Clinical Recommendations for Managing Genitourinary Adverse Effects in Patients Treated with SGLT-2 Inhibitors: A Multidisciplinary Expert Consensus
Abstract
:1. Introduction
2. Materials and Methods
3. Risks Associated with SGLT-2i Withdrawal
4. Main Causes of SGLT-2i Withdrawal
5. AES Most Frequently Associated with SGLT-2is
5.1. Genital Mycotic Infections
5.2. Urinary Tract Infections
5.3. Pollakiuria and Nocturia
6. Prevention of GU AEs Associated with SGLT-2is
6.1. Urinary Tract Infections
6.2. Genital Infections
6.2.1. Daily Intimate Hygiene for Females
6.2.2. Daily Intimate Hygiene for Males
7. Treatment of GU AEs Associated with SGLT-2is
7.1. Genital Infections
7.1.1. Acute Episodes in Women
7.1.2. Acute Episodes in Men
7.2. Acute UTIs
7.2.1. General Recommendations
7.2.2. Treatment of Outpatients
7.2.3. Hospitalization Indications
7.3. The Challenge of Resistance to Antibiotic and Antifungal Therapy
7.3.1. Assessment and Diagnosis
- -
- Suspicion—C. glabrata or C. krusei infection should be suspected in cases of recurrence, slow response to treatment, or poor progression of the episode.
- -
- Identification of the causal agent—diagnosis should be confirmed through cultures and susceptibility testing to identify the specific Candida species and its resistance profile.
- -
- Exclusion of other causes—before initiating treatment for VVC, it is important to rule out other causes of vaginal symptoms, such as bacterial infections or sexually transmitted diseases.
7.3.2. Treatment for Resistant Candida Species (Table 4)
- -
- Vaginal Boric Acid—administration of 600 mg boric acid capsules vaginally each night for 2 to 3 weeks. This treatment is effective in approximately 70% of patients with confirmed C. glabrata infections. However, its use is contraindicated in pregnant women due to limited safety data and the risk of toxicity if ingested [50].
- -
- Topical azole—for individuals with C. krusei infection, treatment with a topical azole (cream or suppository) is recommended.
- -
- Amphotericin B Suppository—a 50 mg vaginal suppository of Amphotericin B, administered for 14 nights, is effective in persistent cases of C. glabrata infection [105].
- -
- Itraconazole—if topical treatments are ineffective, oral itraconazole can be considered (200 mg twice daily). However, due to its potential toxicity, topical therapies should remain as first-line treatments.
- -
- Voriconazole—due to limited efficacy data and its potential hepatic toxicity, voriconazole should only be considered when all other topical and systemic therapies have failed.
- -
- Ibrexafungerp—this oral triterpenoid antifungal may be an option for resistant Candida species, though data on its use are limited. Its mechanism of action helps to avoid cross-resistance. Ibrexafungerp is FDA-approved for treating VVC in postmenarchal women and girls, but is not yet approved by the EMA and may not be available in certain countries [107].
7.3.3. Prevention
8. Treatment of GU AEs Associated with SGLT-2is in High-Risk Patients
8.1. Recurrent Infections
8.1.1. Genital Recurrent Infections
8.1.2. Recurrent Bacterial UTIs
- -
- Increase fluid intake—if possible, fluid intake should be increased to 2 to 3 L daily to reduce the risk of recurrence [109].
- -
- Behavioral changes—while not extensively studied, behavioral changes such as avoiding spermicides and postcoital voiding are reasonable to attempt.
- -
- Vaginal estrogen—for postmenopausal women with recurrent cystitis, vaginal estrogen is suggested [110].
8.2. Catheter Use
8.3. Kidney Transplant
8.4. Heart Transplant
9. Strengths and Limitations
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Giugliano, D.; Longo, M.; Caruso, P.; Maiorino, M.I.; Bellastella, G.; Esposito, K. Sodium-glucose co-transporter-2 inhibitors for the prevention of cardiorenal outcomes in type 2 diabetes: An updated meta-analysis. Diabetes Obes. Metab. 2021, 23, 1672–1676. [Google Scholar] [CrossRef] [PubMed]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R.; et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Szarek, M.; Pitt, B.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Inzucchi, S.E.; Kosiborod, M.N.; et al. Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. N. Engl. J. Med. 2021, 384, 129–139. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner-La Rocca, H.P.; Choi, D.J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Voors, A.A.; Angermann, C.E.; Teerlink, J.R.; Collins, S.P.; Kosiborod, M.; Biegus, J.; Ferreira, J.P.; Nassif, M.E.; Psotka, M.A.; Tromp, J.; et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: A multinational randomized trial. Nat. Med. 2022, 28, 568–574. [Google Scholar] [CrossRef]
- Butler, J.; Jones, W.S.; Udell, J.A.; Anker, S.D.; Petrie, M.C.; Harrington, J.; Mattheus, M.; Zwiener, I.; Amir, O.; Bahit, M.C.; et al. Empagliflozin after Acute Myocardial Infarction. N. Engl. J. Med. 2024, 390, 1455–1466. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Herrington, W.G.; Staplin, N.; Wanner, C.; Green, J.B.; Hauske, S.J.; Emberson, J.R.; Preiss, D.; Judge, P.; Mayne, K.J.; Ng, S.Y.A.; et al. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [PubMed]
- Kittipibul, V.; Cox, Z.L.; Chesdachai, S.; Fiuzat, M.; Lindenfeld, J.; Mentz, R.J. Genitourinary Tract Infections in Patients Taking SGLT2 Inhibitors: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2024, 83, 1568–1578. [Google Scholar] [CrossRef]
- Chandrashekar, M.; Philip, S.; Nesbitt, A.; Joshi, A.; Perera, M. Sodium glucose-linked transport protein 2 inhibitors: An overview of genitourinary and perioperative implications. Int. J. Urol. 2021, 28, 984–990. [Google Scholar] [CrossRef]
- Pollock, C.; Stefánsson, B.; Reyner, D.; Rossing, P.; Sjöström, C.D.; Wheeler, D.C.; Langkilde, A.M.; Heerspink, H.J.L. Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): A randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019, 7, 429–441. [Google Scholar]
- Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B.; et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 323–334. [Google Scholar] [CrossRef]
- Packer, M.; Butler, J.; Zeller, C.; Pocock, S.J.; Brueckmann, M.; Ferreira, J.P.; Filippatos, G.; Usman, M.S.; Zannad, F.; Anker, S.D. Blinded Withdrawal of Long-Term Randomized Treatment with Empagliflozin or Placebo in Patients with Heart Failure. Circulation 2023, 148, 1011–1022. [Google Scholar] [CrossRef]
- Liew, A.; Lydia, A.; Matawaran, B.J.; Susantitaphong, P.; Tran, H.T.B.; Lim, L.L. Practical considerations for the use of SGLT-2 inhibitors in the Asia-Pacific countries-An expert consensus statement. Nephrology 2023, 28, 415–424. [Google Scholar] [CrossRef]
- Jabbour, S.A.; Ibrahim, N.E.; Argyropoulos, C.P. Physicians’ Considerations and Practice Recommendations Regarding the Use of Sodium-Glucose Cotransporter-2 Inhibitors. J. Clin. Med. 2022, 11, 6051. [Google Scholar] [CrossRef] [PubMed]
- Dubrofsky, L.; Srivastava, A.; Cherney, D.Z. Sodium-Glucose Cotransporter-2 Inhibitors in Nephrology Practice: A Narrative Review. Can. J. Kidney Health Dis. 2020, 7, 2054358120935701. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, K.; Ferguson, M.; Rosselli, J.L. Prevention and Management of Genital Mycotic Infections in the Setting of Sodium-Glucose Cotransporter 2 Inhibitors. Ann. Pharmacother. 2021, 55, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Invokana. Full Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/204042s040lbl.pdf (accessed on 28 September 2024).
