Bioimpedance Analysis in CKD and HF Patients: A Critical Review of Benefits, Limitations, and Future Directions
Abstract
:1. Introduction
2. BIA Methods
2.1. Single-Frequency BIA (SF-BIA) and BIVA
2.2. Multiple-Frequency BIA (MF-BIA) and BIS
2.3. The Devices
2.4. Clinical Relevance of BIA in HF Patients
Author | Year | Type of Study | Patients | BIA Method | Endpoints | Limitations | Main Results |
---|---|---|---|---|---|---|---|
Packer- (PREDICT) [45] | 2006 | Prospective non-randomized study | 212 | Non-invasive transthoracic impedance | All-cause mortality or HF hospitalizations in 14 days | Small sample size | Beneficial Effects Clinical and ICG multi-parameters such as thoracic fluid content (TFC) predict HF at 14 days (p = 0.0002). High-risk ICG score presents an 8.4% event rate at 14 days (Accuracy: 41.6%) |
Di Somma [46] | 2010 | Prospective non-randomized study | 51 | BIVA | All-cause mortality or HF hospitalizations in 90 days | Small sample size | Beneficial Effects Overhydration > 80.5% measured with BIVA correlated with primary endpoint at 3 months (Sensitivity: 22%; Specificity: 94.2%) |
van Veldhuisen—(DOT-HF) [52] | 2011 | Randomized trial - Remote Monitoring | 335 | Intrathoracic impedance monitoring | All-cause mortality or HF hospitalizations in 15 months | Terminated prematurely due to slow enrollment | Neutral Effects No difference in mortality between groups (p = 0.54); number of outpatient visits was higher in the intervention group where intrathoracic impedance was measured (250 vs. 84; p < 0.0001). |
Anand— (MUSIC Study) [48] | 2012 | Prospective non-randomized study - Remote Monitoring | 543 | Non-invasive transthoracic impedance | ADHF event in 90 days | High exclusion rate due to device failure or withdrawal of consent | Beneficial Effects TFC found sensitive for predicting HF decompensation up to 9–11 days in advance. TFC increase of 7.5% from baseline was found to predict the primary endpoint (Sensitivity: 77%; Specificity: 64%). |
Gyllensten [49] | 2016 | Prospective non-randomized study - Remote Monitoring | 91 | Non-invasive transthoracic impedance | ADHF event in 14 days | Possibility of early intervention affecting results, small sample size | Beneficial Effects Non-invasive transthoracic BIA hydration status predicts a decompensation event 2 weeks in advance (p < 0.001). Neutral Effects Non-invasive transthoracic BIA and its algorithms had a low positive predictive value for overt HF decompensation events. |
Darling— (SENTINEL -HF) [50] | 2017 | Prospective non-randomized study - Remote Monitoring | 16 | Non-invasive transthoracic impedance | ADHF event in 45 days | Small sample size, specificity was affected by false positives, homogeneous cohort | Beneficial Effects An algorithm utilizing multiparametric non-invasive thoracic BIA is highly predictive for the identification of recurrent HF events at 45 days (Accuracy: 72%) |
Santarelli [47] | 2017 | Prospective non-randomized study | 336 | BIVA | All-cause mortality or HF hospitalizations in 90 days | Higher accuracy if BIVA is utilized with clinical signs | Beneficial Effects BIVA measured hydration status predicts the primary endpoints at admission (area under the curve (AUC) 0.56, p < 0.04) and at discharge (AUC 0.57, p < 0.03). By combining BIVA with clinical signs, a high predictive value for cardiovascular events at 90 days (AUC 0.97, p < 0.0001) was observed. |
Anshory [53] | 2024 | Prospective non-randomized study | 111 | Non-invasive transthoracic impedance + BIVA | All-cause mortality or HF hospitalizations in 30 days | Drugs used in patient treatment and inotropic usage may have conditioned the results | Beneficial Effects Hemodynamic parameters like cardiac output, and TBW data significantly predicted 30-day cardiovascular mortality and rehospitalization. At discharge, a value of cardiac output was a significant predictor for 30-day rehospitalization. |
