Minimally Invasive Aortic Valve Replacement for High-Risk Populations: Transaxillary Access Enhances Survival in Patients with Obesity
Abstract
:1. Introduction
2. Patients and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Study Design and Ethical Statement
2.3. Patient Population
2.4. Involved Surgeons
2.5. Sternum-Sparing Transaxillary Concept of MICLAT-S
2.6. Prosthesis Choice
2.7. Statistical Analysis
3. Results
3.1. Baseline Patient Characteristics
3.2. Unadjusted Outcomes
3.2.1. Procedural and Intraoperative Data
3.2.2. Postoperative Outcomes, Morbidity, and Mortality
3.3. Propensity Score-Matched Cohort
3.3.1. Adjusted Procedural and Intraoperative Data
3.3.2. Adjusted Postoperative Outcomes, Morbidity, and Mortality
4. Discussion
- -
- Combined MACCEs were less frequently observed in the MICLAT-S group;
- -
- The postoperative 30-day mortality rate was significantly lower in the MICLAT-S group;
- -
- The MICLAT-S group had a shorter median hospital stay;
- -
- The incidence of postoperative impaired wound healing was significantly lower in the MICLAT-S group;
- -
- The MICLAT-S group needed fewer transfusions of blood products.
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gammie, J.S.; Bartlett, S.T.; Griffith, B.P. Small-incision mitral valve repair: Safe, durable, and approaching perfection. Ann. Surg. 2009, 250, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.; Höfer, D.; Holfeld, J.; Hangler, H.; Bonaros, N.; Grimm, M. Indications and contra-indications for minimally invasive mitral valve surgery. J. Vis. Surg. 2018, 4, 255. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Obesity and Overweight. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 25 May 2024).
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, W.T.; Hoffman, W.; Dewey, T.M.; Culica, D.; Prince, S.L.; Herbert, M.A.; Mack, M.J.; Ryan, W.H. Aortic valve replacement surgery: Comparison of outcomes in matched sternotomy and PORT ACCESS groups. Ann. Thorac. Surg. 2010, 90, 131–135. [Google Scholar] [CrossRef]
- McInerney, A.; Rodes-Cabau, J.; Veiga, G.; Lopez-Otero, D.; Munoz-Garcia, E.; Campelo-Parada, F.; Oteo, J.F.; Carnero, M.; Tafur Soto, J.D.; Amat-Santos, I.J.; et al. Transcatheter versus surgical aortic valve replacement in patients with morbid obesity: A multicentre propensity score-matched analysis. EuroIntervention 2022, 18, e417–e427. [Google Scholar] [CrossRef]
- McInerney, A.; Tirado-Conte, G.; Rodes-Cabau, J.; Campelo-Parada, F.; Tafur Soto, J.D.; Barbanti, M.; Munoz-Garcia, E.; Arif, M.; Lopez, D.; Toggweiler, S.; et al. Impact of morbid obesity and obesity phenotype on outcomes after transcatheter aortic valve replacement. J. Am. Heart Assoc. 2021, 10, e019051. [Google Scholar] [CrossRef]
- Yap, C.H.; Mohajeri, M.; Yii, M. Obesity and early complications after cardiac surgery. Med. J. Aust. 2007, 186, 350–354. [Google Scholar] [CrossRef]
- Ghanta, R.K.; LaPar, D.J.; Zhang, Q.; Devarkonda, V.; Isbell, J.M.; Yarboro, L.T.; Kern, J.A.; Kron, I.L.; Speir, A.M.; Fonner, C.E.; et al. Obesity increases risk-adjusted morbidity, mortality, and cost following cardiac surgery. J. Am. Heart Assoc. 2017, 6, e003831. [Google Scholar] [CrossRef]
