Unveiling Artificial Intelligence’s Power: Precision, Personalization, and Progress in Rheumatology
Abstract
:1. Introduction
2. Roles of AI in Rheumatology
2.1. Differential Diagnosis
2.2. Prognosis Prediction
2.3. Treatment Personalization
2.4. Continuous Monitoring
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dobrev, D. A Definition of Artificial Intelligence. arXiv 2003, arXiv:1210.1568. [Google Scholar] [CrossRef]
- Mazurowski, M.A.; Buda, M.; Saha, A.; Bashir, M.R. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. J. Magn. Reson. Imaging 2019, 49, 939–954. [Google Scholar] [CrossRef] [PubMed]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep learning for healthcare: Review, opportunities and challenges. Brief. Bioinform. 2018, 19, 1236–1246. [Google Scholar] [CrossRef]
- Madrid-García, A.; Merino-Barbancho, B.; Rodríguez-González, A.; Fernández-Gutiérrez, B.; Rodríguez-Rodríguez, L.; Menasalvas-Ruiz, E. Understanding the role and adoption of artificial intelligence techniques in rheumatology research: An in-depth review of the literature. Semin. Arthritis Rheum. 2023, 61, 152213. [Google Scholar] [CrossRef]
- Venerito, V.; Angelini, O.; Cazzato, G.; Lopalco, G.; Maiorano, E.; Cimmino, A.; Iannone, F. A convolutional neural network with transfer learning for automatic discrimination between low and high-grade synovitis: A pilot study. Intern. Emerg. Med. 2021, 16, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Bonnin, M.; Estienne, T.; Muller-Fouarge, F.; Bekadar, S.; Carrillon, Y.; Pouchy, C.; Selmi, T.A.S. POS0160|Artificial Intelligence Algorithms for Automatic Stratification of Rheumatoid Arthritis Using Hand X-rays. Ann. Rheum. Dis. 2023, 82, 302. [Google Scholar] [CrossRef]
- Wang, H.-J.; Su, C.-P.; Lai, C.-C.; Chen, W.-R.; Chen, C.; Ho, L.-Y.; Chu, W.-C.; Lien, C.-Y. Deep Learning-Based Computer-Aided Diagnosis of Rheumatoid Arthritis with Hand X-ray Images Conforming to Modified Total Sharp/van der Heijde Score. Biomedicines 2022, 10, 1355. [Google Scholar] [CrossRef]
- Xu, L.; Chen, J.; Qiu, K.; Yang, F.; Wu, W. Artificial intelligence for detecting temporomandibular joint osteoarthritis using radiographic image data: A systematic review and meta-analysis of diagnostic test accuracy. PLoS ONE 2023, 18, e0288631. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Shamonin, D.; Hassanzadeh, T.; Reijnierse, M.; Mil, A.V.d.H.v.; Stoel, B. OP0002 Exploring the Use of Artificial Intelligence in Predicting Rheumatoid Arthritis, Based on Extremity Mr Scans in Early Arthritis and Clinically Suspect Arthralgia Patients. Ann. Rheum. Dis. 2023, 82, 1–2. [Google Scholar] [CrossRef]
- van Leeuwen, J.R.; Penne, E.L.; Rabelink, T.; Knevel, R.; Teng, Y.K.O. Using an artificial intelligence tool incorporating natural language processing to identify patients with a diagnosis of ANCA-associated vasculitis in electronic health records. Comput. Biol. Med. 2024, 168, 107757. [Google Scholar] [CrossRef] [PubMed]
- Burlina, P.; Billings, S.; Joshi, N.; Albayda, J. Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods. PLoS ONE 2017, 12, e0184059. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, J.; Tian, Y.; Zhou, T.; Tong, D.; Ma, J.; Li, J. A survey of artificial intelligence in rheumatoid arthritis. Rheumatol. Immunol. Res. 2023, 4, 69–77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salmi, J.; Pihlajisto, P.; Mustonen, A.; Relas, H.; Eklund, K. POS0320|Artificial Intelligence Based Approach to Predict the Disease Course in Patients with Rheumatoid Arthritis. Ann. Rheum. Dis. 2023, 82, 404–405. [Google Scholar] [CrossRef]
