Risk Factors for Prematurity and Congenital Malformations in Assisted Reproductive Technology Pregnancies—A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Data Collection
2.3. Statistical Analyses
3. Results
3.1. Prematurity
- -
- Having a twin pregnancy increased the odds of prematurity by 1456% (95% CI: 968.3–2268%).
- -
- Having a PIH pregnancy increased the odds of prematurity by 122.1% (95% CI: 44.1–242.2%).
- -
- Having an IFV pregnancy (vs. ICSI pregnancy) increased the odds of prematurity by 72.7% (95% CI: 25–138.5%).
- -
- Having a donor conception increased the odds of prematurity by 249.3% (95% CI: 114.4–469.1%).
- -
- Having a twin pregnancy increased the odds of prematurity by 1501% (95% CI: 974–2289%).
- -
- Having a PIH pregnancy increased the odds of prematurity by 167.6% (95% CI: 58.4–352%).
- -
- Having a donor conception increased the odds of prematurity by 80.4% (95% CI: 18.6–230.2%).
3.2. Congenital Malformations
- -
- Having a day 3 embryo increased the odds of congenital malformations by 228.1% (95% CI: 71.2–529%).
- -
- Having a fresh embryo increased the odds of congenital malformations by 122.5% (95% CI: 37.8–269%).
- -
- Having a donor conception increased the odds of congenital malformations by 142.1% (95% CI: 28.3–356.7%).
- -
- Having a day 3 embryo increased the odds of congenital malformations by 166.4% (95% CI: 36.2–420.8%).
- -
- Having a fresh embryo increased the odds of congenital malformations by 108.7% (95% CI: 25.9–246%).
- -
- Having a donor conception increased the odds of congenital malformations by 132.3% (95% CI: 21.2–345.4%).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eskew, A.M.; Jungheim, E.S. A History of Developments to Improve in Vitro Fertilization. Mo. Med. 2017, 114, 156–159. [Google Scholar] [PubMed]
- Szamatowicz, M. Assisted Reproductive Technology in Reproductive Medicine—Possibilities and Limitations. Ginekol. Pol. 2016, 87, 820–823. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.E.; Jelin, A.; Hoon, A.H.; Wilms Floet, A.M.; Levey, E.; Graham, E.M. Assisted Reproductive Technology: Short- and Long-term Outcomes. Dev. Med. Child Neurol. 2023, 65, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Singh, M. Assisted Reproductive Technology (ART) Techniques; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Cox, C.M.; Thoma, M.E.; Tchangalova, N.; Mburu, G.; Bornstein, M.J.; Johnson, C.L.; Kiarie, J. Infertility Prevalence and the Methods of Estimation from 1990 to 2021: A Systematic Review and Meta-Analysis. Hum. Reprod. Open 2022, 2022, hoac051. [Google Scholar] [CrossRef]
- Allahbadia, G.N.; Morimoto, Y. (Eds.) Ovarian Stimulation Protocols; Springer: New Delhi, India, 2016; ISBN 978-81-322-1120-4. [Google Scholar]
- Bosch, E.; Broer, S.; Griesinger, G.; Grynberg, M.; Humaidan, P.; Kolibianakis, E.; Kunicki, M.; La Marca, A.; Lainas, G.; Le Clef, N.; et al. ESHRE Guideline: Ovarian Stimulation for IVF/ICSI †. Hum. Reprod. Open 2020, 2020, hoaa009. [Google Scholar] [CrossRef]