- Invokana. Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/invokana-epar-product-information_en.pdf (accessed on 28 September 2024).
- Forxiga. Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/forxiga-epar-product-information_en.pdf (accessed on 28 September 2024).
- Farxiga. Full Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/202293s026lbl.pdf (accessed on 28 September 2024).
- Jardiance. Full Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/204629s042lbl.pdf (accessed on 28 September 2024).
- Jardiance. Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/jardiance-epar-product-information_en.pdf (accessed on 28 September 2024).
- Steglatro. Full Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/209803s006lbl.pdf (accessed on 28 September 2024).
- Steglatro. Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/steglatro-epar-product-information_en.pdf (accessed on 28 September 2024).
- Cannon, C.P.; Pratley, R.; Dagogo-Jack, S.; Mancuso, J.; Huyck, S.; Masiukiewicz, U.; Charbonnel, B.; Frederich, R.; Gallo, S.; Cosentino, F.; et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 1425–1435. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.H.; Cho, J.H.; Lee, H.; Yim, H.W.; Yoon, K.H.; Kim, H.S. Discontinuation rate and reason for discontinuation after sodium-glucose cotransporter 2 inhibitor prescription in real clinical practice. J. Clin. Pharm. Ther. 2020, 45, 1271–1277. [Google Scholar] [CrossRef]
- Gorgojo-Martinez, J.J.; Ferreira-Ocampo, P.J.; Galdón Sanz-Pastor, A.; Cárdenas-Salas, J.; Antón-Bravo, T.; Brito-Sanfiel, M.; Almodóvar-Ruiz, F. Effectiveness and Tolerability of the Intensification of Canagliflozin Dose from 100 mg to 300 mg Daily in Patients with Type 2 Diabetes in Real Life: The INTENSIFY Study. J. Clin. Med. 2023, 12, 4248. [Google Scholar] [CrossRef]
- Woo, V.; Bell, A.; Clement, M.; Noronha, L.; Tsoukas, M.A.; Camacho, F.; Traina, S.; Georgijev, N.; Culham, M.D.; Rose, J.B.; et al. CANadian CAnagliflozin REgistry: Effectiveness and safety of canagliflozin in the treatment of type 2 diabetes mellitus in Canadian clinical practice. Diabetes Obes. Metab. 2019, 21, 691–699. [Google Scholar] [CrossRef]
- Johansen, M.E.; Argyropoulos, C. The cardiovascular outcomes, heart failure and kidney disease trials tell that the time to use Sodium Glucose Cotransporter 2 inhibitors is now. Clin. Cardiol. 2020, 43, 1376–1387. [Google Scholar] [CrossRef]
- Shi, Q.; Nong, K.; Vandvik, P.O.; Guyatt, G.H.; Schnell, O.; Rydén, L.; Marx, N.; Brosius, F.C., 3rd; Mustafa, R.A.; Agarwal, A.; et al. Benefits and harms of drug treatment for type 2 diabetes: Systematic review and network meta-analysis of randomised controlled trials. BMJ 2023, 381, e074068. [Google Scholar] [CrossRef]
- Bapir, R.; Bhatti, K.H.; Eliwa, A.; García-Perdomo, H.A.; Gherabi, N.; Hennessey, D.; Magri, V.; Mourmouris, P.; Ouattara, A.; Perletti, G.; et al. Risk of urogenital infections in non-diabetic patients treated with sodium glucose transporter 2 (SGLT2) inhibitors. Systematic review and meta-analysis. Arch. Ital. Urol. Androl. 2023, 95, 11509. [Google Scholar] [CrossRef]
- Barbarawi, M.; Al-Abdouh, A.; Barbarawi, O.; Lakshman, H.; Al Kasasbeh, M.; Chen, K. SGLT2 inhibitors and cardiovascular and renal outcomes: A meta-analysis and trial sequential analysis. Heart Fail. Rev. 2022, 27, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Li, C.X.; Liu, L.Y.; Zhang, C.X.; Geng, X.H.; Gu, S.M.; Wang, Y.Q.; Liu, H.; Xie, Q.; Liang, S. Comparative safety of different sodium-glucose transporter 2 inhibitors in patients with type 2 diabetes: A systematic review and network meta-analysis of randomized controlled trials. Front. Endocrinol. 2023, 14, 1238399. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Ding, L.L.; Zhang, M.; Zhou, H.R. Safety of four SGLT2 inhibitors in three chronic diseases: A meta-analysis of large randomized trials of SGLT2 inhibitors. Diabetes Vasc. Dis. Res. 2021, 18, 14791641211011016. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, R.; Ng, K.; Alkabbani, W.; Labib, Y.; Mourad, N.; Gamble, J.M. Adverse events associated with sodium glucose co-transporter 2 inhibitors: An overview of quantitative systematic reviews. Ther. Adv. Drug Saf. 2021, 12, 2042098621989134. [Google Scholar] [CrossRef]
- Huang, C.Y.; Lee, J.K. Sodium-glucose co-transporter-2 inhibitors and major adverse limb events: A trial-level meta-analysis including 51,713 individuals. Diabetes Obes. Metab. 2020, 22, 2348–2355. [Google Scholar] [CrossRef]
- Li, C.X.; Liu, T.T.; Zhang, Q.; Xie, Q.; Geng, X.H.; Man, C.X.; Li, J.Y.; Mao, X.Y.; Qiao, Y.; Liu, H. Safety of sodium-glucose transporter 2 (SGLT-2) inhibitors in patients with type 2 diabetes: A meta-analysis of cohort studies. Front. Pharmacol. 2023, 14, 1275060. [Google Scholar] [CrossRef]