- Allama, A.; Ibrahim, I.; Abdallah, A.; Ashraf, S.; Youhana, A.; Kumar, P.; Bhatti, F.; Zaidi, A. Effect of body mass index on early clinical outcomes after cardiac surgery. Asian Cardiovasc. Thorac. Ann. 2014, 22, 667–673. [Google Scholar] [CrossRef]
- Stamou, S.C.; Nussbaum, M.; Stiegel, R.M.; Reames, M.K.; Skipper, E.R.; Robicsek, F.; Lobdell, K.W. Effect of body mass index on outcomes after cardiac surgery: Is there an obesity paradox? Ann. Thorac. Surg. 2011, 91, 42–47. [Google Scholar] [CrossRef]
- Hartrumpf, M.; Kuehnel, R.U.; Albes, J.M. The obesity paradox is still there: A risk analysis of over 15 000 cardiosurgical patients based on body mass index. Interact. Cardiovasc. Thorac. Surg. 2017, 25, 18–24. [Google Scholar] [CrossRef]
- Mariscalco, G.; Wozniak, M.J.; Dawson, A.G.; Serraino, G.F.; Porter, R.; Nath, M.; Klersy, C.; Kumar, T.; Murphy, G.J. Body mass index and mortality among adults undergoing cardiac surgery: A nationwide study with a systematic review and meta-analysis. Circulation 2017, 135, 850–863. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.A.; Reinders, I.; Garcia, M.E.; Eiriksdottir, G.; Launer, L.J.; Benediktsson, R.; Gudnason, V.; Jonsson, P.V.; Harris, T.B. Adipose tissue, muscle, and function: Potential mediators of associations between body weight and mortality in older adults with type 2 diabetes. Diabetes Care 2014, 37, 3213–3219. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Xu, J.; Zhen, S.; Zhu, Y. Obesity is associated with postoperative outcomes in patients undergoing cardiac surgery: A cohort study. BMC Anesthesiol. 2023, 23, 3. [Google Scholar] [CrossRef] [PubMed]
- De Santo, L.S.; Moscariello, C.; Zebele, C. Implications of obesity in cardiac surgery: Pattern of referral, physiopathology, complications, prognosis. J. Thorac. Dis. 2018, 10, 4532–4539. [Google Scholar] [CrossRef] [PubMed]
- Karra, R.; McDermott, L.; Connelly, S.; Smith, P.; Sexton, D.J.; Kaye, K.S. Risk factors for 1-year mortality after postoperative mediastinitis. J. Thorac. Cardiovasc. Surg. 2006, 132, 537–543. [Google Scholar] [CrossRef]
- Molina, J.E.; Lew, R.S.; Hyland, K.J. Postoperative sternal dehiscence in obese patients: Incidence and prevention. Ann. Thorac. Surg. 2004, 78, 912–917; discussion 912–917. [Google Scholar] [CrossRef]
- Vargo, P.R.; Steffen, R.J.; Bakaeen, F.G.; Navale, S.; Soltesz, E.G. The impact of obesity on cardiac surgery outcomes. J. Card. Surg. 2018, 33, 588–594. [Google Scholar] [CrossRef]
- Rahmanian, P.B.; Adams, D.H.; Castillo, J.G.; Chikwe, J.; Bodian, C.A.; Filsoufi, F. Impact of body mass index on early outcome and late survival in patients undergoing coronary artery bypass grafting or valve surgery or both. Am. J. Cardiol. 2007, 100, 1702–1708. [Google Scholar] [CrossRef]
- Murtuza, B.; Pepper, J.R.; Stanbridge, R.D.; Jones, C.; Rao, C.; Darzi, A.; Athanasiou, T. Minimal access aortic valve replacement: Is it worth it? Ann. Thorac. Surg. 2008, 85, 1121–1131. [Google Scholar] [CrossRef]
- Plass, A.; Scheffel, H.; Alkadhi, H.; Kaufmann, P.; Genoni, M.; Falk, V.; Grünenfelder, J. Aortic valve replacement through a minimally invasive approach: Preoperative planning, surgical technique, and outcome. Ann. Thorac. Surg. 2009, 88, 1851–1856. [Google Scholar] [CrossRef] [PubMed]