- Sunderam, S.; Kissin, D.M.; Zhang, Y.; Jewett, A.; Boulet, S.L.; Warner, L.; Kroelinger, C.D.; Barfield, W.D. Assisted Reproductive Technology Surveillance—United States, 2018. MMWR Surveill. Summ. 2022, 71, 1–19. [Google Scholar] [CrossRef]
- Zargar, M.; Dehdashti, S.; Najafian, M.; Choghakabodi, P.M. Pregnancy Outcomes Following in Vitro Fertilization Using Fresh or Frozen Embryo Transfer. JBRA Assist. Reprod. 2021, 25, 570. [Google Scholar] [CrossRef]
- Bergenheim, S.J.; Saupstad, M.; Pistoljevic, N.; Andersen, A.N.; Forman, J.L.; Løssl, K.; Pinborg, A. Immediate versus Postponed Frozen Embryo Transfer after IVF/ICSI: A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2021, 27, 623–642. [Google Scholar] [CrossRef]
- Vela, G.; Luna, M.; Sandler, B.; Copperman, A.B. Advances and Controversies in Assisted Reproductive Technology. Mt. Sinai J. Med. 2009, 76, 506–520. [Google Scholar] [CrossRef]
- De Geyter, C. Assisted Reproductive Technology: Impact on Society and Need for Surveillance. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 3–8. [Google Scholar] [CrossRef]
- Balli, M.; Cecchele, A.; Pisaturo, V.; Makieva, S.; Carullo, G.; Somigliana, E.; Paffoni, A.; Vigano’, P. Opportunities and Limits of Conventional IVF versus ICSI: It Is Time to Come off the Fence. J. Clin. Med. 2022, 11, 5722. [Google Scholar] [CrossRef] [PubMed]
- Matteo, M. Assisted Reproductive Technology. In Practical Clinical Andrology; Springer International Publishing: Cham, Germany, 2023; pp. 237–250. [Google Scholar]
- Bedoschi, G.; Roque, M.; Esteves, S.C. ICSI and Male Infertility: Consequences to Offspring. In Male Infertility; Springer International Publishing: Cham, Germany, 2020; pp. 767–775. [Google Scholar]
- Geng, T.; Cheng, L.; Ge, C.; Zhang, Y. The Effect of ICSI in Infertility Couples with Non-Male Factor: A Systematic Review and Meta-Analysis. J. Assist. Reprod. Genet. 2020, 37, 2929–2945. [Google Scholar] [CrossRef] [PubMed]
- Kawwass, J.F.; Badell, M.L. Maternal and Fetal Risk Associated with Assisted Reproductive Technology. Obstet. Gynecol. 2018, 132, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Rosca, I.; Turenschi, A.; Raris-Denisa, A.; Popescu, D.-E.; Stoica, C.; Carp-Veliscu, A.; Jura, A.-M.-C.; Teodora Constantin, A. Association of Assisted Reproductive Technology with the Risk of Congenital Heart Defects: A 5-Year Retrospective Study—Experience from a Tertiary Maternity Hospital in Bucharest. Obstet. Gynecol. Res. 2023, 6, 281–294. [Google Scholar] [CrossRef]
- Luke, B.; Brown, M.B.; Wantman, E.; Schymura, M.J.; Browne, M.L.; Fisher, S.C.; Forestieri, N.E.; Rao, C.; Nichols, H.B.; Yazdy, M.M.; et al. The Risks of Birth Defects and Childhood Cancer with Conception by Assisted Reproductive Technology. Hum. Reprod. 2022, 37, 2672–2689. [Google Scholar] [CrossRef]
- Metwally, M.; Ledger, W.L. Long-Term Complications of Assisted Reproductive Technologies. Hum. Fertil. 2011, 14, 77–87. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Preterm Birth; World Health Organization (WHO): Geneva, Switzerland, 2023. [Google Scholar]
