Single-Port Versus Reduced-Port (1 + 1) Robotic Myomectomy and Hysterectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Surgical Procedures
2.3. Statistical Analysis
3. Results
3.1. Baseline Patient Characteristics
3.2. Comparison Between Single-Port Robotic Myomectomy and Reduced-Port Robotic Myomectomy
3.3. Comparison Between Single-Port Robotic Hysterectomy and Reduced-Port Robotic Hysterectomy
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conrad, L.B.; Ramirez, P.T.; Burke, W.; Naumann, R.W.; Ring, K.L.; Munsell, M.F.; Frumovitz, M. Role of Minimally Invasive Surgery in Gynecologic Oncology: An Updated Survey of Members of the Society of Gynecologic Oncology. Int. J. Gynecol. Cancer 2015, 25, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Von Gruenigen, V.E.; Sawyer, M.D.; Ponsky, L.E.; Hurd, W.W. Recent Innovations in Minimally Invasive Surgery and Implications for Gynecology. J. Gynecol. Surg. 2009, 25, 67–72. [Google Scholar] [CrossRef]
- Kaouk, J.H.; Autorino, R.; Kim, F.J.; Han, D.H.; Lee, S.W.; Yinghao, S.; Cadeddu, J.A.; Derweesh, I.H.; Richstone, L.; Cindolo, L.; et al. Laparoendoscopic single-site surgery in urology: Worldwide multi-institutional analysis of 1076 cases. Eur. Urol. 2011, 60, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Yim, G.W.; Jung, Y.W.; Paek, J.; Lee, S.H.; Kwon, H.Y.; Nam, E.J.; Kim, S.; Kim, J.H.; Kim, Y.T.; Kim, S.W. Transumbilical single-port access versus conventional total laparoscopic hysterectomy: Surgical outcomes. Am. J. Obstet. Gynecol. 2010, 203, 26.e1–26.e6. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.J.; Chavali, J.S.S.; Yerram, N.; Babbar, P.; Kaouk, J.H. Current status of robotic single-port surgery. Urol. Ann. 2017, 9, 217–222. [Google Scholar]
- Nam, E.J.; Kim, S.W.; Lee, M.; Yim, G.W.; Paek, J.H.; Lee, S.H.; Kim, S.; Kim, J.H.; Kim, J.W.; Kim, Y.T. Robotic single-port transumbilical total hysterectomy: A pilot study. J. Gynecol. Oncol. 2011, 22, 120–126. [Google Scholar] [CrossRef]
- Morelli, L.; Guadagni, S.; Di Franco, G.; Palmeri, M.; Di Candio, G.; Mosca, F. Da Vinci single site© surgical platform in clinical practice: A systematic review. Int. J. Med. Robot. 2016, 12, 724–734. [Google Scholar] [CrossRef]
- Kane, S.; Stepp, K.J. Laparo-endoscopic single-site surgery hysterectomy using robotic lightweight endoscope assistants. J. Robot. Surg. 2010, 3, 253–255. [Google Scholar] [CrossRef]
- Cela, V.; Freschi, L.; Simi, G.; Ruggiero, M.; Tana, R.; Pluchino, N. Robotic single-site hysterectomy: Feasibility, learning curve and surgical outcome. Surg. Endosc. 2013, 27, 2638–2643. [Google Scholar] [CrossRef]
- Iavazzo, C.; Minis, E.E.; Gkegkes, I.D. Single-site port robotic-assisted hysterectomy: An update. J. Robot. Surg. 2018, 12, 201–213. [Google Scholar] [CrossRef]