- Dave, C.V.; Schneeweiss, S.; Patorno, E. Comparative risk of genital infections associated with sodium-glucose co-transporter-2 inhibitors. Diabetes Obes. Metab. 2019, 21, 434–438. [Google Scholar] [CrossRef]
- Riaz, M.; Guo, J.; Smith, S.M.; Dietrich, E.A.; Winchester, D.E.; Park, H. Comparative Genitourinary Safety of In-class Sodium-Glucose Cotransporter-2 Inhibitors among Patients with Heart Failure with Preserved Ejection Fraction: A Cohort Study. Am. J. Cardiovasc. Drugs 2024, 24, 455–464. [Google Scholar] [CrossRef]
- Cherney, D.Z.I.; Bell, A.; Girard, L.; McFarlane, P.; Moist, L.; Nessim, S.J.; Soroka, S.; Stafford, S.; Steele, A.; Tangri, N.; et al. Management of Type 2 Diabetic Kidney Disease in 2022: A Narrative Review for Specialists and Primary Care. Can. J. Kidney Health Dis. 2023, 10, 20543581221150556. [Google Scholar] [CrossRef]
- Lega, I.C.; Bronskill, S.E.; Campitelli, M.A.; Guan, J.; Stall, N.M.; Lam, K.; McCarthy, L.M.; Gruneir, A.; Rochon, P.A. Sodium glucose cotransporter 2 inhibitors and risk of genital mycotic and urinary tract infection: A population-based study of older women and men with diabetes. Diabetes Obes. Metab. 2019, 21, 2394–2404. [Google Scholar] [CrossRef]
- Fralick, M.; MacFadden, D.R. A hypothesis for why sodium glucose co-transporter 2 inhibitors have been found to cause genital infection, but not urinary tract infection. Diabetes Obes. Metab. 2020, 22, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.; Goswami, R.; Banerjee, U.; Dadhwal, V.; Goswami, D.; Mandal, P.; Sreenivas, V.; Kochupillai, N. Prevalence of Candida glabrata and its response to boric acid vaginal suppositories in comparison with oral fluconazole in patients with diabetes and vulvovaginal candidiasis. Diabetes Care 2007, 30, 312–317. [Google Scholar] [CrossRef]
- Thong, K.Y.; Yadagiri, M.; Barnes, D.J.; Morris, D.S.; Chowdhury, T.A.; Chuah, L.L.; Robinson, A.M.; Bain, S.C.; Adamson, K.A.; Ryder, R.E.J.; et al. Clinical risk factors predicting genital fungal infections with sodium-glucose cotransporter 2 inhibitor treatment: The ABCD nationwide dapagliflozin audit. Prim. Care Diabetes 2018, 12, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Fu, A.Z.; Iglay, K.; Qiu, Y.; Engel, S.; Shankar, R.; Brodovicz, K. Risk characterization for urinary tract infections in subjects with newly diagnosed type 2 diabetes. J. Diabetes Its Complicat. 2014, 28, 805–810. [Google Scholar] [CrossRef]
- Confederat, L.G.; Condurache, M.I.; Alexa, R.E.; Dragostin, O.M. Particularities of Urinary Tract Infections in Diabetic Patients: A Concise Review. Medicina 2023, 59, 1747. [Google Scholar] [CrossRef]
- Mann, R.; Mediati, D.G.; Duggin, I.G.; Harry, E.J.; Bottomley, A.L. Metabolic Adaptations of Uropathogenic E. coli in the Urinary Tract. Front. Cell Infect Microbiol. 2017, 7, 241. [Google Scholar] [CrossRef]
- Armbruster, C.E.; Mobley, H.L.T.; Pearson, M.M. Pathogenesis of Proteus mirabilis Infection. EcoSal Plus 2018, 8, 10-1128. [Google Scholar] [CrossRef]
- Li, D.; Wang, T.; Shen, S.; Fang, Z.; Dong, Y.; Tang, H. Urinary tract and genital infections in patients with type 2 diabetes treated with sodium-glucose co-transporter 2 inhibitors: A meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 2017, 19, 348–355. [Google Scholar] [CrossRef]
- Benjamin, T.; Schumacher, C. Characterization of Risk Factors for Genitourinary Infections with Sodium-Glucose Cotransporter-2 Inhibitors. Pharmacotherapy 2020, 40, 1002–1011. [Google Scholar] [CrossRef]
- Yang, T.; Zhou, Y.; Cui, Y. Urinary tract infections and genital mycotic infections associated with SGLT-2 inhibitors: An analysis of the FDA Adverse Event Reporting System. Expert Opin. Drug Saf. 2024, 23, 1035–1040. [Google Scholar] [CrossRef]
- Wiegley, N.; So, P.N. Sodium-Glucose Cotransporter 2 Inhibitors and Urinary Tract Infection: Is There Room for Real Concern? Kidney360 2022, 3, 1991–1993. [Google Scholar] [CrossRef] [PubMed]
- Puckrin, R.; Saltiel, M.P.; Reynier, P.; Azoulay, L.; Yu, O.H.Y.; Filion, K.B. SGLT-2 inhibitors and the risk of infections: A systematic review and meta-analysis of randomized controlled trials. Acta Diabetol. 2018, 55, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, L.; Li, S.; Jia, P.; Deng, K.; Chen, W.; Sun, X. Effects of SGLT2 inhibitors on UTIs and genital infections in type 2 diabetes mellitus: A systematic review and meta-analysis. Sci. Rep. 2017, 7, 2824. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Jin, J.; Zhou, W.; Zhang, S.; Xu, J. The safety outcomes of sodium-glucose cotransporter 2 inhibitors in patients with different renal function: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1365–1374. [Google Scholar] [CrossRef]