- Wilbring, M.; Arzt, S.; Alexiou, K.; Charitos, E.; Matschke, K.; Kappert, U. Clinical Safety and Efficacy of the Transaxillary Access Route for Minimally Invasive Aortic Valve Replacement. Thorac. Cardiovasc. Surg. 2023, 71, DGTHG-V47. [Google Scholar] [CrossRef]
- Wilbring, M.; Arzt, S.; Alexiou, K.; Matschke, K.; Kappert, U. Surgery without visible scars-double valve surgery using the right lateral access. Ann. Cardiothorac. Surg. 2020, 9, 424–426. [Google Scholar] [CrossRef]
- Wilbring, M.; Matschke, K.E.; Alexiou, K.; Di Eusanio, M.; Kappert, U. Surgery without scars: Right lateral access for minimally invasive aortic valve replacement. Thorac. Cardiovasc. Surg. 2021, 69, 461–465. [Google Scholar] [CrossRef]
- Coti, I.; Haberl, T.; Scherzer, S.; Werner, P.; Shabanian, S.; Kocher, A.; Laufer, G.; Andreas, M. Outcome of rapid deployment aortic valves: Long-term experience after 700 implants. Ann. Cardiothorac. Surg. 2020, 9, 314–321. [Google Scholar] [CrossRef]
- Williams, M.L.; Flynn, C.D.; Mamo, A.A.; Tian, D.H.; Kappert, U.; Wilbring, M.; Folliguet, T.; Fiore, A.; Miceli, A.; D’Onofrio, A.; et al. Long-term outcomes of sutureless and rapid-deployment aortic valve replacement: A systematic review and meta-analysis. Ann. Cardiothorac. Surg. 2020, 9, 265–279. [Google Scholar] [CrossRef]
- Pollari, F.; Mamdooh, H.; Hitzl, W.; Grossmann, I.; Vogt, F.; Fischlein, T. Ten years’ experience with the sutureless aortic valve replacement: Incidence and predictors for survival and valve durability at follow-up. Eur. J. Cardiothorac. Surg. 2023, 63, ezac572. [Google Scholar] [CrossRef]
- Rao, P.N.; Kumar, A.S. Aortic valve replacement through right thoracotomy. Tex. Heart Inst. J. 1993, 20, 307–308. [Google Scholar]
- Cosgrove, D.M., 3rd; Sabik, J.F. Minimally invasive approach for aortic valve operations. Ann. Thorac. Surg. 1996, 62, 596–597. [Google Scholar] [CrossRef]
- Svensson, L.G.; D’Agostino, R.S. “J” incision minimal-access valve operations. Ann. Thorac. Surg. 1998, 66, 1110–1112. [Google Scholar] [CrossRef]
- Lamelas, J. Minimally invasive aortic valve replacement: The “Miami Method”. Ann. Cardiothorac. Surg. 2015, 4, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Van Praet, K.M.; Van Kampen, A.; Kofler, M.; Unbehaun, A.; Hommel, M.; Jacobs, S.; Falk, V.; Kempfert, J. Minimally invasive surgical aortic valve replacement through a right anterolateral thoracotomy. Multimed. Man. Cardiothorac. Surg. 2020, 2020. [Google Scholar] [CrossRef]
- Beckmann, A.; Meyer, R.; Eberhardt, J.; Gummert, J.; Falk, V. German heart surgery report 2023: The annual updated registry of the german society for thoracic and cardiovascular surgery. Thorac. Cardiovasc. Surg. 2024, 72, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Phan, K.; Xie, A.; Di Eusanio, M.; Yan, T.D. A meta-analysis of minimally invasive versus conventional sternotomy for aortic valve replacement. Ann. Thorac. Surg. 2014, 98, 1499–1511. [Google Scholar] [CrossRef]
- Doenst, T.; Lamelas, J. Do we have enough evidence for minimally-invasive cardiac surgery? A critical review of scientific and non-scientific information. J. Cardiovasc. Surg. 2017, 58, 613–623. [Google Scholar] [CrossRef]