2.5. Clinical Relevance of BIA in CKD Patients
Author | Year | Type of Study | Patients | BIA Method | Endpoints | Limitations | Main Results |
---|---|---|---|---|---|---|---|
Onofriescu [60] | 2014 | Prospective randomized controlled trial - Hemodialysis | 131 | BIS | All-cause mortality | Underpowered regarding mortality outcomes due to younger cohort and a lower diabetes rate | Beneficial Effects BIA-based fluid management significantly reduced mortality in HD patients (HR = 0.100 95% CI, 0.013–0.805). |
Huan-Sheng—(ABISAD III) [61] | 2016 | Prospective randomized controlled trial - Hemodialysis | 298 | BIS | All-cause hospitalizations AFO | This study focused on FO post HD; further studies are needed to show whether other interventions besides weight adjustment play a role in this improvement | Beneficial Effects AFO incidence, cardiovascular events, or intradialytic complications were significantly reduced in the intervention group. Neutral Effects All-cause hospitalization rate was not different between groups. |
Zoccali [62] | 2017 | Prospective non-randomized study - Hemodialysis | 39,566 | BIS | All-cause mortality at 1 and 4 years | Purely observational nature of the study | Beneficial Effects Baseline OHI/ECW > 15% in men and >13% in women at baseline were independent predictors of mortality in HD patients (HR = 1.26, 95% CI 1.19–1.33). |
Tabinor [64] | 2018 | Meta-analysis - Hemodialysis | 60,790 | Various BIA methods | Mortality | Methodological heterogeneity, inadequately reported demographics and report of endpoints | Beneficial Effects Baseline pre-dialysis OHI > 15% is predictive for mortality in HD patients (HR = 2.28, 95% CI 1.56–3.34). |
Dekker [63] | 2018 | Prospective study - Hemodialysis | 8883 | BIS | Mortality | No documentation of antihypertensive medications, echocardiographic results are not available and cardiac failure is likely underreported | Beneficial Effects Pre-dialysis FO (>+1.1 to +2.5 L) together with pre-SBP < 110 mmHg was associated with an increased mortality (HR = 1.52; 95% CI 1.06–2.17). |
Liu—(BOCOMO Study) [67] | 2020 | Prospective randomized controlled trial - Hemodialysis | 445 | BIS | All-cause mortality, myocardial infarction, cerebral infarction, cerebral hemorrhage, and peripheral vascular disease | Small cohort and limited follow up period | Neutral Effects An increasing trend of survival rates in patients with BIA-guided HD fluid management was observed; however, no significant difference observed (log-rank test, p = 0.07). |
Horowitz [65] | 2023 | Systematic Review and Meta-Analysis - Hemodialysis | 2420 | Various BIA methods | All-cause mortality, blood pressure control, all-cause hospitalization, major adverse cardiovascular events, and change in left ventricular mass index | Heterogeneity in reported endpoints/outcomes | Beneficial Effects In HD patients using BIA-guided fluid management decreases all-cause mortality and blood pressure. Neutral Effects No significant difference in all-cause hospitalization, major adverse cardiac event, or change in left ventricular mass index was observed. |
Stigger [68] | 2023 | Prospective randomized controlled trial - Hemodialysis | 110 | BIS | All-cause mortality, blood pressure control, and all-cause hospitalization | Small sample size | Beneficial Effects BIA-guided fluid management utilization significantly reduced the incidence rate of hospital admissions in HD patients. |
2.6. Diagnosis, Therapy, and Risk Stratification in HF and CKD
2.7. Advantages of BIA
2.8. Limitations of BIA
2.9. Future Perspectives