- Lee, S.R. Robotic Single-Site(R) Sacrocolpopexy: First Report and Technique Using the Single-Site(R) Wristed Needle Driver. Yonsei Med. J. 2016, 57, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.S.; Shim, J.E.; Lee, S.R.; Jeong, K. The Comparison of Robotic Single-Site Surgery to Single-Port Laparoendoscopic Surgery for the Treatment of Advanced-Stage Endometriosis. J. Laparoendosc. Adv. Surg. Tech. A 2018, 28, 1483–1488. [Google Scholar] [CrossRef]
- Scheib, S.A.; Fader, A.N. Gynecologic robotic laparoendoscopic single-site surgery: Prospective analysis of feasibility, safety, and technique. Am. J. Obstet. Gynecol. 2015, 212, 179.e1–179.e8. [Google Scholar] [CrossRef]
- Choi, E.J.; Rho, A.M.; Lee, S.R.; Jeong, K.; Moon, H.S. Robotic Single-Site Myomectomy: Clinical Analysis of 61 Consecutive Cases. J. Minim. Invasive Gynecol. 2017, 24, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibañes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo classification of surgical complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, M.K.; Kim, M.L.; Jung, Y.W.; Yun, B.S.; Seong, S.J. Robotic single-site myomectomy: A single-center experience of 101 consecutive cases. Int. J. Med. Robot. 2019, 15, e1959. [Google Scholar] [CrossRef]
- Lee, S.R.; Lee, E.S.; Eum, H.R.; Lee, Y.J.; Lee, S.W.; Park, J.Y.; Suh, D.S.; Kim, D.Y.; Kim, S.H.; Kim, Y.M.; et al. New surgical technique for robotic myomectomy: Continuous locking suture on myoma (LSOM) technique. J. Clin. Med. 2021, 10, 654. [Google Scholar] [CrossRef]
- Moawad, G.N.; Tyan, P.; Paek, J.; Tappy, E.E.; Park, D.; Choussein, S.; Srouji, S.S.; Gargiulo, A. Comparison between single-site and multiport robot-assisted myomectomy. J. Robot. Surg. 2019, 13, 757–764. [Google Scholar] [CrossRef]
- Shin, H.J.; Yoo, H.K.; Lee, J.H.; Lee, S.R.; Jeong, K.; Moon, H.S. Robotic single-port surgery using the da Vinci SP® surgical system for benign gynecologic disease: A preliminary report. Taiwan J. Obstet. Gynecol. 2020, 59, 243–247. [Google Scholar] [CrossRef]
- Misal, M.; Magtibay, P.M.; Yi, J. Robotic LESS and Reduced-Port Hysterectomy Using the da Vinci SP Surgical System: A Single-Institution Case Series. J. Minim. Invasive Gynecol. 2021, 28, 1095–1100. [Google Scholar] [CrossRef]
- Kwak, Y.H.; Lee, H.; Seon, K.; Lee, Y.J.; Lee, Y.J.; Kim, S.W. Da Vinci SP Single-Port Robotic Surgery in Gynecologic Tumors: Single Surgeon’s Initial Experience with 100 Cases. Yonsei Med. J. 2022, 63, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, M.R.; Seong, S.J.; Paek, J.; Lee, Y.S.; Nam, E.J.; Kim, Y.M.; Park, Y.H.; Kim, T.J.; Kim, Y.B. Trends in robotic surgery in Korean gynecology. Gyne Robot. Surg. 2020, 1, 50–56. [Google Scholar] [CrossRef]
Characteristics | Myomectomy | Hysterectomy | Total |