- Ohuma, E.O.; Moller, A.-B.; Bradley, E.; Chakwera, S.; Hussain-Alkhateeb, L.; Lewin, A.; Okwaraji, Y.B.; Mahanani, W.R.; Johansson, E.W.; Lavin, T.; et al. National, Regional, and Global Estimates of Preterm Birth in 2020, with Trends from 2010: A Systematic Analysis. Lancet 2023, 402, 1261–1271. [Google Scholar] [CrossRef]
- Santi, E.; Nencini, G.; Cerni, A.; Greco, P.; Spelzini, F.; Tormettino, B.; Scioscia, M. The PLART Study: Incidence of Preterm Labor and Adverse Pregnancy Outcomes after Assisted Reproductive Techniques—A Retrospective Cohort Study. Arch. Gynecol. Obstet. 2019, 300, 911–916. [Google Scholar] [CrossRef]
- Cavoretto, P.; Candiani, M.; Giorgione, V.; Inversetti, A.; Abu-Saba, M.M.; Tiberio, F.; Sigismondi, C.; Farina, A. Risk of Spontaneous Preterm Birth in Singleton Pregnancies Conceived after IVF/ICSI Treatment: Meta-analysis of Cohort Studies. Ultrasound Obstet. Gynecol. 2018, 51, 43–53. [Google Scholar] [CrossRef]
- Bu, Z.; Zhang, J.; Hu, L.; Sun, Y. Preterm Birth in Assisted Reproductive Technology: An Analysis of More Than 20,000 Singleton Newborns. Front. Endocrinol. 2020, 11, 558819. [Google Scholar] [CrossRef]
- Mulualem, G.; Wondim, A.; Woretaw, A. The Effect of Pregnancy Induced Hypertension and Multiple Pregnancies on Preterm Birth in Ethiopia: A Systematic Review and Meta-Analysis. BMC Res. Notes 2019, 12, 91. [Google Scholar] [CrossRef] [PubMed]
- Ulfsdottir, H.; Grandahl, M.; Björk, J.; Karlemark, S.; Ekéus, C. The Association between Pre-eclampsia and Neonatal Complications in Relation to Gestational Age. Acta Paediatr. 2024, 113, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Tocariu, R.; Stan, D.; Mitroi, R.F.; Căldăraru, D.E.; Dinulescu, A.; Dobre, C.E.; Brătilă, E. Incidence of Complications among in Vitro Fertilization Pregnancies. J. Med. Life 2023, 16, 399–405. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Jin, M.; Li, Z.; Zhang, L.; Li, H.; Zhang, Y.; Ye, R.; Li, N. Impact of Gestational Hypertension and Pre-Eclampsia on Preterm Birth in China: A Large Prospective Cohort Study. BMJ Open 2022, 12, e058068. [Google Scholar] [CrossRef]
- Chih, H.J.; Elias, F.T.S.; Gaudet, L.; Velez, M.P. Assisted Reproductive Technology and Hypertensive Disorders of Pregnancy: Systematic Review and Meta-Analyses. BMC Pregnancy Childbirth 2021, 21, 449. [Google Scholar] [CrossRef]
- Almasi-Hashiani, A.; Omani-Samani, R.; Mohammadi, M.; Amini, P.; Navid, B.; Alizadeh, A.; Khedmati Morasae, E.; Maroufizadeh, S. Assisted Reproductive Technology and the Risk of Preeclampsia: An Updated Systematic Review and Meta-Analysis. BMC Pregnancy Childbirth 2019, 19, 149. [Google Scholar] [CrossRef]
- Sullivan, E.A.; Wang, Y.A. Higher Prevalence of Pregnancy Induced Hypertension Following Assisted Reproductive Technology Treatment. Fertil. Steril. 2013, 100, S44. [Google Scholar] [CrossRef]
- Veeramani, M.; Balachandren, N.; Hong, Y.H.; Lee, J.; Corno, A.F.; Mavrelos, D.; Kastora, S.L. Assisted Reproduction and Congenital Malformations: A Systematic Review and Meta-analysis. Congenit. Anom. 2024, 64, 107–115. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Congenital Disorders; World Health Organization (WHO): Geneva, Switzerland, 2023. [Google Scholar]