- Verhoeven, F.; Wendling, D.; Prati, C. ChatGPT: When artificial intelligence replaces the rheumatologist in medical writing. Ann. Rheum. Dis. 2023, 82, 1015–1017. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al Shareedah, A.; Zidoum, H.; Al-Sawafi, S.; Al-Lawati, B.; Al-Ansari, A. Machine Learning Approach for Predicting Systemic Lupus Erythematosus in an Oman-Based Cohort. Sultan Qaboos Univ. Med. J. 2023, 23, 328–335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, K.; Wang, Q.; Wu, L.; Gao, Q.-C.; Tang, S. Development and verification of a combined diagnostic model for primary Sjögren’s syndrome by integrated bioinformatics analysis and machine learning. Sci. Rep. 2023, 13, 8641. [Google Scholar] [CrossRef]
- Kalweit, M.; Walker, U.A.; Finckh, A.; Muller, R.; Kalweit, G.; Scherer, A.; Boedecker, J.; Hugle, T. Personalized prediction of disease activity in patients with rheumatoid arthritis using an adaptive deep neural network. PLoS ONE 2021, 16, e0252289. [Google Scholar] [CrossRef]
- Norgeot, B.; Glicksberg, B.S.; Trupin, L.; Lituiev, D.; Gianfrancesco, M.; Oskotsky, B.; Schmajuk, G.; Yazdany, J.; Butte, A.J. Assessment of a deep learning model based on electronic health record data to forecast clinical outcomes in patients with rheumatoid arthritis. JAMA Netw. Open. 2019, 2, e190606. [Google Scholar] [CrossRef]
- Wei, T.; Yang, B.; Liu, H.; Xin, F.; Fu, L. Development and validation of a nomogram to predict coronary heart disease in patients with rheumatoid arthritis in northern China. Aging 2020, 12, 3190–3204. [Google Scholar] [CrossRef]
- Konstantonis, G.; Singh, K.V.; Sfikakis, P.P.; Jamthikar, A.D.; Kitas, G.D.; Gupta, S.K.; Saba, L.; Verrou, K.; Khanna, N.N.; Ruzsa, Z.; et al. Cardiovascular disease detection using machine learning and carotid/femoral arterial imaging frameworks in rheumatoid arthritis patients. Rheumatol. Int. 2022, 42, 215–239. [Google Scholar] [CrossRef] [PubMed]
- Prasad, B.; McGeough, C.; Eakin, A.; Ahmed, T.; Small, D.; Gardiner, P.; Pendleton, A.; Wright, G.; Bjourson, A.J.; Gibson, D.S.; et al. ATRPred: A machine learning based tool for clinical decision making of anti-TNF treatment in rheumatoid arthritis patients. PLoS Comput. Biol. 2022, 18, e1010204. [Google Scholar] [CrossRef] [PubMed]
- Westerlind, H.; Maciejewski, M.; Frisell, T.; Jelinsky, S.A.; Ziemek, D.; Askling, J. What Is the Persistence to Methotrexate in Rheumatoid Arthritis, and Does Machine Learning Outperform Hypothesis-Based Approaches to Its Prediction? ACR Open Rheumatol. 2021, 3, 457–463. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Surendran, S.; B, M.C.; Gilvas, V.; Manyam, P.K.; Panicker, K.; Pradeep, M. Prediction of Liver Enzyme Elevation Using Supervised Machine Learning in Patients with Rheumatoid Arthritis on Treatment with Methotrexate. Cureus 2024, 16, e52110. [Google Scholar] [CrossRef] [PubMed]
- Morid, M.A.; Lau, M.; Del Fiol, G. Predictive analytics for step-up therapy: Supervised or semisupervised learning? J. Biomed. Inform. 2021, 119, 103842. [Google Scholar] [CrossRef]
- Artacho, A.; Isaac, S.; Nayak, R.; Flor-Duro, A.; Alexander, M.; Koo, I.; Manasson, J.; Smith, P.B.; Rosenthal, P.; Homsi, Y.; et al. The pretreatment gut microbiome is associated with lack of response to methotrexate in new-onset rheumatoid arthritis. Arthritis Rheumatol. 2021, 73, 931–942. [Google Scholar] [CrossRef]
