The Effects of an 8-Month Multicomponent Training Program in Body Composition, Functional Fitness, and Sleep Quality in Aged People: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Sample
2.2. Intervention Program
2.3. Anthropometrics and Body Composition
2.4. Physical Fitness
2.5. Sleep Quality
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pasma, J.H.; Engelhart, D.; Maier, A.B.; Schouten, A.C.; van der Kooij, H.; Meskers, C.G.M. Changes in Sensory Reweighting of Proprioceptive Information during Standing Balance with Age and Disease. J. Neurophysiol. 2015, 114, 3220–3233. [Google Scholar] [CrossRef] [PubMed]
- Martellucci, S.; Pagliuca, G.; de Vincentiis, M.; Greco, A.; De Virgilio, A.; Nobili Benedetti, F.M.; Gallipoli, C.; Rosato, C.; Clemenzi, V.; Gallo, A. Features of Residual Dizziness after Canalith Repositioning Procedures for Benign Paroxysmal Positional Vertigo. Otolaryngol. Neck Surg. 2016, 154, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Gong, W.; Wang, S.; Guo, Z.; Liu, M.; Chuang, S.; Bao, D.; Zhou, J. Combined Balance and Plyometric Training Enhances Knee Function, but Not Proprioception of Elite Male Badminton Players: A Pilot Randomized Controlled Study. Front. Psychol. 2022, 13, 947877. [Google Scholar] [CrossRef] [PubMed]
- Soares, N.M.M.; Dantas, E.H.M.; da Silva-Grigoletto, M.E.; dos Santos Silva, R.J.; Aidar, F.J.M.; da Silva Júnior, W.M.; Cabral, B.T.; Carneiro, A.L.; Garrido, N.D.; Reis, V.M. CIAFIS—Congresso Internacional de Atividade Física, Nutrição e Saúde. Motricidade 2018, 13, 1–200. [Google Scholar] [CrossRef]
- Suzuki, T.; Shimada, H.; Makizako, H.; Doi, T.; Yoshida, D.; Tsutsumimoto, K.; Anan, Y.; Uemura, K.; Lee, S.; Park, H. Effects of Multicomponent Exercise on Cognitive Function in Older Adults with Amnestic Mild Cognitive Impairment: A Randomized Controlled Trial. BMC Neurol. 2012, 12, 128. [Google Scholar] [CrossRef]
- de Bruin, E.; Eggenberger, P.; Schumacher, V.; Angst, M.; Theill, N. Does Multicomponent Physical Exercise with Simultaneous Cognitive Training Boost Cognitive Performance in Older Adults? A 6-Month Randomized Controlled Trial with a 1-Year Follow-Up. Clin. Interv. Aging 2015, 2015, 1335–1349. [Google Scholar] [CrossRef]
- Espejo-Antúnez, L.; Pérez-Mármol, J.M.; de los Ángeles Cardero-Durán, M.; Toledo-Marhuenda, J.V.; Albornoz-Cabello, M. The Effect of Proprioceptive Exercises on Balance and Physical Function in Institutionalized Older Adults: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2020, 101, 1780–1788. [Google Scholar] [CrossRef]
- Serrano-Checa, R.; Hita-Contreras, F.; Jiménez-García, J.D.; Achalandabaso-Ochoa, A.; Aibar-Almazán, A.; Martínez-Amat, A. Sleep Quality, Anxiety, and Depression Are Associated with Fall Risk Factors in Older Women. Int. J. Environ. Res. Public Health 2020, 17, 4043. [Google Scholar] [CrossRef]
- Reid, K.J.; Baron, K.G.; Lu, B.; Naylor, E.; Wolfe, L.; Zee, P.C. Aerobic Exercise Improves Self-Reported Sleep and Quality of Life in Older Adults with Insomnia. Sleep Med. 2010, 11, 934–940. [Google Scholar] [CrossRef]
- Vanderlinden, J.; Boen, F.; van Uffelen, J.G.Z. Effects of Physical Activity Programs on Sleep Outcomes in Older Adults: A Systematic Review. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 11. [Google Scholar] [CrossRef]