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- National Institutes of Health. Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference Statement. Am. J. Clin. Nutr. 1996, 64 (Suppl. S3), 524S–532S. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C.; Bolonchuk, W.W.; Hall, C.B.; Siders, W.A. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J. Appl. Physiol. 1986, 60, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C.; Vega Diaz, N.; Talluri, A.; Nescolarde, L. Classification of Hydration in Clinical Conditions: Indirect and Direct Approaches Using Bioimpedance. Nutrients 2019, 11, 809. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C.; Talluri, A. Phase angle as an index of physiological status: Validating bioelectrical assessments of hydration and cell mass in health and disease. Rev. Endocr. Metab. Disord. 2023, 24, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N.; Chumlea, W.C.; Roche, A. Estimation of body composition from bioelectric impedance of body segments. Am. J. Clin. Nutr. 1989, 50, 221–226. [Google Scholar] [CrossRef]
- Kotanko, P.; Levin, N.W.; Zhu, F. Current state of bioimpedance technologies in dialysis. Nephrol. Dial. Transplant. 2008, 23, 808–812. [Google Scholar] [CrossRef]
- Thomas, B.J.; Ward, L.C.; Cornish, B.H. Bioimpedance spectrometry in the determination of body water compartments: Accuracy and clinical significance. Appl. Radiat. Isot. 1998, 49, 447–455. [Google Scholar] [CrossRef]
- Chamney, P.W.; Krämer, M.; Rode, C.; Kleinekofort, W.; Wizemann, V. A new technique for establishing dry weight in hemodialysis patients via whole body bioimpedance. Kidney Int. 2002, 61, 2250–2258. [Google Scholar] [CrossRef]
- Charra, B. Fluid balance, dry weight, and blood pressure in dialysis. Hemodial. Int. 2007, 11, 21–31. [Google Scholar] [CrossRef]
- Khalil, S.F.; Mohktar, M.S.; Ibrahim, F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 2014, 14, 10895–10928. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef] [PubMed]
- La Porta, E.; Lanino, L.; Calatroni, M.; Caramella, E.; Avella, A.; Quinn, C.; Faragli, A.; Estienne, L.; Alogna, A.; Esposito, P. Volume Balance in Chronic Kidney Disease: Evaluation Methodologies and Innovation Opportunities. Kidney Blood Press. Res. 2021, 46, 396–410. [Google Scholar] [CrossRef] [PubMed]
- Ronco, C.; Haapio, M.; House, A.A.; Anavekar, N.; Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 2008, 52, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- de Jager, D.J.; Grootendorst, D.C.; Jager, K.J.; van Dijk, P.C.; Tomas, L.M.; Ansell, D.; Collart, F.; Finne, P.; Heaf, J.G.; De Meester, J.; et al. Cardiovascular and noncardiovascular mortality among patients starting dialysis. JAMA 2009, 302, 1782–1789. [Google Scholar] [CrossRef]
- Deferrari, G.; Cipriani, A.; La Porta, E. Renal dysfunction in cardiovascular diseases and its consequences. J. Nephrol. 2021, 34, 137–153. [Google Scholar] [CrossRef]
- Faragli, A.; La Porta, E.; Campana, C.; Pieske, B.; Kelle, S.; Koehler, F.; Alogna, A. Out-of-Hospital Care of Heart Failure Patients During and After COVID-19 Pandemic: Time for Telemedicine? Front. Digit. Health 2020, 2, 593885. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Manuel Gómez, J.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Hoffer, E.C.; Meador, C.K.; Simpson, D.C. Correlation of whole-body impedance with total body water volume. J. Appl. Physiol. 1969, 27, 531–534. [Google Scholar] [CrossRef]
- Lukaski, H.C. Evolution of bioimpedance: A circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur. J. Clin. Nutr. 2013, 67, S2–S9. [Google Scholar] [CrossRef]
- Bera, T.K. Bioelectrical impedance methods for noninvasive health monitoring: A review. J. Med. Eng. 2014, 2014, 381251. [Google Scholar] [CrossRef]