- Kim, K.J.; Kim, M.; Adamopoulos, I.E.; Tagkopoulos, I. Compendium of synovial signatures identifies pathologic characteristics for predicting treatment response in rheumatoid arthritis patients. Clin. Immunol. 2019, 202, 1–10. [Google Scholar] [CrossRef]
- Kato, M.; Ikeda, K.; Sugiyama, T.; Tanaka, S.; Iida, K.; Suga, K.; Nishimura, N.; Mimura, N.; Kasuya, T.; Kumagai, T.; et al. Associations of ultrasound-based inflammation patterns with peripheral innate lymphoid cell populations, serum cytokines/chemokines, and treatment response to methotrexate in rheumatoid arthritis and spondyloarthritis. PLoS ONE 2021, 16, e0252116. [Google Scholar] [CrossRef]
- Knitza, J.; Janousek, L.; Kluge, F.; von der Decken, C.B.; Kleinert, S.; Vorbrüggen, W.; Kleyer, A.; Simon, D.; Hueber, A.J.; Muehlensiepen, F.; et al. Machine learning-based improvement of an online rheumatology referral and triage system. Front. Med. 2022, 9, 954056. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Creagh, A.P.; Hamy, V.; Yuan, H.; Mertes, G.; Tomlinson, R.; Chen, W.H.; Williams, R.; Llop, C.; Yee, C.; Duh, M.S.; et al. Digital health technologies and machine learning augment patient reported outcomes to remotely characterise rheumatoid arthritis. npj Digit. Med. 2024, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Labat, G.; Hayotte, M.; Bailly, L.; Fabre, R.; Brocq, O.; Gerus, P.; Breuil, V.; Fournier-Mehouas, M.; Zory, R.; D’Arripe-Longueville, F.; et al. Impact of a Wearable Activity Tracker on Disease Flares in Spondyloarthritis: A Randomized Controlled Trial. J. Rheumatol. 2022, 49, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Hamy, V.; Llop, C.; Yee, C.W.; Garcia-Gancedo, L.; Maxwell, A.; Chen, W.H.; Tomlinson, R.; Bobbili, P.; Bendelac, J.; Landry, J.; et al. Patient-centric assessment of rheumatoid arthritis using a smartwatch and bespoke mobile app in a clinical setting. Sci. Rep. 2023, 13, 18311. [Google Scholar] [CrossRef] [PubMed]
- Davergne, T.; Rakotozafiarison, A.; Servy, H.; Gossec, L. Wearable Activity Trackers in the Management of Rheumatic Diseases: Where Are We in 2020? Sensors 2020, 20, 4797. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gossec, L.; Guyard, F.; Leroy, D.; Lafargue, T.; Seiler, M.; Jacquemin, C.; Molto, A.; Sellam, J.; Foltz, V.; Gandjbakhch, F.; et al. Detection of flares by decrease in physical activity, collected using wearable activity trackers, in rheumatoid arthritis or axial spondyloarthritis: An application of Machine-Learning analyses in rheumatology. Arthritis Care Res. Arthritis Care Res. 2019, 71, 1336–1343. [Google Scholar] [CrossRef]
- Cobb, R.; Cook, G.J.R.; Reader, A.J. Deep Learned Segmentations of Inflammation for Novel ⁹⁹mTc-maraciclatide Imaging of Rheumatoid Arthritis. Diagnostics 2023, 13, 3298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Purwono, P.; Ma’Arif, A.; Rahmaniar, W.; Fathurrahman, H.I.K.; Frisky, A.Z.K.; Haq, Q.M.U. Understanding of Convolutional Neural Network (CNN): A Review. Int. J. Robot. Control. Syst. 2023, 2, 739–748. [Google Scholar] [CrossRef]
- Van der Heijde, D. How to read radiographs according to the Sharp/van der Heijde method. J. Rheumatol. 2000, 27, 261–263. [Google Scholar] [PubMed]
- Engel, A.; Brandl, J.; Gao, I.K.; Jacki, S.; Meier, M.A.; Weidner, S.; Henes, J. Digital unterstützte rheumatologische Screeningsprechstunde: Wie hilfreich ist ein Fragebogen-Scoringsystem (RhePort)? [Digitally supported rheumatological screening consultation: How useful is a questionnaire scoring system (RhePort)?]. Z. Rheumatol. 2022, 81, 699–704. [Google Scholar] [CrossRef]