- Dzierzewski, J.M.; Buman, M.P.; Giacobbi, P.R.; Roberts, B.L.; Aiken-Morgan, A.T.; Marsiske, M.; McCrae, C.S. Exercise and Sleep in Community-dwelling Older Adults: Evidence for a Reciprocal Relationship. J. Sleep Res. 2014, 23, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Solis-Navarro, L.; Masot, O.; Torres-Castro, R.; Otto-Yáñez, M.; Fernández-Jané, C.; Solà-Madurell, M.; Coda, A.; Cyrus-Barker, E.; Sitjà-Rabert, M.; Pérez, L.M. Effects on Sleep Quality of Physical Exercise Programs in Older Adults: A Systematic Review and Meta-Analysis. Clocks Sleep 2023, 5, 152–166. [Google Scholar] [CrossRef] [PubMed]
- Holfeld, B.; Ruthig, J.C. A Longitudinal Examination of Sleep Quality and Physical Activity in Older Adults. J. Appl. Gerontol. 2014, 33, 791–807. [Google Scholar] [CrossRef] [PubMed]
- Okifuji, A.; Hare, B. The Association between Chronic Pain and Obesity. J. Pain Res. 2015, 8, 399. [Google Scholar] [CrossRef]
- Gulia, K.K.; Kumar, V.M. Sleep Disorders in the Elderly: A Growing Challenge. Psychogeriatrics 2018, 18, 155–165. [Google Scholar] [CrossRef]
- Murala, S.; Katyal, N.; Narula, N.; Govindarajan, R.; Sahota, P. Sleep Disorders in Amyotrophic Lateral Sclerosis. RRNMF Neuromuscul. J. 2021, 2, 36–41. [Google Scholar] [CrossRef]
- Karabulut, D.; Avci, Ş. Relationship Between Sleep Problems and Gross Motor Function in Children with Cerebral Palsy and Investigation of Their Parents’ Quality of Life. Türk Fiz. Ve Rehabil. Derg. 2020, 31, 180–187. [Google Scholar] [CrossRef]
- Campanini, M.Z.; Mesas, A.E.; Carnicero-Carreño, J.A.; Rodríguez-Artalejo, F.; Lopez-Garcia, E. Duration and Quality of Sleep and Risk of Physical Function Impairment and Disability in Older Adults: Results from the ENRICA and ELSA Cohorts. Aging Dis. 2019, 10, 557. [Google Scholar] [CrossRef]
- Vincent, B.M.; Johnson, N.; Tomkinson, G.R.; McGrath, R.; Clark, B.C.; Choi, B.-J. Sleeping Time Is Associated with Functional Limitations in a National Sample of Older Americans. Aging Clin. Exp. Res. 2021, 33, 175–182. [Google Scholar] [CrossRef]
- Christie, A.D.; Seery, E.; Kent, J.A. Physical Activity, Sleep Quality, and Self-Reported Fatigue across the Adult Lifespan. Exp. Gerontol. 2016, 77, 7–11. [Google Scholar] [CrossRef]
- Chodzko-Zajko, W.J.; Proctor, D.N.; Fiatarone Singh, M.A.; Minson, C.T.; Nigg, C.R.; Salem, G.J.; Skinner, J.S. Exercise and Physical Activity for Older Adults. Med. Sci. Sports Exerc. 2009, 41, 1510–1530. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.M.; Rodrigues, S.; Matos, S.; Teixeira, J.E.; Barbosa, T.M.; Forte, P. The Effects of 32 Weeks of Multicomponent Training with Different Exercises Order in Elderly Women’s Functional Fitness and Body Composition. Medicina 2022, 58, 628. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.J.; Marques, E.; Mota, J. Training and Detraining Effects on Functional Fitness after a Multicomponent Training in Older Women. Gerontology 2009, 55, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Bouaziz, W.; Lang, P.O.; Schmitt, E.; Kaltenbach, G.; Geny, B.; Vogel, T. Health Benefits of Multicomponent Training Programmes in Seniors: A Systematic Review. Int. J. Clin. Pract. 2016, 70, 520–536. [Google Scholar] [CrossRef]
- de Asteasu, M.L.S.; Martínez-Velilla, N.; Zambom-Ferraresi, F.; Casas-Herrero, Á.; Izquierdo, M. Role of Physical Exercise on Cognitive Function in Healthy Older Adults: A Systematic Review of Randomized Clinical Trials. Ageing Res. Rev. 2017, 37, 117–134. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C.; Zhang, Y. An Investigation of microRNA-103 and microRNA-107 as Potential Blood-Based Biomarkers for Disease Risk and Progression of Alzheimer’s Disease. J. Clin. Lab. Anal. 2020, 34, e23006. [Google Scholar] [CrossRef]