- Keren, H.; Burkhoff, D.; Squara, P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am. J. Physiol.-Heart Circ. Physiol. 2007, 293, H583–H589. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. Fundamentals of intrathoracic impedance monitoring in heart failure. Am. J. Cardiol. 2007, 99, S3–S10. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-W.; Hua, W.; Ding, L.-G.; Wang, J.; Zheng, L.-H.; Li, C.-Q.; Liu, Z.-M.; Chen, K.-P.; Zhang, S. OptiVol fluid index predicts acute decompensation of heart failure with a high rate of unexplained events. J. Geriatr. Cardiol. JGC 2013, 10, 253. [Google Scholar] [PubMed]
- Tang, W.H.; Tong, W. Measuring impedance in congestive heart failure: Current options and clinical applications. Am. Heart J. 2009, 157, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-M.; Wang, L.; Chau, E.; Chan, R.H.-W.; Kong, S.-L.; Tang, M.-O.; Christensen, J.; Stadler, R.W.; Lau, C.-P. Intrathoracic impedance monitoring in patients with heart failure: Correlation with fluid status and feasibility of early warning preceding hospitalization. Circulation 2005, 112, 841–848. [Google Scholar] [CrossRef]
- Felker, G.M.; Lee, K.L.; Bull, D.A.; Redfield, M.M.; Stevenson, L.W.; Goldsmith, S.R.; LeWinter, M.M.; Deswal, A.; Rouleau, J.L.; Ofili, E.O.; et al. Diuretic strategies in patients with acute decompensated heart failure. N. Engl. J. Med. 2011, 364, 797–805. [Google Scholar] [CrossRef]
- Savarese, G.; Lund, L.H. Global public health burden of heart failure. Card. Fail. Rev. 2017, 3, 7. [Google Scholar] [CrossRef]
- Roger, V.L. Epidemiology of heart failure. Circ. Res. 2013, 113, 646–659. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar]
- Boorsma, E.M.; ter Maaten, J.M.; Damman, K.; Dinh, W.; Gustafsson, F.; Goldsmith, S.; Burkhoff, D.; Zannad, F.; Udelson, J.E.; Voors, A.A. Congestion in heart failure: A contemporary look at physiology, diagnosis and treatment. Nat. Rev. Cardiol. 2020, 17, 641–655. [Google Scholar] [CrossRef]
- Ishikawa, S.-e. Hyponatremia associated with heart failure: Pathological role of vasopressin-dependent impaired water excretion. J. Clin. Med. 2015, 4, 933–947. [Google Scholar] [CrossRef] [PubMed]
- Palazzuoli, A.; Evangelista, I.; Nuti, R. Congestion occurrence and evaluation in acute heart failure scenario: Time to reconsider different pathways of volume overload. Heart Fail. Rev. 2020, 25, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Gheorghiade, M.; Filippatos, G.; De Luca, L.; Burnett, J. Congestion in acute heart failure syndromes: An essential target of evaluation and treatment. Am. J. Med. 2006, 119 (Suppl S1), S3–S10. [Google Scholar] [CrossRef] [PubMed]
- Pellicori, P.; Kaur, K.; Clark, A.L. Fluid Management in Patients with Chronic Heart Failure. Card. Fail. Rev. 2015, 1, 90–95. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, C.M.; Stough, W.G.; Gallup, D.S.; Hasselblad, V.; Gheorghiade, M. Demographics, clinical characteristics, and outcomes of patients hospitalized for decompensated heart failure: Observations from the IMPACT-HF registry. J. Card. Fail. 2005, 11, 200–205. [Google Scholar] [CrossRef]
- Neuberg, G.W.; Miller, A.B.; O’Connor, C.M.; Belkin, R.N.; Carson, P.E.; Cropp, A.B.; Frid, D.J.; Nye, R.G.; Pressler, M.L.; Wertheimer, J.H.; et al. Diuretic resistance predicts mortality in patients with advanced heart failure. Am. Heart J. 2002, 144, 31–38. [Google Scholar] [CrossRef]
- Lewin, J.; Ledwidge, M.; O’Loughlin, C.; McNally, C.; McDonald, K. Clinical deterioration in established heart failure: What is the value of BNP and weight gain in aiding diagnosis? Eur. J. Heart Fail. 2005, 7, 953–957. [Google Scholar] [CrossRef]