- Brown, M.L.; McKellar, S.H.; Sundt, T.M.; Schaff, H.V. Ministernotomy versus conventional sternotomy for aortic valve replacement: A systematic review and meta-analysis. J. Thorac. Cardiovasc. Surg. 2009, 137, 670–679.e5. [Google Scholar] [CrossRef]
- Scarci, M.; Young, C.; Fallouh, H. Is ministernotomy superior to conventional approach for aortic valve replacement? Interact. Cardiovasc. Thorac. Surg. 2009, 9, 314–317. [Google Scholar] [CrossRef]
- Modi, P.; Hassan, A.; Chitwood, W.R., Jr. Minimally invasive mitral valve surgery: A systematic review and meta-analysis. Eur. J. Cardiothorac. Surg. 2008, 34, 943–952. [Google Scholar] [CrossRef]
- Santana, O.; Reyna, J.; Grana, R.; Buendia, M.; Lamas, G.A.; Lamelas, J. Outcomes of minimally invasive valve surgery versus standard sternotomy in obese patients undergoing isolated valve surgery. Ann. Thorac. Surg. 2011, 91, 406–410. [Google Scholar] [CrossRef]
- Abud, B.; Saydam, O.; Engin, A.Y.; Karaarslan, K.; Kunt, A.G.; Karacelik, M. Outcomes of aortic valve replacement via right anterior minithoracotomy and central cannulation versus conventional aortic valve replacement in obese patients. Braz. J. Cardiovasc. Surg. 2022, 37, 875–882. [Google Scholar] [CrossRef]
- Xie, X.B.; Dai, X.F.; Qiu, Z.H.; Jiang, D.B.; Wu, Q.S.; Dong, Y.; Chen, L.W. Do obese patients benefit from isolated aortic valve replacement through a partial upper sternotomy? J. Cardiothorac. Surg. 2022, 17, 179. [Google Scholar] [CrossRef] [PubMed]
- Cammertoni, F.; Bruno, P.; Pavone, N.; Nesta, M.; Chiariello, G.A.; Grandinetti, M.; D’Avino, S.; Sanesi, V.; D’Errico, D.; Massetti, M. Outcomes of minimally invasive aortic valve replacement in obese patients: A propensity-matched study. Braz. J. Cardiovasc. Surg. 2024, 39, e20230159. [Google Scholar] [CrossRef] [PubMed]
- Pisano, C.; Totaro, P.; Triolo, O.F.; Argano, V. Advantages of minimal access versus conventional aortic valve replacement in elderly or severely obese patients. Innovations 2017, 12, 102–108. [Google Scholar] [CrossRef]
- Welp, H.A.; Herlemann, I.; Martens, S.; Deschka, H. Outcomes of aortic valve replacement via partial upper sternotomy versus conventional aortic valve replacement in obese patients. Interact. Cardiovasc. Thorac. Surg. 2018, 27, 481–486. [Google Scholar] [CrossRef]
- Girgis, S.W.G.; Leon, K.N.; Nekhila, W.S.B. Mini-sternotomy aortic valve replacement in morbid obesity: Can the little offer the greater? Egypt. J. Hosp. Med. 2022, 89, 7745–7748. [Google Scholar] [CrossRef]
- Furukawa, N.; Kuss, O.; Aboud, A.; Schonbrodt, M.; Renner, A.; Hakim Meibodi, K.; Becker, T.; Zittermann, A.; Gummert, J.F.; Borgermann, J. Ministernotomy versus conventional sternotomy for aortic valve replacement: Matched propensity score analysis of 808 patients. Eur. J. Cardiothorac. Surg. 2014, 46, 221–226; discussion 226–227. [Google Scholar] [CrossRef]
- Acharya, M.; Harling, L.; Moscarelli, M.; Ashrafian, H.; Athanasiou, T.; Casula, R. Influence of body mass index on outcomes after minimal-access aortic valve replacement through a J-shaped partial upper sternotomy. J. Cardiothorac. Surg. 2016, 11, 74. [Google Scholar] [CrossRef]