---|---|---|---|
age (years, mean ± SD) | 36.57 ± 5.20 | 44.33 ± 7.85 | 38.76 ± 6.96 |
BMI (kg/m2, mean ± SD) | 22.64 ± 3.66 | 23.28 ± 3.71 | 22.83 ± 3.69 |
gravidity, median (range) | 0 (0–6) | 2 (0–6) | 0 (0–6) |
parity, median (range) | 0 (0–3) | 1 (0–3) | 0 (0–3) |
previous cesarean section history | |||
0, n (%) | 126 (95.45) | 33 (63.46) | 160 (86.96) |
≥1, n (%) | 6 (4.55) | 19 (36.54) | 24 (13.04) |
previous pelvic surgery history | |||
0, n (%) | 122 (92.42) | 38 (73.08) | 160 (86.96) |
≥1, n (%) | 10 (7.58) | 14 (26.92) | 24 (13.04) |
diseases | 10 (9.4) | 10 (9.4) | |
Myoma, n (%) | 132 (100%) | 34 (65.39%) | 166 (90.23%) |
Adenomyosis, n (%) | 10 (19.24%) | 10 (5.44%) | |
Endometrial intraepithelial neoplasia, n (%) | 3 (5.77%) | 3 (1.63%) | |
Cervical carcinoma in situ n (%) | 1 (1.92%) | 1 (0.54%) | |
Endometrial hyperplasia, n (%) | 1 (1.92%) | 1 (0.54%) | |
Endometrial polyp, n (%) | 1 (1.92%) | 1 (0.54%) | |
Unicornuate uterus, n (%) | 1 (1.92%) | 1 (0.54%) | |
Uterine didelphys, n (%) | 1 (1.92%) | 1 (0.54%) |
Characteristics | |
---|---|
anesthesia time (min, mean ± SD) | 176.74 ± 56.07 |
operation time (min, mean ± SD) | 146.68 ± 50.16 |
conversion to multiport or laparotomy, n (%) | 0 (0) |
estimated blood loss (mL, mean ± SD) | 172.02 ± 152.23 |
postoperative hemoglobin change (g/dL, mean ± SD) | 2.61 ± 2.59 |
transfusion | |
0, n (%) | 174 (94.56%) |
≥1, n (%) | 10 (5.44%) |
postoperative hospital stay (day, mean ± SD) | 2.09 ± 0.48 |
postoperative fever (within 48 h) | |
0, n (%) | 178 (96.74%) |
≥1, n (%) | 6 (3.26%) |
SP-RM (n = 94) | RP-RM (n = 38) | p Value | |
---|---|---|---|
age (years, mean ± SD) | 36.51 ± 5.44 | 36.71 ± 4.60 | 0.842 |
gravidity, median (range) | 0 (0–6) | 0 (0–3) | 0.261 |
parity, median (range) | 0 (0–2) | 0 (0–3) | 0.259 |
BMI (kg/m2, mean ± SD) | 22.42 ± 3.83 | 23.21 ± 3.19 | 0.261 |
previous cesarean section history | |||
0, n (%) | 90 (95.7%) | 36 (94.7%) | 0.801 |
≥1, n (%) | 4 (4.3%) | 2 (5.3%) | |
previous pelvic surgery history | |||
0, n (%) | 86 (91.5%) | 36 (94.7%) | 0.523 |
≥1, n (%) | 8 (8.5%) | 2 (5.3%) | |
type of main myoma | |||
intramural, n (%) | 79 (84.0%) | 31 (81.6%) | 0.819 |
submucosal, n (%) | 2 (2.1%) | 2 (5.3%) | |
subserosal, n (%) | 3 (3.2%) | 1 (2.6%) | |
others (intraligamentary, cervical), n (%) | 10 (10.6%) | 4 (10.5%) | |
maximal myoma diameter (cm, mean ± SD) | 8.22 ± 2.36 | 8.42 ± 2.70 | 0.676 |
numbers of myomas, removed, median (range) * | 2.70 (1–11) | 4.26 (1–21) | 0.009 * |
multiple myomas, n (%) | 41 (43.6) | 12 (31.6) | 0.201 |
numbers of myomas > 3 cm, median (range) | 1.54 (1–7) | 1.74 (1–4) | 0.353 |
weight of removed myomas (g, mean ± SD) | 218.77 ± 189.54 | 215.05 ± 150.23 | 0.914 |