- Dave, C.V.; Schneeweiss, S.; Kim, D.; Fralick, M.; Tong, A.; Patorno, E. Sodium-glucose cotransporter-2 inhibitors and the risk for severe urinary tract infections: A population-based cohort study. Ann. Intern. Med. 2019, 171, 248–256. [Google Scholar] [CrossRef]
- Varshney, N.; Billups, S.J.; Saseen, J.J.; Fixen, C.W. Sodium-glucose cotransporter-2 inhibitors and risk for genitourinary infections in older adults with type 2 diabetes. Ther. Adv. Drug Saf. 2021, 12, 2042098621997703. [Google Scholar] [CrossRef]
- Fisher, A.; Fralick, M.; Filion, K.B.; Dell’Aniello, S.; Douros, A.; Tremblay, É.; Shah, B.R.; Ronksley, P.E.; Alessi-Severini, S.; Hu, N.; et al. Canadian Network for Observational Drug Effect Studies (CNODES) Investigators: Sodium-glucose cotransporter-2 inhibitors and the risk of urosepsis: A multi-site, prevalent new-user cohort study. Diabetes Obes. Metab. 2020, 22, 1648–1658. [Google Scholar] [CrossRef]
- Hall, V.; Kwong, J.; Johnson, D.; Ekinci, E.I. Caution advised with dapagliflozin in the setting of male urinary tract outlet obstruction. BMJ Case Rep. 2017, 2017, bcr2017219335. [Google Scholar] [CrossRef]
- Krepostman, N.; Kramer, H. Lower Urinary Tract Symptoms Should Be Queried When Initiating Sodium Glucose Co-Transporter 2 Inhibitors. Kidney360 2021, 2, 751–754. [Google Scholar] [CrossRef]
- Chilelli, N.C.; Bax, G.; Bonaldo, G.; Ragazzi, E.; Iafrate, M.; Zattoni, F.; Bellavere, F.; Lapolla, A. Lower urinary tract symptoms (LUTS) in males with type 2 diabetes recently treated with SGLT2 inhibitors-overlooked and overwhelming? A retrospective case series. Endocrine 2018, 59, 690–693. [Google Scholar] [CrossRef]
- Tanaka, H.; Takano, K.; Iijima, H.; Kubo, H.; Maruyama, N.; Hashimoto, T.; Arakawa, K.; Togo, M.; Inagaki, N.; Kaku, K. Factors Affecting Canagliflozin-Induced Transient Urine Volume Increase in Patients with Type 2 Diabetes Mellitus. Adv. Ther. 2017, 34, 436–451. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Ye, L.; Yan, Q.; Zhang, X.; Wang, L. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Water and Sodium Metabolism. Front. Pharmacol. 2022, 13, 800490. [Google Scholar] [CrossRef] [PubMed]
- Komoroski, B.; Vachharajani, N.; Boulton, D.; Kornhauser, D.; Geraldes, M.; Li, L.; Pfister, M. Dapagliflozin, a novel SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin. Pharmacol. Ther. 2009, 85, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Vestri, S.; Okamoto, M.M.; de Freitas, H.S.; Aparecida Dos Santos, R.; Nunes, M.T.; Morimatsu, M.; Heimann, J.C.; Machado, U.F. Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat. J. Membr. Biol. 2001, 182, 105–112. [Google Scholar] [CrossRef]
- Griffin, M.; Rao, V.S.; Ivey-Miranda, J.; Fleming, J.; Mahoney, D.; Maulion, C.; Suda, N.; Siwakoti, K.; Ahmad, T.; Jacoby, D.; et al. Empagliflozin in Heart Failure: Diuretic and Cardiorenal Effects. Circulation 2020, 142, 1028–1039. [Google Scholar] [CrossRef]
- Mohammad, H.; Borja-Hart, N. Pharmacovigilance of Sodium-Glucose Cotransporter-2 Inhibitors for Genital Fungal Infections and Urinary Tract Infections: A Review of the Food and Drug Administration Adverse Event Reporting System Database. J. Pharm. Technol. 2018, 34, 144–148. [Google Scholar] [CrossRef]
- Fitchett, D. A safety update on sodium glucose co-transporter 2 inhibitors. Diabetes Obes. Metab. 2019, 21 (Suppl. S2), 34–42. [Google Scholar] [CrossRef]
- Williams, S.M.; Ahmed, S.H. Improving compliance with SGLT2 inhibitors by reducing the risk of genital mycotic infections: The outcomes of personal hygiene advice. Diabetes 2019, 68, 1224. [Google Scholar] [CrossRef]
- Bono, M.J.; Leslie, S.W.; Reygaert, W.C. Uncomplicated Urinary Tract Infections. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Wilding, J.P.H.; Evans, M.; Fernando, K.; Gorriz, J.L.; Cebrian, A.; Diggle, J.; Hicks, D.; James, J.; Newland-Jones, P.; Ali, A.; et al. The Place and Value of Sodium-Glucose Cotransporter 2 Inhibitors in the Evolving Treatment Paradigm for Type 2 Diabetes Mellitus: A Narrative Review. Diabetes Ther. 2022, 13, 847–872. [Google Scholar] [CrossRef]
- Unnikrishnan, A.G.; Kalra, S.; Purandare, V.; Vasnawala, H. Genital Infections with Sodium Glucose Cotransporter-2 Inhibitors: Occurrence and Management in Patients with Type 2 Diabetes Mellitus. Indian J. Endocrinol. Metab. 2018, 22, 837–842. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Fungal Diseases: Candidiasis. Available online: https://www.cdc.gov/candidiasis/?CDC_AAref_Val=https://www.cdc.gov/fungal/diseases/candidiasis/index.html (accessed on 14 September 2024).