- Lim, J.Y.; Deo, S.V.; Altarabsheh, S.E.; Jung, S.H.; Erwin, P.J.; Markowitz, A.H.; Park, S.J. Conventional versus minimally invasive aortic valve replacement: Pooled analysis of propensity-matched data. J. Card. Surg. 2015, 30, 125–134. [Google Scholar] [CrossRef]
- Abdelaal, S.A.; Abdelrahim, N.A.; Mamdouh, M.; Ahmed, N.; Ahmed, T.R.; Hefnawy, M.T.; Alaqori, L.K.; Abozaid, M. Comparative effects of minimally invasive approaches vs. conventional for obese patients undergoing aortic valve replacement: A systematic review and network meta-analysis. BMC Cardiovasc. Disord. 2023, 23, 392. [Google Scholar] [CrossRef]
- Wilbring, M.; Alexiou, K.; Schmidt, T.; Petrov, A.; Taghizadeh-Waghefi, A.; Charitos, E.; Matschke, K.; Arzt, S.; Kappert, U. Safety and Efficacy of the Transaxillary Access for Minimally Invasive Aortic Valve Surgery. Medicina 2023, 59, 160. [Google Scholar] [CrossRef]
- Murphy, G.J.; Reeves, B.C.; Rogers, C.A.; Rizvi, S.I.; Culliford, L.; Angelini, G.D. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery. Circulation 2007, 116, 2544–2552. [Google Scholar] [CrossRef]
- Rahmanian, P.B.; Kaya, S.; Eghbalzadeh, K.; Menghesha, H.; Madershahian, N.; Wahlers, T. Rapid deployment aortic valve replacement: Excellent results and increased effective orifice areas. Ann. Thorac. Surg. 2018, 105, 24–30. [Google Scholar] [CrossRef]
Pre-Matched Cohort | Propensity Score-Matched Cohort | |||||
---|---|---|---|---|---|---|
Sternotomy (n = 886) | MICLAT-S (n = 200) | p | Sternotomy (n = 200) | MICLAT-S (n = 200) | p | |
Age (year), mean ± SD | 69.0 ± 8.65 | 67.6 ± 8.27 | 0.034 * | 68.4 ± 8.25 | 67.6 ± 8.27 | 0.327 |
BMI (kg/m2), mean ± SD | 33.8 ± 3.43 | 34.1 ± 3.76 | 0.205 | 34.6 ± 4.21 | 34.1 ± 3.76 | 0.227 |
Diabetes mellitus, n (%) | 379 (42.8) | 69 (35.5) | 0.038 * | 75 (37.5) | 69 (34.5) | 0.603 |
Previous MI, n (%) | 24 (2.7) | 6 (3.0) | 1 | 8 (4.0) | 6 (3.0) | 0.787 |
LVEF > 50%, n (%) | 671 (75.7) | 155 (77.5) | 0.156 | 159 (79.5) | 155 (77.5) | 0.948 |
Atrial fibrillation, n (%) | 107 (12.1) | 37 (18.5) | 0.021 * | 48 (24.0) | 37 (18.5) | 0.221 |
COPD, n (%) | 75 (8.5) | 24 (12.0) | 0.152 | 31 (15.5) | 24 (12.0) | 0.384 |
Renal insufficiency, n (%) | 243 (27.4) | 48 (24.0) | 0.368 | 53 (26.5) | 48 (24.0) | 0.645 |
Hemodialysis, n (%) | 7 (0.8) | 4 (2.0) | 0.249 | 4 (2.0) | 4 (2.0) | 1 |
PAOD, n (%) | 126 (14.2) | 13 (6.5) | 0.004 ** | 17 (8.5) | 13 (6.5) | 0.570 |
TIA, n (%) | 0 (0) | 4 (2.0) | <0.001 ** | 0 (0) | 4 (2.0) | 0.123 |
EuroSCORE II (%), mean ± SD | 1.68 ± 1.24 | 1.83 ± 1.21 | 0.286 | 1.83 ± 1.81 | 1.83 ± 1.21 | 0.989 |
Pre-Matched Cohort | Propensity Score-Matched Cohort | |||||
---|---|---|---|---|---|---|
Sternotomy (n = 886) | MICLAT-S (n = 200) | p | Sternotomy (n = 200) | MICLAT-S (n = 200) | p | |
Prosthesis size (mm), mean ± SD | 23.2 ± 1.8 | 24.2 ± 2.1 | ≤0.001 ** | 23.7 ± 1.9 | 24.1 ± 2.0 | 0.041 * |
STST (min), mean ± SD | 120.1 ± 33.6 | 135.0 ± 37.7 | ≤0.001 ** | 119.0 ± 33.8 | 135.0 ± 37.7 | ≤0.001 ** |
CPBT (min), mean ± SD | 59.2 ± 23.5 | 69.1 ± 19.1 | ≤0.001 ** | 56.1 ± 21.4 | 69.1 ± 19.1 | ≤0.001 ** |
ACCT (min), mean ± SD | 41.9 ± 15.2 | 44.0 ± 13.4 | 0.044 * | 41.9 ± 13.3 | 44.0 ± 13.4 | 0.044 * |
Prosthesis type | ||||||
| 136 (15.3) | 10 (5.0) | 29 (14.5) | 10 (5.0) | ||
| 750 (84.7) | 21 (10.5) | ≤0.001 ** | 171 (85.5) | 21 (10.5) | ≤0.001 ** |