- Cadore, E.L.; Izquierdo, M. New Strategies for the Concurrent Strength-, Power-, and Endurance-Training Prescription in Elderly Individuals. J. Am. Med. Dir. Assoc. 2013, 14, 623–624. [Google Scholar] [CrossRef]
- Varahra, A.; Rodrigues, I.B.; MacDermid, J.C.; Bryant, D.; Birmingham, T. Exercise to Improve Functional Outcomes in Persons with Osteoporosis: A Systematic Review and Meta-Analysis. Osteoporos. Int. 2018, 29, 265–286. [Google Scholar] [CrossRef]
- Bae, S.; Harada, K.; Lee, S.; Harada, K.; Makino, K.; Chiba, I.; Park, H.; Shimada, H. The Effect of a Multicomponent Dual-Task Exercise on Cortical Thickness in Older Adults with Cognitive Decline: A Randomized Controlled Trial. J. Clin. Med. 2020, 9, 1312. [Google Scholar] [CrossRef]
- Suzuki, T.; Shimada, H.; Makizako, H.; Doi, T.; Yoshida, D.; Ito, K.; Shimokata, H.; Washimi, Y.; Endo, H.; Kato, T. A Randomized Controlled Trial of Multicomponent Exercise in Older Adults with Mild Cognitive Impairment. PLoS ONE 2013, 8, e61483. [Google Scholar] [CrossRef]
- Khan, H.T.; Mari ADDO, K. Factors Affecting Healthy Aging and Its Interconnected Pathways. Turk. J. Healthy Aging Med. 2024, 1, 9–24. [Google Scholar] [CrossRef]
- Fanning, J.; Porter, G.; Awick, E.A.; Ehlers, D.K.; Roberts, S.A.; Cooke, G.; Burzynska, A.Z.; Voss, M.W.; Kramer, A.F.; McAuley, E. Replacing Sedentary Time with Sleep, Light, or Moderate-to-Vigorous Physical Activity: Effects on Self-Regulation and Executive Functioning. J. Behav. Med. 2017, 40, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.M.; Bartolomeu, R.F.; Forte, P.; Carvalho, J. The Effects of Three Different Types of Training in Functional Fitness and Body Composition in Older Women. J. Sport Health Res. 2019, 11, 289–304. [Google Scholar]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Rikli, R.; Jones, J. Senior Fitness Test Manual, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2013; p. 200. [Google Scholar]
- Alcazar, J.; Losa-Reyna, J.; Rodriguez-Lopez, C.; Alfaro-Acha, A.; Rodriguez-Mañas, L.; Ara, I.; García-García, F.J.; Alegre, L.M. The Sit-to-Stand Muscle Power Test: An Easy, Inexpensive and Portable Procedure to Assess Muscle Power in Older People. Exp. Gerontol. 2018, 112, 38–43. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A New Instrument for Psychiatric Practice and Research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Del Rio João, K.A.; Becker, N.B.; de Neves Jesus, S.; Isabel Santos Martins, R. Validation of the Portuguese Version of the Pittsburgh Sleep Quality Index (PSQI-PT). Psychiatry Res. 2017, 247, 225–229. [Google Scholar] [CrossRef]
- Hopkins, G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Kelter, R. Bayesanova: An R Package for Bayesian Inference in the Analysis of Variance via Markov Chain Monte Carlo in Gaussian Mixture Models. Available online: https://journal.r-project.org/articles/RJ-2022-009/ (accessed on 31 October 2024).
- Ly, A.; Verhagen, J.; Wagenmakers, E.-J. Harold Jeffreys’s Default Bayes Factor Hypothesis Tests: Explanation, Extension, and Application in Psychology. J. Math. Psychol. 2016, 72, 19–32. [Google Scholar] [CrossRef]
- Koopman, B.O. Harold Jeffreys. Theory of Probability. Oxford University Press, Oxford1939, Vii + 380 Pp. J. Symb. Log. 1943, 8, 34–35. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 31 October 2024).