- Kalra, S.; Baruah, M.P.; Sahay, R. Medication counselling with sodium glucose transporter 2 inhibitor therapy. Indian J. Endocrinol. Metab. 2014, 18, 597–599. [Google Scholar] [CrossRef] [PubMed]
- Bardin, M.G.; Giraldo, P.C.; Benetti-Pinto, C.L.; Sanches, J.M.; Araujo, C.C.; Amaral, R.L.G.D. Habits of Genital Hygiene and Sexual Activity among Women with Bacterial Vaginosis and/or Vulvovaginal Candidiasis. Rev. Bras Ginecol. Obstet. 2022, 44, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Wilding, J.; Fernando, K.; Milne, N.; Evans, M.; Ali, A.; Bain, S.; Hicks, D.; James, J.; Newland-Jones, P.; Patel, D.; et al. SGLT2 Inhibitors in Type 2 Diabetes Management: Key Evidence and Implications for Clinical Practice. Diabetes Ther. 2018, 9, 1757–1773. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.; Hoda, F.; Siddiqui, N.A.; Najmi, A.K.; Ahmad, M. Genito Urinary Infection and Urinary Tract Infection in Patients with Type 2 Diabetes Mellitus Receiving SGLT2 Inhibitors: Evidence from a Systematic Literature Review of Landmark Randomized Clinical Trial. Drug Res. 2024, 74, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Tanrıverdi, M.; Baştemir, M.; Demirbakan, H.; Ünalan, A.; Türkmen, M.; Tanrıverdi, G.Ö. Association of SGLT-2 inhibitors with bacterial urinary tract infection in type 2 diabetes. BMC Endocr. Disord. 2023, 23, 211. [Google Scholar] [CrossRef]
- Ko, S.; Kim, H.; Shinn, J.; Byeon, S.J.; Choi, J.H.; Kim, H.S. Estimation of sodium-glucose cotransporter 2 inhibitor-related genital and urinary tract infections via electronic medical record-based common data model. J. Clin. Pharm. Ther. 2021, 46, 975–983. [Google Scholar] [CrossRef]
- Nyirjesy, P.; Zhao, Y.; Ways, K.; Usiskin, K. Evaluation of vulvovaginal symptoms and Candida colonization in women with type 2 diabetes mellitus treated with canagliflozin, a sodium glucose co-transporter 2 inhibitor. Curr. Med. Res. Opin. 2012, 28, 1173–1178. [Google Scholar] [CrossRef]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef]
- Bailey, C.J.; Morales Villegas, E.C.; Woo, V.; Tang, W.; Ptaszynska, A.; List, J.F. Efficacy and safety of dapagliflozin monotherapy in people with Type 2 diabetes: A randomized double-blind placebo-controlled 102-week trial. Diabet. Med. 2015, 32, 531–541. [Google Scholar] [CrossRef]
- Bode, B.; Stenlöf, K.; Harris, S.; Sullivan, D.; Fung, A.; Usiskin, K.; Meininger, G. Long-term efficacy and safety of canagliflozin over 104 weeks in patients aged 55-80 years with type 2 diabetes. Diabetes Obes. Metab. 2015, 17, 294–303. [Google Scholar] [CrossRef]
- Arakaki, R.F. Sodium-glucose cotransporter-2 inhibitors and genital and urinary tract infections in type 2 diabetes. Postgrad. Med. 2016, 128, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Nyirjesy, P.; Brookhart, C.; Lazenby, G.; Schwebke, J.; Sobel, J.D. Vulvovaginal Candidiasis: A Review of the Evidence for the 2021 Centers for Disease Control and Prevention of Sexually Transmitted Infections Treatment Guidelines. Clin. Infect Dis. 2022, 74 (Suppl. S2), S162–S168. [Google Scholar] [CrossRef] [PubMed]
- Cancelo Hidalgo, M.J.; Beltrán Vaquero, D.; Calaf Alsina, J.; Campillo Arias-Camisón, F.; Cano Sánchez, A.; Guerra Guirao, J.A. The protocol of the Spanish Society of Obstetrics and Gynecology for the diagnosis and treatment of vulvovaginal infection. Prog. Obstet. Ginecol. 2012, 56, 278–284. [Google Scholar] [CrossRef]
- Uroweb—European Association of Urology [Internet]. EAU Guidelines on Urological Infections—INTRODUCTION—Uroweb. Available online: https://uroweb.org/guidelines/urological-infections (accessed on 22 August 2024).
- Edwards, S.K.; Bunker, C.B.; van der Snoek, E.M.; van der Meijden, W.I. 2022 European guideline for the management of balanoposthitis. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 1104–1117. [Google Scholar] [CrossRef]
- Kalra, S.; Chawla, A. Diabetes and balanoposthitis. J. Pak. Med. Assoc. 2016, 66, 1039–1041. [Google Scholar]
- Pishdad, R.; Auwaerter, P.G.; Kalyani, R.R. Diabetes, SGLT-2 Inhibitors, and Urinary Tract Infection: A Review. Curr. Diabetes Rep. 2024, 24, 108–117. [Google Scholar] [CrossRef]
- Nicolle, L.E.; Gupta, K.; Bradley, S.F.; Colgan, R.; DeMuri, G.P.; Drekonja, D.; Eckert, L.O.; Geerlings, S.E.; Köves, B.; Hooton, T.M.; et al. Clinical Practice Guideline for the Management of Asymptomatic Bacteriuria: 2019 Update by the Infectious Diseases Society of America. Clin. Infect Dis. 2019, 68, 1611–1615. [Google Scholar] [CrossRef]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.G.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J.; et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in womenA 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef]
- Spaulding, C.N.; Klein, R.D.; Schreiber, H.L., 4th; Janetka, J.W.; Hultgren, S.J. Precision antimicrobial therapeutics: The path of least resistance? NPJ Biofilms Microbiomes 2018, 4, 4. [Google Scholar] [CrossRef]
- Blostein, F.; Levin-Sparenberg, E.; Wagner, J.; Foxman, B. Recurrent vulvovaginal candidiasis. Ann. Epidemiol. 2017, 27, 575–582.e3. [Google Scholar] [CrossRef]
- Harding, C.; Mossop, H.; Homer, T.; Chadwick, T.; King, W.; Carnell, S.; Lecouturier, J.; Abouhajar, A.; Vale, L.; Watson, G.; et al. Alternative to prophylactic antibiotics for the treatment of recurrent urinary tract infections in women: Multicentre, open label, randomised, non-inferiority trial. BMJ 2022, 376, e068229. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, N.; Leslie, S.W.; Lotfollahzadeh, S. Recurrent Urinary Tract Infections. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557479/ (accessed on 21 August 2024).