- Chimah, O.U.; Emeagui, K.N.; Ajaegbu, O.C.; Anazor, C.V.; Ossai, C.A.; Fagbemi, A.J.; Emeagui, O.D. Congenital Malformations: Prevalence and Characteristics of Newborns Admitted into Federal Medical Center, Asaba. Heal. Sci. Rep. 2022, 5, e599. [Google Scholar] [CrossRef]
- Klonoff-Cohen, H.; Polavarapu, M. Assessing the Relationship Between Traditional In Vitro Fertilization and Birth Defects: A Systematic Review and Meta-Analysis. J. IVF-Worldw. 2023, 1, 1–19. [Google Scholar] [CrossRef]
- Deyhoul, N.; Mohamaddoost, T.; Hosseini, M. Infertility-Related Risk Factors: A Systematic Review. Int. J. Women’s Health Reprod. Sci. 2017, 5, 24–29. [Google Scholar] [CrossRef]
- European Society of Human Reproduction and Embryology. ART Fact Sheet; European Society of Human Reproduction and Embryology: Brussels, Belgium, 2023. [Google Scholar]
- Bhattacharya, S.; Hamilton, M.; Shaaban, M.; Khalaf, Y.; Seddler, M.; Ghobara, T.; Braude, P.; Kennedy, R.; Rutherford, A.; Hartshorne, G.; et al. Conventional In-Vitro Fertilisation versus Intracytoplasmic Sperm Injection for the Treatment of Non-Male-Factor Infertility: A Randomised Controlled Trial. Lancet 2001, 357, 2075–2079. [Google Scholar] [CrossRef] [PubMed]
- Gliozheni, O.; Hambartsoumian, E.; Strohmer, H.; Petrovskaya, E.; Tishkevich, O.; de Neubourg, D.; Bogaerts, K.; Balic, D.; Sibincic, S.; Antonova, I.; et al. ART in Europe, 2018: Results Generated from European Registries by ESHRE. Hum. Reprod. Open 2022, 2022, hoac022. [Google Scholar] [CrossRef]
- Haddad, M.; Stewart, J.; Xie, P.; Cheung, S.; Trout, A.; Keating, D.; Parrella, A.; Lawrence, S.; Rosenwaks, Z.; Palermo, G.D. Thoughts on the Popularity of ICSI. J. Assist. Reprod. Genet. 2021, 38, 101–123. [Google Scholar] [CrossRef]
- Gliozheni, O.; Hambartsoumian, E.; Strohmer, H.; Petrovskaya, E.; Tishkevich, O.; De Neubourg, D.; Bogaerts, K.; Balic, D.; Antonova, I.; Cvetkova, E.; et al. ART in Europe, 2019: Results Generated from European Registries by ESHRE. Hum. Reprod. 2023, 38, 2321–2338. [Google Scholar] [CrossRef]
- Pinborg, A.; Wennerholm, U.B.; Romundstad, L.B.; Loft, A.; Aittomaki, K.; Soderstrom-Anttila, V.; Nygren, K.G.; Hazekamp, J.; Bergh, C. Why Do Singletons Conceived after Assisted Reproduction Technology Have Adverse Perinatal Outcome? Systematic Review and Meta-Analysis. Hum. Reprod. Update 2013, 19, 87–104. [Google Scholar] [CrossRef]
- Zhang, N.; Tian, T.; Li, J.; Zhu, X.; Jiesisibieke, D.; Fang, S.; Liu, P.; Li, R.; Qiao, J.; Yang, R. A Comparison of Pregnancy Outcomes and Congenital Malformations in Offspring between Patients Undergoing Intracytoplasmic Sperm Injection and Conventional in Vitro Fertilization: A Retrospective Cohort Study. Fertil. Steril. 2024, 121, 982–990. [Google Scholar] [CrossRef]