| 0 (0.0) | 169 (84.5) | 0 (0.0) | 169 (84.5) |
Pre-Matched Cohort | Propensity Score-Matched Cohort | |||||
---|---|---|---|---|---|---|
Sternotomy (n = 886) | MICLAT-S (n = 200) | p | Sternotomy (n = 200) | MICLAT-S (n = 200) | p | |
Ventilation time (h)
| 232 (26.2) 525 (59.3) 57 (6.4) | 181 (90.5) 13 (6.5) 6 (3.0) | ≤0.001 ** | 47 (23.5) 139 (69.5) 14 (7.0) | 181 (90.5) 13 (6.5) 6 (3.0) | ≤0.001 ** |
Respiratory failure †, n (%) | 40 (4.5) | 6 (3.0) | 0.442 | 11 (5.5) | 6 (3.0) | 0.322 |
ICU stay (days), mean ± SD
| 511 (57.7) 133 (15.0) 89 (10.0) 152 (17.2) | 141 (70.5) 17 (8.5) 21 (10.5) 21 (10.5) | 0.006 ** | 120 (60.0) 27 (13.5) 19 (9.5) 34 (17.0) | 141 (70.5) 17 (8.5) 21 (10.5) 21 (10.5) | 0.068 |
Hospital stay (days), mean ± SD | 12.6 ± 8.60 | 9.71 ± 6.19 | ≤0.001 ** | 12.4 ± 7.13 | 9.71 ± 6.19 | ≤0.001 ** |
Transfusion of PRBCs, mean ± SD | 4.02 ± 7.37 | 0.540 ± 1.67 | ≤0.001 ** | 5.17 ± 9.38 | 0.540 ± 1.67 | ≤0.001 ** |
AKI stage III or CVVH, n (%) | 44 (5.0) | 4 (2.0) | 0.097 | 18 (9.0) | 4 (2.0) | 0.022 * |
Conversion to sternotomy, n (%) | N/A | 7 (1.6) | N/A | N/A | 7 (1.6) | N/A |
Re-exploration, n (%) | 28 (3.2) | 13 (6.5) | 0.043 * | 5 (2.5) | 13 (6.5) | 0.0888 |
Impaired wound healing, n (%) | 53 (6.0) | 10 (5.0) | 0.707 | 24 (12.0) | 10 (5.0) | 0.012 ** |
Postoperative delirium, n (%) | 157 (17.7) | 40 (20.0) | 0.517 | 26 (13.0) | 40 (20.0) | 0.0794 |
Ischemic stroke (Rankin ≥ 2), n (%) | 12 (1.4) | 1 (0.5) | 0.490 | 2 (1.0) | 1 (0.5) | 0.745 |
TIA, n (%) | 9 (1.0) | 1 (0.5) | 0.745 | 2 (1.0) | 1 (0.5) | 0.618 |
PPM implantation, n (%) | 4 (0.5) | 11 (5.5) | 0.446 | 1 (0.5) | 11 (5.5) | 1 |
Myocardial infarction, n (%) | 4 (0.5) | 0 (0.0) | 0.758 | 1 (0.5) | 0 (0) | 1 |
30-day mortality, n (%) | 30 (3.4) | 3 (1.5) | 0.240 | 12 (6.0) | 3 (1.5) | 0.031 * |
MACCE, n (%) | 45 (5.1) | 4 (2.0) | 0.028 * | 15 (7.5) | 4 (2.0) | 0.003 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taghizadeh-Waghefi, A.; Petrov, A.; Arzt, S.; Alexiou, K.; Matschke, K.; Kappert, U.; Wilbring, M. Minimally Invasive Aortic Valve Replacement for High-Risk Populations: Transaxillary Access Enhances Survival in Patients with Obesity. J. Clin. Med. 2024, 13, 6529. https://doi.org/10.3390/jcm13216529
Taghizadeh-Waghefi A, Petrov A, Arzt S, Alexiou K, Matschke K, Kappert U, Wilbring M. Minimally Invasive Aortic Valve Replacement for High-Risk Populations: Transaxillary Access Enhances Survival in Patients with Obesity. Journal of Clinical Medicine. 2024; 13(21):6529. https://doi.org/10.3390/jcm13216529
Chicago/Turabian StyleTaghizadeh-Waghefi, Ali, Asen Petrov, Sebastian Arzt, Konstantin Alexiou, Klaus Matschke, Utz Kappert, and Manuel Wilbring. 2024. "Minimally Invasive Aortic Valve Replacement for High-Risk Populations: Transaxillary Access Enhances Survival in Patients with Obesity" Journal of Clinical Medicine 13, no. 21: 6529. https://doi.org/10.3390/jcm13216529
APA StyleTaghizadeh-Waghefi, A., Petrov, A., Arzt, S., Alexiou, K., Matschke, K., Kappert, U., & Wilbring, M. (2024). Minimally Invasive Aortic Valve Replacement for High-Risk Populations: Transaxillary Access Enhances Survival in Patients with Obesity. Journal of Clinical Medicine, 13(21), 6529. https://doi.org/10.3390/jcm13216529