- Chaudhry, S.I.; Mattera, J.A.; Curtis, J.P.; Spertus, J.A.; Herrin, J.; Lin, Z.; Phillips, C.O.; Hodshon, B.V.; Cooper, L.S.; Krumholz, H.M. Telemonitoring in patients with heart failure. N. Engl. J. Med. 2010, 363, 2301–2309. [Google Scholar] [CrossRef]
- Evangelista, L.S.; Lee, J.A.; Moore, A.A.; Motie, M.; Ghasemzadeh, H.; Sarrafzadeh, M.; Mangione, C.M.M. Examining the effects of remote monitoring systems on activation, self-care, and quality of life in older patients with chronic heart failure. J. Cardiovasc. Nurs. 2015, 30, 51–57. [Google Scholar] [CrossRef]
- Faragli, A.; Abawi, D.; Quinn, C.; Cvetkovic, M.; Schlabs, T.; Tahirovic, E.; Düngen, H.-D.; Pieske, B.; Kelle, S.; Edelmann, F.; et al. The role of non-invasive devices for the telemonitoring of heart failure patients. Heart Fail. Rev. 2021, 26, 1063–1080. [Google Scholar] [CrossRef]
- Abraham, W.T.; Adamson, P.B.; Bourge, R.C.; Aaron, M.F.; Costanzo, M.R.; Stevenson, L.W.; Strickland, W.; Neelagaru, S.; Raval, N.; Krueger, S.; et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: A randomised controlled trial. Lancet 2011, 377, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; DeFilippis, E.M.; Fonarow, G.C.; Butler, J.; Mehra, M.R. Postmarketing Adverse Events Related to the CardioMEMS HF System. JAMA Cardiol. 2017, 2, 1277–1279. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Varjabedian, L.; Kaspar, G.; Zughaib, M. CardioMEMS in a Busy Cardiology Practice: Less than Optimal Implementation of a Valuable Tool to Reduce Heart Failure Readmissions. Cardiol. Res. Pract. 2018, 2018, 4918757. [Google Scholar] [CrossRef] [PubMed]
- Koehler, F.; Koehler, K.; Deckwart, O.; Prescher, S.; Wegscheider, K.; Winkler, S.; Vettorazzi, E.; Polze, A.; Stangl, K.; Hartmann, O.; et al. Telemedical Interventional Management in Heart Failure II (TIM-HF2), a randomised, controlled trial investigating the impact of telemedicine on unplanned cardiovascular hospitalisations and mortality in heart failure patients: Study design and description of the intervention. Eur. J. Heart Fail. 2018, 20, 1485–1493. [Google Scholar] [PubMed]
- Packer, M.; Abraham, W.T.; Mehra, M.R.; Yancy, C.W.; Lawless, C.E.; Mitchell, J.E.; Smart, F.W.; Bijou, R.; O’Connor, C.M.; Massie, B.M.; et al. Utility of impedance cardiography for the identification of short-term risk of clinical decompensation in stable patients with chronic heart failure. J. Am. Coll. Cardiol. 2006, 47, 2245–2252. [Google Scholar] [CrossRef]
- Di Somma, S.; De Berardinis, B.; Bongiovanni, C.; Marino, R.; Ferri, E.; Alfei, B. Use of BNP and bioimpedance to drive therapy in heart failure patients. Congest. Heart Fail. 2010, 16 (Suppl. S1), S56–S61. [Google Scholar] [CrossRef]
- Santarelli, S.; Russo, V.; Lalle, I.; De Berardinis, B.; Vetrone, F.; Magrini, L.; Di Stasio, E.; Piccoli, A.; Codognotto, M.; Mion, M.M.; et al. Prognostic value of decreased peripheral congestion detected by Bioelectrical Impedance Vector Analysis (BIVA) in patients hospitalized for acute heart failure: BIVA prognostic value in acute heart failure. Eur. Heart J. Acute Cardiovasc. Care 2017, 6, 339–347. [Google Scholar] [CrossRef]
- Anand, I.S.; Tang, W.W.; Greenberg, B.H.; Chakravarthy, N.; Libbus, I.; Katra, R.P.; Music Investigators. Design and performance of a multisensor heart failure monitoring algorithm: Results from the multisensor monitoring in congestive heart failure (MUSIC) study. J. Card. Fail. 2012, 18, 289–295. [Google Scholar] [CrossRef]
- Gyllensten, I.C.; Bonomi, A.G.; Goode, K.M.; Reiter, H.; Habetha, J.; Amft, O.; Cleland, J.G. Early indication of decompensated heart failure in patients on home-telemonitoring: A comparison of prediction algorithms based on daily weight and noninvasive transthoracic bio-impedance. JMIR Med. Inform. 2016, 4, e4842. [Google Scholar] [CrossRef]