- Ahmed, H.; Davies, F.; Francis, N.; Farewell, D.; Butler, C.; Paranjothy, S. Long-term antibiotics for prevention of recurrent urinary tract infection in older adults: Systematic review and meta-analysis of randomised trials. BMJ Open 2017, 7, e015233. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.J. Treatment of non-albicans Candida vaginitis with amphotericin B vaginal suppositories. Am. J. Obstet. Gynecol. 2005, 192, 2009–2012, discussion 2012–2013. [Google Scholar] [CrossRef]
- Salama, O.E.; Gerstein, A.C. Differential Response of Candida Species Morphologies and Isolates to Fluconazole and Boric Acid. Antimicrob. Agents Chemother. 2022, 66, e0240621. [Google Scholar] [CrossRef]
- El Ayoubi, L.W.; Allaw, F.; Moussa, E.; Kanj, S.S. Ibrexafungerp: A narrative overview. Curr. Res. Microb. Sci. 2024, 6, 100245. [Google Scholar] [CrossRef]
- Cooke, G.; Watson, C.; Deckx, L.; Pirotta, M.; Smith, J.; van Driel, M.L. Treatment for recurrent vulvovaginal candidiasis (thrush). Cochrane Database Syst. Rev. 2022, 1, CD009151. [Google Scholar] [CrossRef]
- Scott, A.M.; Clark, J.; Mar, C.D.; Glasziou, P. Increased fluid intake to prevent urinary tract infections: Systematic review and meta-analysis. Br. J. Gen. Pract. 2020, 70, e200–e207. [Google Scholar] [CrossRef]
- Perrotta, C.; Aznar, M.; Mejia, R.; Albert, X.; Ng, C.W. Oestrogens for preventing recurrent urinary tract infection in postmenopausal women. Cochrane Database Syst. Rev. 2008, 2, CD005131. [Google Scholar] [CrossRef]
- Rudenko, N.; Dorofeyev, A. Prevention of recurrent lower urinary tract infections by long-term administration of fosfomycin trometamol. Double blind, randomized, parallel group, placebo controlled study. Arzneimittelforschung 2005, 55, 420–427. [Google Scholar]
- Williams, G.; Hahn, D.; Stephens, J.H.; Craig, J.C.; Hodson, E.M. Cranberries for preventing urinary tract infections. Cochrane Database Syst. Rev. 2023, 4, CD001321, Update in: Cochrane Database Syst. Rev. 2023, 11, CD001321. [Google Scholar] [CrossRef]
- Rondanelli, M.; Mansueto, F.; Gasparri, C.; Solerte, S.B.; Misiano, P.; Perna, S. Supplementation with Highly Standardized Cranberry Extract Phytosome Achieved the Modulation of Urinary Tract Infection Episodes in Diabetic Postmenopausal Women Taking SGLT-2 Inhibitors: A RCT Study. Nutrients 2024, 16, 2113. [Google Scholar] [CrossRef] [PubMed]
- Davidson, S.M.; Brown, J.N.; Nance, C.B.; Townsend, M.L. Use of Methenamine for Urinary Tract Infection Prophylaxis: Systematic Review of Recent Evidence. Int. Urogynecol. J. 2024, 35, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Harding, C.; Chadwick, T.; Homer, T.; Lecouturier, J.; Mossop, H.; Carnell, S.; King, W.; Abouhajar, A.; Vale, L.; Watson, G.; et al. Methenamine hippurate compared with antibiotic prophylaxis to prevent recurrent urinary tract infections in women: The ALTAR non-inferiority RCT. Health Technol Assess. 2022, 26, 1–172. [Google Scholar] [CrossRef] [PubMed]
- Hayward, G.; Mort, S.; Hay, A.D.; Moore, M.; Thomas, N.P.B.; Cook, J.; Robinson, J.; Williams, N.; Maeder, N.; Edeson, R.; et al. d-Mannose for Prevention of Recurrent Urinary Tract Infection Among Women: A Randomized Clinical Trial. JAMA Intern. Med. 2024, 184, 619–628. [Google Scholar] [CrossRef]
- Gupta, V.; Nag, D.; Garg, P. Recurrent urinary tract infections in women: How promising is the use of probiotics? Indian J. Med. Microbiol. 2017, 35, 347–354. [Google Scholar] [CrossRef]
- Gupta, V.; Mastromarino, P.; Garg, R. Effectiveness of Prophylactic Oral and/or Vaginal Probiotic Supplementation in the Prevention of Recurrent Urinary Tract Infections: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Infect Dis. 2024, 78, 1154–1161. [Google Scholar] [CrossRef]
- Lorenzo-Gómez, M.F.; Foley, S.; Nickel, J.C.; García-Cenador, M.B.; Padilla-Fernández, B.Y.; González-Casado, I.; Martínez-Huélamo, M.; Yang, B.; Blick, C.; Ferreira, F.; et al. Sublingual MV140 for Prevention of Recurrent Urinary Tract Infections. NEJM Evid. 2022, 1, EVIDoa2100018. [Google Scholar] [CrossRef]
- Hopper, R.A.; McMahan, D.M.; Jarvis, K.A.; Weideman, R.A. Risk of Urinary Infections in Veterans on Empagliflozin With Concurrent Catheter Use. J. Pharm. Pract. 2024, 37, 1127–1131. [Google Scholar] [CrossRef]
- Hooton, T.M.; Bradley, S.F.; Cardenas, D.D.; Colgan, R.; Geerlings, S.E.; Rice, J.C.; Saint, S.; Schaeffer, A.J.; Tambayh, P.A.; Tenke, P.; et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin. Infect Dis. 2010, 50, 625–663. [Google Scholar] [CrossRef]
- Sharif, A.; Chakkera, H.; de Vries, A.P.J.; Eller, K.; Guthoff, M.; Haller, M.C.; Hornum, M.; Nordheim, E.; Kautzky-Willer, A.; Krebs, M.; et al. International consensus on post-transplantation diabetes mellitus. Nephrol. Dial. Transplant. 2024, 39, 531–549. [Google Scholar] [CrossRef]
- Ujjawal, A.; Schreiber, B.; Verma, A. Sodium-glucose cotransporter-2 inhibitors (SGLT2i) in kidney transplant recipients: What is the evidence? Ther. Adv. Endocrinol. Metab. 2022, 13, 20420188221090001. [Google Scholar] [CrossRef] [PubMed]