concomitant surgery, n (%) * | 29 (30.9) | 20 (52.6) | 0.019 * |
anesthesia time (min, mean ± SD) | 184.70 ± 64.63 | 172.05 ± 31.50 | 0.252 |
operation time (min, mean ± SD) | 150.55± 55.93 | 142.26 ± 29.87 | 0.389 |
estimated blood loss (mL, mean ± SD) | 188.83 ± 182.79 | 182.37 ± 91.84 | 0.836 |
postoperative hemoglobin change (g/dL, mean ± SD) | 2.66 ± 1.25 | 3.07 ± 1.32 | 0.094 |
transfusion | |||
0, n (%) | 87 (92.6) | 38 (100) | 0.084 |
≥1, n (%) | 7 (7.4) | 0 (0) | |
postoperative hospital stay (day, mean ± SD) | 2.04 ± 0.20 | 2.03 ± 0.16 | 0.661 |
postoperative fever (within 48 h) | |||
0, n (%) | 90 (94.7) | 36 (94.7) | 0.99 |
≥1, n (%) | 4 (5.3) | 2 (5.3) |
SP-RH (n = 33) | RP-RH (n = 19) | p Value | |
---|---|---|---|
age (years, mean ± SD) | 45.33 ± 7.59 | 42.58 ± 8.18 | 0.226 |
gravidity, median (range) | 2 (0–6) | 1 (0–3) | 0.517 |
parity, median (range) | 1 (0–3) | 1 (0–2) | 0.139 |
BMI (kg/m2, mean ± SD) | 23.07 ± 3.32 | 23.66 ± 4.37 | 0.583 |
previous cesarean section history | |||
0, n (%) | 20 (60.6) | 13 (68.4) | 0.34 |
≥1, n (%) | 13 (39.4) | 6 (31.6) | |
previous pelvic surgery history | |||
0, n (%) | 25 (75.8) | 13 (68.4) | 0.566 |
≥1, n (%) | 8 (24.2) | 6 (31.6) | |
weight of uterus (g, mean ± SD) | 326.67± 230.76 | 347.87± 271.75 | 0.766 |
concomitant surgery, n (%) | 25 (75.7) | 9 (47.4) | 0.1 |
anesthesia time (min, mean ± SD) * | 183.09 ± 55.17 | 135.74 ± 26.58 | 0.001 * |
operation time (min, mean ± SD) * | 159.79 ± 55.04 | 113.58 ± 24.61 | 0.001 * |
estimated blood loss (mL, mean ± SD) | 153.33 ± 131.69 | 94.21 ± 74.86 | 0.079 |
postoperative hemoglobin change (g/dL, mean ± SD) | 2.28 ± 1.30 | 2.05 ± 1.06 | 0.506 |
transfusion | |||
0, n (%) | 30 (90.9) | 19 (100) | 0.176 |
≥1, n (%) | 3 (9.1) | 0 (0) | |
postoperative hospital stay (day, mean ± SD) | 2.19 ± 0.90 | 2.26 ± 0.81 | 0.764 |
postoperative fever (within 48 h) | |||
0, n (%) | 33 (100) | 18 (94.7) | 0.183 |
≥1, n (%) | 0 (0) | 1 (5.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.Y.; Lee, S.R.; Song, J.Y. Single-Port Versus Reduced-Port (1 + 1) Robotic Myomectomy and Hysterectomy. J. Clin. Med. 2024, 13, 6563. https://doi.org/10.3390/jcm13216563
Lee SY, Lee SR, Song JY. Single-Port Versus Reduced-Port (1 + 1) Robotic Myomectomy and Hysterectomy. Journal of Clinical Medicine. 2024; 13(21):6563. https://doi.org/10.3390/jcm13216563
Chicago/Turabian StyleLee, So Young, Sa Ra Lee, and Jae Yen Song. 2024. "Single-Port Versus Reduced-Port (1 + 1) Robotic Myomectomy and Hysterectomy" Journal of Clinical Medicine 13, no. 21: 6563. https://doi.org/10.3390/jcm13216563
APA StyleLee, S. Y., Lee, S. R., & Song, J. Y. (2024). Single-Port Versus Reduced-Port (1 + 1) Robotic Myomectomy and Hysterectomy. Journal of Clinical Medicine, 13(21), 6563. https://doi.org/10.3390/jcm13216563