- Darling, C.E.; Dovancescu, S.; Saczynski, J.S.; Riistama, J.; Kuniyoshi, F.S.; Rock, J.; Meyer, T.E.; McManus, D.D. Bioimpedance-Based Heart Failure Deterioration Prediction Using a Prototype Fluid Accumulation Vest-Mobile Phone Dyad: An Observational Study. JMIR Cardio 2017, 1, e6057. [Google Scholar] [CrossRef]
- Wang, L.; Lahtinen, S.; Lentz, L.; Rakow, N.; Kaszas, C.; Ruetz, L.; Stylos, L.; Olson, W.H. Feasibility of using an implantable system to measure thoracic congestion in an ambulatory chronic heart failure canine model. Pacing Clin. Electrophysiol. 2005, 28, 404–411. [Google Scholar] [CrossRef] [PubMed]
- van Veldhuisen, D.J.; Braunschweig, F.; Conraads, V.; Ford, I.; Cowie, M.R.; Jondeau, G.; Kautzner, J.; Aguilera, R.M.; Lunati, M.; Yu, C.M.; et al. Intrathoracic impedance monitoring, audible patient alerts, and outcome in patients with heart failure. Circulation 2011, 124, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Anshory, M.; Kuan, W.S.; Rohman, M.S.; Waranugraha, Y.; Kamila, P.A.; Iskandar, A.; Susianti, H.; Yau, Y.W.; Soh, C.H.W.; Ali, K.M.; et al. Can non-invasive cardiac hemodynamics and fluid content system (NICaS) parameters predict Acute Heart Failure outcomes in Caucasian and Asian patients in the emergency department? Adv. Med. Sci. 2024, 69, 81–89. [Google Scholar] [CrossRef] [PubMed]
- McCullough, K.; Sharma, P.; Ali, T.; Khan, I.; Smith, W.C.; MacLeod, A.; Black, C. Measuring the population burden of chronic kidney disease: A systematic literature review of the estimated prevalence of impaired kidney function. Nephrol. Dial. Transplant. 2012, 27, 1812–1821. [Google Scholar] [CrossRef]
- McCullough, P.A.; Chan, C.T.; Weinhandl, E.D.; Burkart, J.M.; Bakris, G.L. Intensive Hemodialysis, Left Ventricular Hypertrophy, and Cardiovascular Disease. Am. J. Kidney Dis. 2016, 68, S5–S14. [Google Scholar] [CrossRef]
- Soi, V.; Yee, J. Sodium Homeostasis in Chronic Kidney Disease. Adv. Chronic Kidney Dis. 2017, 24, 325–331. [Google Scholar] [CrossRef]
- Khan, Y.H.; Sarriff, A.; Adnan, A.S.; Khan, A.H.; Mallhi, T.H. Diuretics prescribing in chronic kidney disease patients: Physician assessment versus bioimpedence spectroscopy. Clin. Exp. Nephrol. 2017, 21, 488–496. [Google Scholar] [CrossRef]
- Davies, S.J.; Caskey, F.J.; Coyle, D.; Lindley, E.; Macdonald, J.; Mitra, S.; Wilkie, M.; Davenport, A.; Farrington, K.; Dasgupta, I.; et al. Rationale and design of BISTRO: A randomized controlled trial to determine whether bioimpedance spectroscopy-guided fluid management maintains residual kidney function in incident haemodialysis patients. BMC Nephrol. 2017, 18, 138. [Google Scholar] [CrossRef]
- Hur, E.; Usta, M.; Toz, H.; Asci, G.; Wabel, P.; Kahvecioglu, S.; Kayikcioglu, M.; Demirci, M.S.; Ozkahya, M.; Duman, S.; et al. Effect of fluid management guided by bioimpedance spectroscopy on cardiovascular parameters in hemodialysis patients: A randomized controlled trial. Am. J. Kidney Dis. 2013, 61, 957–965. [Google Scholar] [CrossRef]
- Onofriescu, M.; Hogas, S.; Voroneanu, L.; Apetrii, M.; Nistor, I.; Kanbay, M.; Covic, A.C. Bioimpedance-guided fluid management in maintenance hemodialysis: A pilot randomized controlled trial. Am. J. Kidney Dis. 2014, 64, 111–118. [Google Scholar] [CrossRef]
- Huan-Sheng, C.; Yeong-Chang, C.; Ming-Hsing, H.; Fan-Lieh, T.; Chu-Cheng, L.; Tsai-Kun, W.; Hung-Ping, C.; Sze-Hung, H.; Hsien-Chang, C.; Chia-Chen, L.; et al. Application of bioimpedance spectroscopy in Asian dialysis patients (ABISAD-III): A randomized controlled trial for clinical outcomes. Int. Urol. Nephrol. 2016, 48, 1897–1909. [Google Scholar] [CrossRef]
- Zoccali, C.; Moissl, U.; Chazot, C.; Mallamaci, F.; Tripepi, G.; Arkossy, O.; Wabel, P.; Stuard, S. Chronic Fluid Overload and Mortality in ESRD. J. Am. Soc. Nephrol. 2017, 28, 2491–2497. [Google Scholar] [CrossRef] [PubMed]