- Lyu, Q.; Wang, G. Conversion Between CT and MRI Images Using Diffusion and Score-Matching Models. arXiv 2022, arXiv:2209.12104. [Google Scholar] [CrossRef]
- Labinsky, H.; Ukalovic, D.; Hartmann, F.; Runft, V.; Wichmann, A.; Jakubcik, J.; Gambel, K.; Otani, K.; Morf, H.; Taubmann, J.; et al. An AI-Powered Clinical Decision Support System to Predict Flares in Rheumatoid Arthritis: A Pilot Study. Diagnostics 2023, 13, 148. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Roshanitabrizi, P.; Rwebembera, J.; Okello, E.; Beaton, A.; Linguraru, M.G.; Sable, C.A. Using Artificial Intelligence for Rheumatic Heart Disease Detection by Echocardiography: Focus on Mitral Regurgitation. J. Am. Heart Assoc. 2024, 13, e031257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Section | Authors | Results | Reference |
---|---|---|---|
Differential diagnosis | Venerito V. et al. | Utilized a ResNet34 CNN (Convolute Neural Network) with transfer learning to assess the grade of synovitis from ultrasound-guided synovial tissue biopsies. The model achieved 100% accuracy, precision, and recall in the test phase. Grad-CAM was employed to generate a heat map that confirmed the model’s focus on clinically relevant features. | [7] |
Bonnin M. et al. | Implemented an automated system for scoring hand X-rays using the Sharp/van der Heijde (SvH) method. Achieved 84% accuracy, with a Pearson correlation of 0.86 and an AUC of 0.97. | [8] | |
Wang H-J. et al. | Developed a YOLO (You Only Look Once) model for detecting joint abnormalities in hand X-rays. Achieved a mean average precision of 0.92 and 0.88 accuracy in severe rheumatoid arthritis cases. | [9] | |
Xu et al. | Meta-analysis showed AI’s effectiveness in diagnosing TMJOA (temporomandibular joint osteoarthritis) with 80% sensitivity, 90% specificity, and an AUC of 92%. | [10] | |
Li Y. et al. | AI model using MRI scans to predict early RA and clinically suspect arthralgia, with an AUC of 0.683 for early arthritis and 0.727 for arthralgia. | [11] | |
Van Leeuwen J.R. et al. | NLP model for improving patient identification in ANCA-associated vasculitis research, increasing PPV from 56.9% to 77.9%. | [12] | |
Burlina P. et al. | CNN model for diagnosing myositis from ultrasound images with an accuracy of 76.2 ± 3.1%. | [13] | |
Prognosis prediction | Wang J. et al. | Reviewed AI’s impact on early RA diagnosis and management, highlighting AI’s role in early intervention. | [14] |
Salmi J. et al. | Developed a model to predict DAS28-CRP (Disease Activity Score-28 for Rheumatoid Arthritis with CRP) one year ahead in RA patients, achieving an AUC of 0.71. | [15] | |
Verhoeven F. et al. | Explored AI’s role in scientific writing and predictive analytics for RA prognosis. | [16] | |
Al Shareedah A. et al. | Machine learning model for predicting systemic lupus erythematosus (SLE) with an AUROC of 0.956 and 92% sensitivity. | [17] | |
Yang K. et al. | Machine learning-based diagnostic model for primary Sjögren’s syndrome using 14 signature genes, with an AUC of 0.972 (ANN), 1.00 (RF), and 0.9742 (SVM) in the training set, and 0.766 (ANN), 0.8321 (RF), and 0.8223 (SVM) in the validation set. | [18] | |
Kalweit M. et al. | AdaptiveNet deep learning model for predicting DAS28 in RA patients, achieving an AUC of 0.73. | [19] | |
Norgeot B. et al. | Neural network model using EHR data to predict CDAI in RA patients, achieving an AUROC of 0.91. | [20] | |
Wei T. et al. | ML nomogram for predicting CHD (coronary heart disease) in RA patients, achieving an AUC of 0.77. | [21] | |