- de Boer, I.H.; Khunti, K.; Sadusky, T.; Tuttle, K.R.; Neumiller, J.J.; Rhee, C.M.; Rosas, S.E.; Rossing, P.; Bakris, G. Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 2022, 45, 3075–3090. [Google Scholar] [CrossRef] [PubMed]
- Chewcharat, A.; Prasitlumkum, N.; Thongprayoon, C.; Bathini, T.; Medaura, J.; Vallabhajosyula, S.; Cheungpasitporn, W. Efficacy and Safety of SGLT-2 Inhibitors for Treatment of Diabetes Mellitus among Kidney Transplant Patients: A Systematic Review and Meta-Analysis. Med. Sci. 2020, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Halden, T.A.S.; Kvitne, K.E.; Midtvedt, K.; Rajakumar, L.; Robertsen, I.; Brox, J.; Bollerslev, J.; Hartmann, A.; Åsberg, A.; Jenssen, T. Efficacy and Safety of Empagliflozin in Renal Transplant Recipients with Posttransplant Diabetes Mellitus. Diabetes Care 2019, 42, 1067–1074. [Google Scholar] [CrossRef]
- Schwaiger, E.; Burghart, L.; Signorini, L.; Ristl, R.; Kopecky, C.; Tura, A.; Pacini, G.; Wrba, T.; Antlanger, M.; Schmaldienst, S.; et al. Empagliflozin in posttransplantation diabetes mellitus: A prospective, interventional pilot study on glucose metabolism, fluid volume, and patient safety. Am. J. Transplant. 2019, 19, 907–919. [Google Scholar] [CrossRef]
- Mahling, M.; Schork, A.; Nadalin, S.; Fritsche, A.; Heyne, N.; Guthoff, M. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibition in Kidney Transplant Recipients with Diabetes Mellitus. Kidney Blood Press. Res. 2019, 44, 984–992. [Google Scholar] [CrossRef]
- Shah, M.; Virani, Z.; Rajput, P.; Shah, B. Efficacy and Safety of Canagliflozin in Kidney Transplant Patients. Indian J. Nephrol. 2019, 29, 278–281. [Google Scholar] [CrossRef]
- Sánchez Fructuoso, A.I.; Bedia Raba, A.; Banegas Deras, E.; Vigara Sánchez, L.A.; Valero San Cecilio, R.; Franco Esteve, A.; Cruzado Vega, L.; Gavela Martínez, E.; González Garcia, M.E.; Saurdy Coronado, P.; et al. Sodium-glucose cotransporter-2 inhibitor therapy in kidney transplant patients with type 2 or post-transplant diabetes: An observational multicentre study. Clin. Kidney J. 2023, 16, 1022–1034. [Google Scholar] [CrossRef]
- Goldman, J.D.; Julian, K. Urinary tract infections in solid organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin. Transplant. 2019, 33, e13507. [Google Scholar] [CrossRef]
- Mreyoud, H.; Walter, K.; Wilpula, E.; Park, J.M. The efficacy and safety of sodium-glucose cotransporter-2 inhibitors in solid organ transplant recipients: A scoping review. Pharmacotherapy 2024, 44, 444–466. [Google Scholar] [CrossRef]
- Cehic, M.G.; Muir, C.A.; Greenfield, J.R.; Hayward, C.; Jabbour, A.; Keogh, A.; Kotlyar, E.; Muthiah, K.; Macdonald, P.S. Efficacy and Safety of Empagliflozin in the Management of Diabetes Mellitus in Heart Transplant Recipients. Transplant. Direct. 2019, 5, e450. [Google Scholar] [CrossRef] [PubMed]
- Sammour, Y.; Nassif, M.; Magwire, M.; Thomas, M.; Fendler, T.; Khumri, T.; Sperry, B.W.; O’Keefe, J.; Kosiborod, M. Effects of GLP-1 receptor agonists and SGLT-2 inhibitors in heart transplant patients with type 2 diabetes: Initial report from a cardiometabolic center of excellence. J. Heart Lung Transplant. 2021, 40, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Cehic, M.G.; Nundall, N.; Greenfield, J.R.; Macdonald, P.S. Management Strategies for Posttransplant Diabetes Mellitus after Heart Transplantation: A Review. J. Transplant. 2018, 2018, 1025893. [Google Scholar] [CrossRef] [PubMed]
|
|
|
|
Canagliflozin | Dapagliflozin | Empagliflozin | Ertugliflozin | |
---|---|---|---|---|
GMIs | ||||
Females | 11.6% vs. 2.8% | 6.9% vs. 1.5% | 6.4% vs. 1.5% | 12.2% vs. 3.3% |
Males | 3.8% vs. 0.7% | 2.7% vs. 0.3% | 1.6% vs. 0.4% | 4.2% vs. 0.4% |
UTIs | 4.3% vs. 4.0% | 4.7% vs. 3.5% | 7.0% vs. 7.2% | 4.1% vs. 3.9% |
Volume depletion | 1.3% vs. 1.1% | 1.1% vs. 0.7% | 0.4% vs. 0.3% | <2% vs. <2% |
Increased urination | 4.6% vs. 0.7% | 3.8% vs. 1.7% | 3.3% vs. 1.4% | 2.4% vs. 1.0% |
DKA |
| DECLARE: 0.31% vs. 0.14% | EMPA-REG: <0.1% vs. <0.1% | VERTIS-CV: 0.4% vs. 0.1% |
Amputations |
| DECLARE: 1.4% vs. 1.3% | EMPA-REG: 1.9% vs. 1.8% | VERTIS-CV: 2.1% vs. 1.6% |
Bone fractures |
| DECLARE: 5.3% vs. 5.1% | EMPA-REG: 3.7% vs. 3.9% | VERTIS-CV: 3.7% vs. 3.6% |
Fournier’s Gangrene | NR | DECLARE: 0.01% vs. 0.06% | NR | VERTIS-CV: 0% vs. 0% |
Studies Comparing UTI Risk Between SGLT2is and Placebo | |||
---|---|---|---|
Comparison | Study [ref.] | Patients (n) | Outcome |
Meta-analysis | |||
SGLT2is vs. placebo | Puckrin et al [60] | 72 trials: 37,116 | Risk ratio 1.03; (95% CI: 0.96 to 1.11) |
SGLT2is vs. placebo | Johansen et al [36] | 8 trials; 49,587 | Risk ratio: 1.08; (95% CI: 1.00 to 1.18). p = 0.77 |
SGLT2is vs. placebo | Qiu et al [41] | 8 trials 63,237 | Risk ratio: 1.09; (95% CI: 0.99 to 1.15). p = 0.77 |
SGLT2is vs. placebo | Liu et al [61] | 17 trials: 4,997,145 | Risk ratio: 1.29; (95% CI: 1.06 to 1.57) p = 0.65 |
Randomized controlled trials | |||
CREDENCE: Canagliflozin (100 mg) vs. placebo | Perkovic et al [12] | 4397 | HR 1.08; (95% CI: 0.90 to 1.29) |
CANVAS: Canagliflozin (all doses) vs. placebo | Neal et al [3] | 4330 | 40 vs. 37 participants with an event per 1000 patient years; p = 0.38 |