- Wen, J.; Jiang, J.; Ding, C.; Dai, J.; Liu, Y.; Xia, Y.; Liu, J.; Hu, Z. Birth Defects in Children Conceived by in Vitro Fertilization and Intracytoplasmic Sperm Injection: A Meta-Analysis. Fertil. Steril. 2012, 97, 1331–1337.e4. [Google Scholar] [CrossRef]
- Bao, J.; Chen, L.; Hao, Y.; Wu, H.; He, X.; Lu, C.; Ji, X.; Qiao, J.; Wang, Y.; Chi, H. Prognosis of Congenital Anomalies in Conceptions Following In Vitro Fertilization: A Multicenter Retrospective Cohort Study in China. Front. Endocrinol. 2022, 13, 900499. [Google Scholar] [CrossRef]
- Henningsen, A.-K.A.; Opdahl, S.; Wennerholm, U.-B.; Tiitinen, A.; Rasmussen, S.; Romundstad, L.B.; Bergh, C.; Gissler, M.; Forman, J.L.; Pinborg, A. Risk of Congenital Malformations in Live-Born Singletons Conceived after Intracytoplasmic Sperm Injection: A Nordic Study from the CoNARTaS Group. Fertil. Steril. 2023, 120, 1033–1041. [Google Scholar] [CrossRef]
- Schwartz, K.M.; Boulet, S.L.; Kawwass, J.F.; Kissin, D.M. Perinatal Outcomes among Young Donor Oocyte Recipients. Hum. Reprod. 2019, 34, 2533–2540. [Google Scholar] [CrossRef] [PubMed]
- Boulet, S.L.; Kawwass, J.F.; Crawford, S.; Davies, M.J.; Kissin, D.M. Preterm Birth and Small Size for Gestational Age in Singleton, In Vitro Fertilization Births Using Donor Oocytes. Am. J. Epidemiol. 2018, 187, 1642–1650. [Google Scholar] [CrossRef] [PubMed]
- Berntsen, S.; Larsen, E.C.; la Cour Freiesleben, N.; Pinborg, A. Pregnancy Outcomes Following Oocyte Donation. Best Pract. Res. Clin. Obstet. Gynaecol. 2021, 70, 81–91. [Google Scholar] [CrossRef]
- Adams, D.H.; Clark, R.A.; Davies, M.J.; de Lacey, S. A Meta-Analysis of Neonatal Health Outcomes from Oocyte Donation. J. Dev. Orig. Health Dis. 2016, 7, 257–272. [Google Scholar] [CrossRef]
- Banker, M.; Arora, P.; Banker, J.; Benani, H.; Shah, S.; Lalitkumar, P.G.L. Prevalence of Structural Birth Defects in IVF-ICSI Pregnancies Resulting from Autologous and Donor Oocytes in Indian Sub-continent: Results from 2444 Births. Acta Obstet. Gynecol. Scand. 2019, 98, 715–721. [Google Scholar] [CrossRef]
- Tocariu, R.; Niculae, L.E.; Niculae, A.Ș.; Carp-Velișcu, A.; Brătilă, E. Fresh versus Frozen Embryo Transfer in In Vitro Fertilization/Intracytoplasmic Sperm Injection Cycles: A Systematic Review and Meta-Analysis of Neonatal Outcomes. Medicina 2024, 60, 1373. [Google Scholar] [CrossRef]
- Raja, E.-A.; Bhattacharya, S.; Maheshwari, A.; McLernon, D.J. Comparison of Perinatal Outcomes after Frozen or Fresh Embryo Transfer: Separate Analyses of Singleton, Twin, and Sibling Live Births from a Linked National in Vitro Fertilization Registry. Fertil. Steril. 2022, 118, 323–334. [Google Scholar] [CrossRef]
- Maheshwari, A.; Pandey, S.; Amalraj Raja, E.; Shetty, A.; Hamilton, M.; Bhattacharya, S. Is Frozen Embryo Transfer Better for Mothers and Babies? Can Cumulative Meta-Analysis Provide a Definitive Answer? Hum. Reprod. Update 2018, 24, 35–58. [Google Scholar] [CrossRef]
- Pelkonen, S.; Hartikainen, A.-L.; Ritvanen, A.; Koivunen, R.; Martikainen, H.; Gissler, M.; Tiitinen, A. Major Congenital Anomalies in Children Born after Frozen Embryo Transfer: A Cohort Study 1995–2006. Hum. Reprod. 2014, 29, 1552–1557. [Google Scholar] [CrossRef]