- Dekker, M.; Konings, C.; Canaud, B.; Carioni, P.; Guinsburg, A.; Madero, M.; van der Net, J.; Raimann, J.; van der Sande, F.; Stuard, S.; et al. Pre-dialysis fluid status, pre-dialysis systolic blood pressure and outcome in prevalent haemodialysis patients: Results of an international cohort study on behalf of the MONDO initiative. Nephrol. Dial. Transpl. Transplant. 2018, 33, 2027–2034. [Google Scholar] [CrossRef] [PubMed]
- Tabinor, M.; Elphick, E.; Dudson, M.; Kwok, C.S.; Lambie, M.; Davies, S.J. Bioimpedance-defined overhydration predicts survival in end stage kidney failure (ESKF): Systematic review and subgroup meta-analysis. Sci. Rep. 2018, 8, 4441. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, L.; Karadjian, O.; Braam, B.; Mavrakanas, T.; Weber, C. Bioimpedance-Guided Monitoring of Volume Status in Patients With Kidney Disease: A Systematic Review and Meta-Analysis. Can. J. Kidney Health Dis. 2023, 10, 20543581231185433. [Google Scholar] [CrossRef] [PubMed]
- Scotland, G.; Cruickshank, M.; Jacobsen, E.; Cooper, D.; Fraser, C.; Shimonovich, M.; Marks, A.; Brazzelli, M. Multiple-frequency bioimpedance devices for fluid management in people with chronic kidney disease receiving dialysis: A systematic review and economic evaluation. Health Technol. Assess. 2018, 22, 1–138. [Google Scholar] [CrossRef]
- Liu, L.; Sun, Y.; Chen, Y.; Xu, J.; Yuan, P.; Shen, Y.; Lin, S.; Sun, W.; Ma, Y.; Ren, J.; et al. The effect of BCM guided dry weight assessment on short-term survival in Chinese hemodialysis patients: Primary results of a randomized trial—BOdy COmposition MOnitor (BOCOMO) study. BMC Nephrol. 2020, 21, 135. [Google Scholar] [CrossRef]
- Stigger, K.; Ribeiro, L.R.; Cordeiro, F.M.; Böhlke, M. Incidence of hospital admissions in bioimpedance-guided fluid management among maintenance hemodialysis patients-Results of a randomized controlled trial. Hemodial. Int. 2023, 27, 318–325. [Google Scholar] [CrossRef]
- Velazquez-Cecena, J.L.; Sharma, S.; Nagajothi, N.; Khraisat, A.; Khosla, S.; Arora, R.R.; Benatar, D. Left ventricular end diastolic pressure and serum brain natriuretic peptide levels in patients with abnormal impedance cardiography parameters. Arch. Med. Res. 2008, 39, 408–411. [Google Scholar] [CrossRef]
- Parrinello, G.; Paterna, S.; Di Pasquale, P.; Torres, D.; Fatta, A.; Mezzero, M.; Scaglione, R.; Licata, G. The usefulness of bioelectrical impedance analysis in differentiating dyspnea due to decompensated heart failure. J. Card. Fail. 2008, 14, 676–686. [Google Scholar] [CrossRef]
- Gastelurrutia, P.; Nescolarde, L.; Rosell-Ferrer, J.; Domingo, M.; Ribas, N.; Bayes-Genis, A. Bioelectrical impedance vector analysis (BIVA) in stable and non-stable heart failure patients: A pilot study. Int. J. Cardiol. 2011, 146, 262–264. [Google Scholar] [CrossRef] [PubMed]
- Zink, M.D.; König, F.; Weyer, S.; Willmes, K.; Leonhardt, S.; Marx, N.; Napp, A. Segmental bioelectrical impedance spectroscopy to monitor fluid status in heart failure. Sci. Rep. 2020, 10, 3577. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Jo, Y.I.; Lee, J.H. Clinical usefulness of bioimpedance analysis for assessing volume status in patients receiving maintenance dialysis. Korean J. Intern. Med. 2018, 33, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Maddox, T.M.; Januzzi, J.L., Jr.; Allen, L.A.; Breathett, K.; Butler, J.; Davis, L.L.; Fonarow, G.C.; Ibrahim, N.E.; Lindenfeld, J.; Masoudi, F.A.; et al. 2021 Update to the 2017 ACC Expert Consensus Decision Pathway for Optimization of Heart Failure Treatment: Answers to 10 Pivotal Issues About Heart Failure With Reduced Ejection Fraction: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2021, 77, 772–810. [Google Scholar] [PubMed]