DAPA-CKD: Dapagliflozin (10 mg) vs. placebo | Heerspink et al [13] | 4298 | No difference reported; details unpublished |
DECLARE: Dapagliflozin (10 mg) vs. placebo | Wiviott et al [4] | 17,143 | HR 0.93; (95% CI: 0.73 to 1.18); p = 0.54 |
EMPA REG OUTCOME: Empagliflozin (all doses) vs. placebo | Wanner et al [18] | 7018 | eGFR < 60 mL/min per 1.73 m2: Rate ratio: 1.06; (95% CI: 0.86 to 1.3) eGFR ≥ 60 mL/min per 1.73 m2: Rate ratio 0.92; (95% CI: 0.8 to 1.07) |
SGLT2is vs. placebo | Bai et al [62] | 3 trials 17,802 | HR 1.00; (95% CI: 0.90 to 1.11), p = 0.958 |
Studies comparing UTI risk between SGLT2is and active comparators | |||
Comparison | Study [ref.] | Patients (n) | Outcome |
Meta-analysis | |||
SGLT2is vs. Active comparator | Puckrin et al [60] | 22 trials: 15,966 patients | Random-effects model risk ratio 1.08;(95% CI: 0.93 to 1.25) |
Retrospective cohort | |||
SGLT2is vs. GLP1-RA | Varshney et al [64] | 474 patients | Composite genitourinary infection HR 0.78; (95% CI: 0.26 to 2.37) |
SGLT2is vs. DPP4i | Fisher et al [65] | 416,488 patients | Urosepsis HR 0.58; (95% CI: 0.42 to 0.80) |
SGLT2is vs. DPP4i or GLP1-RA | Dave et al [63] | SGLT2is vs. DPP4i: n 123,752; SGLT2is vs. GLP1-RA: n 111,978 | Severe UTI:
|
SGLT2is vs. active comparator | Li CX et al [40] | 40 trials, 9,911,454 patients | HR 0.99; (95% CI: 0.89 to 1.10), p = 0.83 |
Genital Infection | Treatment Recommendations |
---|---|
Uncomplicated acute VVC | Topical antifungal agents, with no one agent being superior to another OR a single 150 mg oral dose of fluconazole Topical agents:
|
Uncomplicated acute Candida balanitis | Topical antifungal agents, with no one agent superior to another OR a single 150 mg oral dose of fluconazole Topical agents:
|
Severe acute VVC or balanitis | Oral fluconazole at 150 mg, given every 72 h for a total of 2 or 3 doses |
Candida glabrata or non albicans Candida VVC that is unresponsive to oral azoles |
|
Recurrent VVC or balanitis |
|
Treatment | |||
---|---|---|---|
Agent | Dosage | Duration | Comment |
Acute cystitis | |||
Trimethoprim–sulfamethoxazole (TMP-SMX) | One double-strength tablet (160 mg/800 mg) orally twice daily | 3–7 days | Avoid if regional prevalence of resistance known to be >20% |
Fosfomycin- trometahine | 3 g of powder mixed in water and administered orally | Single dose | Avoid if concern for early pyelonephritis |
Nitrofurantoin monohydrate/macrocrystals | 100 mg orally twice daily | 5–7 days | Avoid if concern for early pyelonephritis OR CrCl < 30 mL/min |
Pivmecillinam | 400 mg pivmecillinam orally three times daily | 5–7 days | Check for beta-lactam allergy |
Amoxicillin–clavulanate | 500 mg orally twice daily | 5–7 days | Check for beta-lactam allergy |
Cefadroxil | 500 mg orally twice daily | 5–7 days | Check for beta-lactam allergy |
Cephalexin | 500 mg orally twice daily | 5–7 days | Check for beta-lactam allergy |
Ciprofloxacin | 250 mg orally twice daily or 500 mg extended release orally once daily | 3–5 days | |
Levofloxacin | 250 mg orally once daily | 3–5 days | |
Recurrent cystitis | |||
Fosfomycin- trometahine | 3 g every 7 to 10 days | 6 months with re-evaluation at 4–6 weeks. Repeat for another 6 months if no side effects or interactions occur | |
Trimethoprim–sulfamethoxazole | 40 mg/200 mg once daily OR 40 mg/200 mg three times weekly | ||
Trimethoprim | 100 mg once daily | ||
Cephalexin | 125 mg once daily OR 250 mg once daily | Check for beta-lactam allergy | |
Pyelonefritis | |||
Some therapies could be the following:
| Use ertapenem in the case of risk factors for MDR Gram-negative UTIs Any one of the following in the prior three months:
Tailor antimicrobial therapy with results of urine culture susceptibility testing results |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorgojo-Martínez, J.J.; Górriz, J.L.; Cebrián-Cuenca, A.; Castro Conde, A.; Velasco Arribas, M. Clinical Recommendations for Managing Genitourinary Adverse Effects in Patients Treated with SGLT-2 Inhibitors: A Multidisciplinary Expert Consensus. J. Clin. Med. 2024, 13, 6509. https://doi.org/10.3390/jcm13216509
Gorgojo-Martínez JJ, Górriz JL, Cebrián-Cuenca A, Castro Conde A, Velasco Arribas M. Clinical Recommendations for Managing Genitourinary Adverse Effects in Patients Treated with SGLT-2 Inhibitors: A Multidisciplinary Expert Consensus. Journal of Clinical Medicine. 2024; 13(21):6509. https://doi.org/10.3390/jcm13216509
Chicago/Turabian StyleGorgojo-Martínez, Juan J., José L. Górriz, Ana Cebrián-Cuenca, Almudena Castro Conde, and María Velasco Arribas. 2024. "Clinical Recommendations for Managing Genitourinary Adverse Effects in Patients Treated with SGLT-2 Inhibitors: A Multidisciplinary Expert Consensus" Journal of Clinical Medicine 13, no. 21: 6509. https://doi.org/10.3390/jcm13216509
APA StyleGorgojo-Martínez, J. J., Górriz, J. L., Cebrián-Cuenca, A., Castro Conde, A., & Velasco Arribas, M. (2024). Clinical Recommendations for Managing Genitourinary Adverse Effects in Patients Treated with SGLT-2 Inhibitors: A Multidisciplinary Expert Consensus. Journal of Clinical Medicine, 13(21), 6509. https://doi.org/10.3390/jcm13216509