- Yang, M.; Lin, L.; Sha, C.; Li, T.; Gao, W.; Chen, L.; Wu, Y.; Ma, Y.; Zhu, X. Which Is Better for Mothers and Babies: Fresh or Frozen-Thawed Blastocyst Transfer? BMC Pregnancy Childbirth 2020, 20, 559. [Google Scholar] [CrossRef]
- Hwang, S.S.; Dukhovny, D.; Gopal, D.; Cabral, H.; Diop, H.; Coddington, C.C.; Stern, J.E. Health Outcomes for Massachusetts Infants after Fresh versus Frozen Embryo Transfer. Fertil. Steril. 2019, 112, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Dar, S.; Librach, C.L.; Gunby, J.; Bissonnette, F.; Cowan, L. Increased Risk of Preterm Birth in Singleton Pregnancies after Blastocyst versus Day 3 Embryo Transfer: Canadian ART Register (CARTR) Analysis. Hum. Reprod. 2013, 28, 924–928. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Cai, L.; Liu, C.; Li, J.; Hu, X.; Lai, Y.; Shen, L.; Sui, C.; Zhang, H.; Qian, K. Nomogram for Predicting the Risk of Preterm Delivery after IVF/ICSI Treatment: An Analysis of 11,513 Singleton Births. Front. Endocrinol. 2023, 14, 1065291. [Google Scholar] [CrossRef] [PubMed]
- Jugulete, G.; Pacurar, D.; Pavelescu, M.L.; Safta, M.; Gheorghe, E.; Borcoș, B.; Pavelescu, C.; Oros, M.; Merișescu, M. Clinical and Evolutionary Features of SARS-CoV-2 Infection (COVID-19) in Children, a Romanian Perspective. Children 2022, 9, 1282. [Google Scholar] [CrossRef] [PubMed]
- Engels Calvo, V.; Cruz Melguizo, S.; Abascal-Saiz, A.; Forcén Acebal, L.; Sánchez-Migallón, A.; Pintado Recarte, P.; Cuenca Marín, C.; Marcos Puig, B.; Del Barrio Fernández, P.G.; Nieto Velasco, O.; et al. Perinatal Outcomes of Pregnancies Resulting from Assisted Reproduction Technology in SARS-CoV-2-Infected Women: A Prospective Observational Study. Fertil. Steril. 2021, 116, 731–740. [Google Scholar] [CrossRef]
- Pavelescu, M.L.; Dinulescu, A.; Păsărică, A.-S.; Dijmărescu, I.; Păcurar, D. Hematological Profile, Inflammatory Markers and Serum Liver Enzymes in COVID 19 Positive Children vs. COVID 19 Negative Ones—A Comparative Study. Front. Pediatr. 2024, 12, 1334591. [Google Scholar] [CrossRef]
- Popescu, D.E.; Roșca, I.; Jura, A.M.C.; Cioca, A.; Pop, O.; Lungu, N.; Popa, Z.-L.; Rațiu, A.; Boia, M. Prompt Placental Histopathological and Immunohistochemical Assessment after SARS-CoV-2 Infection during Pregnancy—Our Perspective of a Small Group. Int. J. Mol. Sci. 2024, 25, 1836. [Google Scholar] [CrossRef]
- Rjeily, W.A.; Alataş, C.; Alkon, T.; Luna, M.; Balic, D.; Barros, A.; Beckers, N.; Begum, R.; Boeykens, F.; Boleac, I.; et al. Outcomes of SARS-CoV-2 Infected Pregnancies after Medically Assisted Reproduction. Hum. Reprod. 2021, 36, 2883–2890. [Google Scholar] [CrossRef]
Term Newborns | Preterm Newborns | Fisher’s Exact Test (p) | |
---|---|---|---|
Single pregnancy | 494 (83.2%) | 100 (16.8%) | <0.001 |
Twin pregnancy | 53 (24.1%) | 167 (75.9%) |
Term Newborns | Preterm Newborns | Fisher’s Exact Test (p) | |
---|---|---|---|
Non-hypertension pregnancy | 499 (69.4%) | 220 (30.6%) | <0.001 |
PIH pregnancy | 48 (50.5%) | 47 (49.5%) |