- Massari, F.; Scicchitano, P.; Ciccone, M.M.; Caldarola, P.; Aspromonte, N.; Iacoviello, M.; Barro, S.; Pantano, I.; Valle, R. Bioimpedance vector analysis predicts hospital length of stay in acute heart failure. Nutrition 2019, 61, 56–60. [Google Scholar] [CrossRef]
- Massari, F.; Iacoviello, M.; Scicchitano, P.; Mastropasqua, F.; Guida, P.; Riccioni, G.; Speziale, G.; Caldarola, P.; Ciccone, M.M.; Di Somma, S. Accuracy of bioimpedance vector analysis and brain natriuretic peptide in detection of peripheral edema in acute and chronic heart failure. Heart Lung 2016, 45, 319–326. [Google Scholar] [CrossRef]
- Massari, F.; Scicchitano, P.; Iacoviello, M.; Passantino, A.; Guida, P.; Sanasi, M.; Piscopo, A.; Romito, R.; Valle, R.; Caldarola, P.; et al. Multiparametric approach to congestion for predicting long-term survival in heart failure. J. Cardiol. 2020, 75, 47–52. [Google Scholar] [CrossRef]
- Lindholm, D.; Fukaya, E.; Leeper, N.J.; Ingelsson, E. Bioimpedance and new-onset heart failure: A longitudinal study of> 500 000 individuals from the general population. J. Am. Heart Assoc. 2018, 7, e008970. [Google Scholar] [CrossRef]
- Montalibet, A.; Rastel, D.; Chaigneau, C.; Grenier, E.; McAdams, E. Comparison between bioelectrical impedance spectroscopy measurements and water volume displacement of ankle oedema variations during the course of a day. Physiol. Meas. 2020, 41, 085004. [Google Scholar] [CrossRef]
- Sun, S.S.; Chumlea, W.C.; Heymsfield, S.B.; Lukaski, H.C.; Schoeller, D.; Friedl, K.; Kuczmarski, R.J.; Flegal, K.M.; Johnson, C.L.; Hubbard, V.S. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am. J. Clin. Nutr. 2003, 77, 331–340. [Google Scholar] [CrossRef]
- Chabin, X.; Taghli-Lamallem, O.; Mulliez, A.; Bordachar, P.; Jean, F.; Futier, E.; Massoullié, G.; Andonache, M.; Souteyrand, G.; Ploux, S.; et al. Bioimpedance analysis is safe in patients with implanted cardiac electronic devices. Clin. Nutr. 2019, 38, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.; Pau, I.; Lindecrantz, K.; Seoane, F. A Handheld and Textile-Enabled Bioimpedance System for Ubiquitous Body Composition Analysis. An Initial Functional Validation. IEEE J. Biomed. Health Inform. 2017, 21, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Porta, E.; Faragli, A.; Herrmann, A.; Lo Muzio, F.P.; Estienne, L.; Nigra, S.G.; Bellasi, A.; Deferrari, G.; Ricevuti, G.; Di Somma, S.; et al. Bioimpedance Analysis in CKD and HF Patients: A Critical Review of Benefits, Limitations, and Future Directions. J. Clin. Med. 2024, 13, 6502. https://doi.org/10.3390/jcm13216502
La Porta E, Faragli A, Herrmann A, Lo Muzio FP, Estienne L, Nigra SG, Bellasi A, Deferrari G, Ricevuti G, Di Somma S, et al. Bioimpedance Analysis in CKD and HF Patients: A Critical Review of Benefits, Limitations, and Future Directions. Journal of Clinical Medicine. 2024; 13(21):6502. https://doi.org/10.3390/jcm13216502
Chicago/Turabian StyleLa Porta, Edoardo, Alessandro Faragli, Alexander Herrmann, Francesco Paolo Lo Muzio, Luca Estienne, Stefano Geniere Nigra, Antonio Bellasi, Giacomo Deferrari, Giovanni Ricevuti, Salvatore Di Somma, and et al. 2024. "Bioimpedance Analysis in CKD and HF Patients: A Critical Review of Benefits, Limitations, and Future Directions" Journal of Clinical Medicine 13, no. 21: 6502. https://doi.org/10.3390/jcm13216502
APA StyleLa Porta, E., Faragli, A., Herrmann, A., Lo Muzio, F. P., Estienne, L., Nigra, S. G., Bellasi, A., Deferrari, G., Ricevuti, G., Di Somma, S., & Alogna, A. (2024). Bioimpedance Analysis in CKD and HF Patients: A Critical Review of Benefits, Limitations, and Future Directions. Journal of Clinical Medicine, 13(21), 6502. https://doi.org/10.3390/jcm13216502