus, M.; Halpern, A.B.; Percival, M.-E.M.; Godwin, C.D.; Becker, P.S.; Walter, R.B. Accuracy of SIE/SIES/GITMO Consensus Criteria for Unfitness to Predict Early Mortality After Intensive Chemotherapy in Adults With AML or Other High-Grade Myeloid Neoplasm. J. Clin. Oncol. 2020, 38, 4163–4174. [Google Scholar] [CrossRef]
- Gratwohl, A. The EBMT risk score. Bone Marrow Transpl. 2012, 47, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Yanada, M.; Konuma, T.; Mizuno, S.; Saburi, M.; Shinohara, A.; Tanaka, M.; Marumo, A.; Sawa, M.; Uchida, N.; Ozawa, Y.; et al. Pre-dicting non-relapse mortality following allogeneic hematopoietic cell transplantation during first remission of acute myeloid leukemia. Bone Marrow Transpl. 2021, 56, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.H.; Döhner, H.; Pocock, C.; Montesinos, P.; Afanasyev, B.; Dombret, H.; Ravandi, F.; Sayar, H.; Jang, J.-H.; Porkka, K.; et al. Oral Azacitidine Maintenance Therapy for Acute Myeloid Leukemia in First Remission. N. Engl. J. Med. 2020, 383, 2526–2537. [Google Scholar] [CrossRef]
- Pratz, K.W.; DiNardo, C.D.; Arellano, M.L.; Letai, A.G.; Thirman, M.; Pullarkat, V.A.; Roboz, G.J.; Becker, P.S.; Hong, W.-J.; Jiang, Q.; et al. Outcomes after Stem Cell Transplant in Older Patients with Acute Myeloid Leukemia Treated with Venetoclax-Based Therapies. Blood 2019, 134, 264. [Google Scholar] [CrossRef]
- Vosberg, S.; Greif, P.A. Clonal evolution of acute myeloid leukemia from diagnosis to relapse. Genes Chromosom. Cancer 2019, 58, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xie, J.; Yang, X.; Shen, H.; Cen, J.; Yao, L.; Hu, X.; Wu, Q.; Zhang, J.; Qiu, H.; et al. Venetoclax Plus Decitabine for Young Adults with Newly Diagnosed ELN Adverse-Risk Acute Myeloid Leukemia: Interim Analysis of a Prospective, Multicenter, Single-Arm, Phase 2 Trial. Blood 2021, 138, 35. [Google Scholar] [CrossRef]
Criteria | Tools | Findings |
---|---|---|
Age and comorbidities | CCI HCT-CI | Although fitness is largely associated with age and the WHO has defined the chronological age of 65 years as the threshold for being considered elderly, chronological age alone should not be the only criterion for treatment decisions. On the other hand, the presence of comorbidities is crucial in refining both the response to treatment and the assessment of toxicity. However, the management of comorbidities should not rule out the possibility of intensive treatment [3,17,20,21]. |
Performance status | ECOG KPS | Performance status is an age-related but also age-independent tool that helps identify patients who are unfit for intensive chemotherapy. Additionally, the PS is correlated with both treatment response and overall survival [27]. |
Multi-parameter assessment tools | GAH SPPB MMS ADLs | The evaluation of geriatric assessment using various tools is useful in defining fitness in elderly patients. However, several studies demonstrated that a more accurate determination of fitness needed the integration of multiple geriatric assessment tools with the clinical and biological characteristics of the disease [27,28,29,31,34,35]. |
Criteria | Methodology | Findings |
---|---|---|
Ferrara et al., 2013 [5] | Delphi consensus-based process involving a panel of Italian hematologists | Definition of patients not fit for intensive and non-intensive chemotherapy. The panel provides conceptual and operational criteria to evaluate the fitness of AML patients. These criteria are easily applicable in clinical practice for determining three fitness groups: fit, unfit, and frail. |
Palmieri et al., 2019, 2020 [39] | Retrospective and real-life studies |
|
Borlenghi et al., 2018, 2021 [37] | Retrospective and real-life studies |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molica, M.; Canichella, M.; Jabbour, E.; Ferrara, F. Evaluating Fitness in Older Acute Myeloid Leukemia Patients: Balancing Therapy and Treatment Risks. J. Clin. Med. 2024, 13, 6399. https://doi.org/10.3390/jcm13216399
Molica M, Canichella M, Jabbour E, Ferrara F. Evaluating Fitness in Older Acute Myeloid Leukemia Patients: Balancing Therapy and Treatment Risks. Journal of Clinical Medicine. 2024; 13(21):6399. https://doi.org/10.3390/jcm13216399
Chicago/Turabian StyleMolica, Matteo, Martina Canichella, Elias Jabbour, and Felicetto Ferrara. 2024. "Evaluating Fitness in Older Acute Myeloid Leukemia Patients: Balancing Therapy and Treatment Risks" Journal of Clinical Medicine 13, no. 21: 6399. https://doi.org/10.3390/jcm13216399
APA StyleMolica, M., Canichella, M., Jabbour, E., & Ferrara, F. (2024). Evaluating Fitness in Older Acute Myeloid Leukemia Patients: Balancing Therapy and Treatment Risks. Journal of Clinical Medicine, 13(21), 6399. https://doi.org/10.3390/jcm13216399