Term Newborns | Preterm Newborns | Fisher’s Exact Test (p) | |
---|---|---|---|
IVF pregnancy | 339 (63.2%) | 197 (36.8%) | =0.001 |
ICSI pregnancy | 208 (74.8%) | 70 (25.2%) |
Term Newborns | Preterm Newborns | Fisher’s Exact Test (p) | |
---|---|---|---|
No | 517 (70%) | 222 (30%) | <0.001 |
Yes | 30 (40%) | 45 (60%) |
Parameter | Univariable | Multivariable | ||
---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | |
Twin pregnancy | 15.556 (10.683–22.680) | <0.001 | 16.018 (10.74–23.889) | <0.001 |
PIH pregnancy | 2.221 (1.441–3.422) | <0.001 | 2.676 (1.584–4.52) | <0.001 |
IVF pregnancy | 1.727 (1.25–2.385) | =0.001 | 0.881 (0.595–1.306) | =0.528 |
Donor conception | 3.493 (2.144–5.691) | <0.001 | 1.804 (1.186–3.302) | =0.044 |
Day 3 Embryo | Day 5 Embryo | Fisher’s Exact Test (p) | |
---|---|---|---|
Normal newborn | 46 (76.7%) | 690 (91.5%) | =0.001 |
Congenital malformations | 14 (23.3%) | 64 (8.5%) |
Fresh Embryo | Frozen Embryo | Fisher’s Exact Test (p) | |
---|---|---|---|
Normal newborn | 153 (84.1%) | 583 (92.2%) | =0.002 |
Congenital malformations | 29 (15.9%) | 49(7.8%) |
Own Conception | Donor Conception | Fisher’s Exact Test (p) | |
---|---|---|---|
Normal newborn | 675 (91.3%) | 61 (81.3%) | =0.011 |
Congenital malformations | 64 (8.7%) | 14 (18.7%) |
Parameter | Univariable | Multivariable | ||
---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | |
Stage of embryo (day 3) | 3.281 (1.712–6.29) | <0.001 | 2.664 (1.362–5.208) | 0.004 |
Protocol for embryo transfer (fresh) | 2.255 (1.378–3.69) | <0.001 | 2.087 (1.259–3.46) | 0.004 |
Donor conception | 2.421 (1.283–4.567) | =0.006 | 2.323 (1.212–4.454) | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tocariu, R.; Dinulescu, A.; Prejmereanu, A.; Maier, C.; Coricovac, A.-M.; Archir, E.-D.; Niculae, L.E.; Brătilă, E. Risk Factors for Prematurity and Congenital Malformations in Assisted Reproductive Technology Pregnancies—A Retrospective Study. J. Clin. Med. 2024, 13, 6470. https://doi.org/10.3390/jcm13216470
Tocariu R, Dinulescu A, Prejmereanu A, Maier C, Coricovac A-M, Archir E-D, Niculae LE, Brătilă E. Risk Factors for Prematurity and Congenital Malformations in Assisted Reproductive Technology Pregnancies—A Retrospective Study. Journal of Clinical Medicine. 2024; 13(21):6470. https://doi.org/10.3390/jcm13216470
Chicago/Turabian StyleTocariu, Raluca, Alexandru Dinulescu, Ana Prejmereanu, Călina Maier, Anca-Magdalena Coricovac, Evelyn-Denise Archir, Lucia Elena Niculae, and Elvira Brătilă. 2024. "Risk Factors for Prematurity and Congenital Malformations in Assisted Reproductive Technology Pregnancies—A Retrospective Study" Journal of Clinical Medicine 13, no. 21: 6470. https://doi.org/10.3390/jcm13216470
APA StyleTocariu, R., Dinulescu, A., Prejmereanu, A., Maier, C., Coricovac, A.-M., Archir, E.-D., Niculae, L. E., & Brătilă, E. (2024). Risk Factors for Prematurity and Congenital Malformations in Assisted Reproductive Technology Pregnancies—A Retrospective Study. Journal of Clinical Medicine, 13(21), 6470. https://doi.org/10.3390/jcm13216470