Konstantonis G. et al. | ML model for detecting cardiovascular disease in high-risk RA patients, with an AUC of 0.98. | [22] | |
Treatment personalization | Prasad B. et al. | Developed ATRPred tool for predicting anti-TNF treatment response in RA patients, with 81% accuracy, 75% sensitivity, and 86% specificity. | [23] |
Westerlind H. et al. | ML model to predict methotrexate therapy persistence in RA patients, achieving an AUROC of 0.67. | [24] | |
Surendran S. et al. | ML model for predicting liver enzyme elevation in RA patients on methotrexate, achieving an F1 score of 0.87. | [25] | |
Morid M. et al. | One-class SVM (Support Vector Machine) model to predict step-up therapy in RA patients, achieving 89% recall and 51% precision. | [26] | |
Artacho A. et al. | Random Forest model to predict methotrexate response in RA patients using gut microbiome data, achieving an AUC of 0.84. | [27] | |
Kim KJ. et al. | SVM model for predicting infliximab response using synovial tissue gene expression profiles, achieving an AUC of 0.92. | [28] | |
Kato M. et al. | Developed a scoring system using ultrasound images to predict treatment response in RA and spondyloarthritis patients. | [29] | |
Knitza J. et al. | ML improved diagnostic accuracy in the Rheport system, with AUROCs between 0.630 and 0.737. | [30] | |
Continuous Monitoring | Creagh A.P. et al. | Wearable devices and apps improved continuous RA monitoring, achieving an F1 score of 0.807. | [31] |
Labat G. et al. | Activity tracker study showed a 10% increase in physical activity but no significant reduction in flare episodes. | [32] | |
Hamy V. et al. | Smartwatches and smartphone apps improved real-time symptom reporting in RA patients, allowing for faster clinical response. | [33] | |
Davergne T. et al. | Wearable devices improved monitoring efficacy and accuracy for rheumatic disease activity. | [34] | |
Gossec L. et al. | Naïve Bayes model detected flare-ups in RA patients using wearable devices, with 95.7% sensitivity and 96.7% specificity. | [35] | |
Cobb R. et al. | AI segmentation of inflammation using ⁹⁹mTc-maraciclatide scans improved RA disease progression monitoring. | [36] |
Application Area | Current Use of AI | Future Perspectives |
---|---|---|
Differential Diagnosis |
|
|
Prognosis and Disease Progression Prediction |
|
|
Treatment Personalization |
|
|
Continuous Monitoring and Symptom Management |
|
|
Research and Development Support |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondillo, G.; Colosimo, S.; Perrotta, A.; Frattolillo, V.; Gicchino, M.F. Unveiling Artificial Intelligence’s Power: Precision, Personalization, and Progress in Rheumatology. J. Clin. Med. 2024, 13, 6559. https://doi.org/10.3390/jcm13216559
Mondillo G, Colosimo S, Perrotta A, Frattolillo V, Gicchino MF. Unveiling Artificial Intelligence’s Power: Precision, Personalization, and Progress in Rheumatology. Journal of Clinical Medicine. 2024; 13(21):6559. https://doi.org/10.3390/jcm13216559
Chicago/Turabian StyleMondillo, Gianluca, Simone Colosimo, Alessandra Perrotta, Vittoria Frattolillo, and Maria Francesca Gicchino. 2024. "Unveiling Artificial Intelligence’s Power: Precision, Personalization, and Progress in Rheumatology" Journal of Clinical Medicine 13, no. 21: 6559. https://doi.org/10.3390/jcm13216559
APA StyleMondillo, G., Colosimo, S., Perrotta, A., Frattolillo, V., & Gicchino, M. F. (2024). Unveiling Artificial Intelligence’s Power: Precision, Personalization, and Progress in Rheumatology. Journal of Clinical Medicine, 13(21), 6559. https://doi.org/10.3390/jcm13216559