- Monteiro, A.M.; Forte, P.; Carvalho, M.J. The Effect of Three Different Training Programs in Elderly Women’s Isokinetic Strength. Motricidade 2020, 16, 84–93. [Google Scholar] [CrossRef]
- Taguchi, N.; Higaki, Y.; Inoue, S.; Kimura, H.; Tanaka, K. Effects of a 12-Month Multicomponent Exercise Program on Physical Performance, Daily Physical Activity, and Quality of Life in Very Elderly People with Minor Disabilities: An Intervention Study. J. Epidemiol. 2010, 20, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.; Jacinto, M.; Figueiredo, N.; Monteiro, A.M.; Forte, P. Effects of a 24-Week Low-Cost Multicomponent Exercise Program on Health-Related Functional Fitness in the Community-Dwelling Aged and Older Adults. Medicina 2023, 59, 371. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.; Teixeira, J.E.; Monteiro, A.M.; Forte, P. The Effects of 6-Month Multi-Component Exercise Intervention on Body Composition in Aged Women: A Single-Arm Experimental with Follow-Up Study. Appl. Sci. 2023, 13, 6163. [Google Scholar] [CrossRef]
- Forte, P.; Pinto, P.; Barbosa, T.M.; Morais, J.E.; Monteiro, A.M. The Effect of a Six Months Multicomponent Training in Elderly’s Body Composition and Functional Fitness—A before-after Analysis. Motricidade 2021, 17, 34–41. [Google Scholar] [CrossRef]
- López-Ortiz, S.; Lista, S.; Valenzuela, P.L.; Pinto-Fraga, J.; Carmona, R.; Caraci, F.; Caruso, G.; Toschi, N.; Emanuele, E.; Gabelle, A.; et al. Effects of Physical Activity and Exercise Interventions on Alzheimer’s Disease: An Umbrella Review of Existing Meta-Analyses. J. Neurol. 2023, 270, 711–725. [Google Scholar] [CrossRef]
- Laredo-Aguilera, J.A.; Carmona-Torres, J.M.; García-Pinillos, F.; Latorre-Román, P.Á. Effects of a 10-Week Functional Training Programme on Pain, Mood State, Depression, and Sleep in Healthy Older Adults. Psychogeriatrics 2018, 18, 292–298. [Google Scholar] [CrossRef]
- Bademli, K.; Lok, N.; Canbaz, M.; Lok, S. Effects of Physical Activity Program on Cognitive Function and Sleep Quality in Elderly with Mild Cognitive Impairment: A Randomized Controlled Trial. Perspect. Psychiatr. Care 2019, 55, 401–408. [Google Scholar] [CrossRef]
- Vu, H.M.; Tran, V.T.H.; Hoang, H.Q.; Han, B.; Hoang, B.X. Efficacy and Tolerability of Ich Nieu Khang Dietary Supplement for Overactive Bladder. J. Med. Food 2023, 26, 262–269. [Google Scholar] [CrossRef]
- Torimoto, K.; Uchimura, N.; Roitmann, E.; Marumoto, M.; Hirakata, T.; Burtea, T. A Large Survey of Nocturia Related to Sleep Quality and Daytime Quality of Life in a Young Japanese Population: NOCTURNE Study. Neurourol. Urodyn. 2021, 40, 340–347. [Google Scholar] [CrossRef]
- Kanammit, P.; Boonchan, T.; Sirisreetreerux, P.; Viseshsindh, W.; Kochakarn, W. Nocturia and Effect on the Quality of Life. A Study at Ramathibodi Hospital. Insight Urol. 2021, 42, 144–153. [Google Scholar] [CrossRef]
- Udo, Y.; Nakao, M.; Honjo, H.; Ukimura, O.; Kitakoji, H.; Miki, T. Sleep Duration Is an Independent Factor in Nocturia: Analysis of Bladder Diaries. BJU Int. 2009, 104, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Kohanmoo, A.; Kazemi, A.; Zare, M.; Akhlaghi, M. Gender-Specific Link between Sleep Quality and Body Composition Components: A Cross-Sectional Study on the Elderly. Sci. Rep. 2024, 14, 8113. [Google Scholar] [CrossRef] [PubMed]
- Knobbe, T.J.; Kremer, D.; Eisenga, M.F.; van Londen, M.; Annema, C.; Bültmann, U.; Kema, I.P.; Navis, G.J.; Berger, S.P.; Bakker, S.J.L.; et al. Sleep Quality, Fatigue, Societal Participation and Health-Related Quality of Life in Kidney Transplant Recipients: A Cross-Sectional and Longitudinal Cohort Study. Nephrol. Dial. Transplant. 2023, 39, 74–83. [Google Scholar] [CrossRef]
Components | Day #1 of the Week | Day #2 of the Week | Day #3 of the Week |
---|---|---|---|
Warm-up (5 min) | Jogging and cardio-based warm-up Dynamic stretching targeting shoulders, hips, and ankles. | Jogging and cardio-based warm-up Dynamic stretching targeting shoulders, hips, and ankles. | Jogging and cardio-based warm-up Dynamic stretching targeting shoulders, hips, and ankles. |
Resistance training (1–3 sets; 15–20 min) | 1–3 sets, 40–60 s rest between sets 6 repetitions (reps) kettlebell clean and press + 6 reps single-arm kettlebell thrusters 12 reps single-arm kettlebell rows 12 reps kettlebell sumo deadlift high pulls 12 reps dumbbell lateral raises 12 reps single-arm kettlebell triceps extensions | 1–3 sets, 40–60 s rest between sets 12 reps alternating single-arm kettlebell rows (touching the ground) 12 reps Romanian deadlifts 12 reps Dumbbell chest flys 12 reps single-arm kettlebell curls 12 reps kettlebell biceps curls | 1–3 sets, 40–60 s rest between sets 12 reps single-arm KB swings per side 12 reps KB goblet squats: focus on a slow descent, explosive ascent 12 reps bodyweight lunges: with a 2-s pause at the bottom 12 reps KB Romanian deadlifts 6 reps KB overhead extensions 6 reps triceps kickbacks per side |
Balance training (5–8 min) | (2 sets, IR: 30 s between sets) Single-leg deadlifts: 3 per leg Dynamic lateral lunges: 3 per side (hold each lunge position for 3 s) Alternating high knees: 3 per side (hold each knee up for 3 s) Reverse lunges with glute squeeze: 6 per leg Toe touches with step forward: 6 per side (step forward to touch toes) | (2 sets, IR: 30 s between sets) 5 m side shuffle + 2 alternating side lunges + 5 m Jog 10 m heel-to-toe walk 6 high knees with 2 quick taps | (2 sets, IR: 30 s between sets) Complex [4 high knees with hold + 4 controlled leg swings] 4 toe taps with ankle mobility + 4 static high knees Single-leg complex [2 controlled leg swings + 2 quick high knees + 2 single-leg balance holds (without touching the ground)] |
Aerobic fitness 15–20 min) | 3 Sets, 60 s ON, 30 s OFF, IR: 60 s between sets Marching in place Light jogging Light jogging Step touches Low-impact jumping jacks | 3 Sets, 60 s ON, 30 s OFF, IR: 60 s between sets Arm circles Punches (shadow boxing) Shoulder taps Front and lateral raises High knees with arm swing | 3 Sets, 60 s ON, 30 s OFF, IR: 60 s between sets High knees Arm circles Step touches Lateral lunges Front and lateral raises |
Cool down (5 min) | 5 min Upper and lower body static Stretching: stretches like hamstring stretches, quadriceps stretches, shoulder stretches, and tricep stretches. Dynamic trunk stretching and breathing exercises: torso twists, side bends, and deep diaphragmatic breathing. | 5 min Upper and lower body static stretching: stretches like hamstring stretches, quadriceps stretches, shoulder stretches, and tricep stretches. Dynamic trunk stretching and breathing exercises: torso twists, side bends, and deep diaphragmatic breathing. | 5 min Upper and lower body static stretching: stretches like hamstring stretches, quadriceps stretches, shoulder stretches, and tricep stretches. Dynamic trunk stretching and breathing exercises: torso twists, side bends, and deep diaphragmatic breathing. |
Control Group (N = 11) | Experimental Group (N = 13) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M1 Mean ± Sd | M2 Mean ± Sd | Δ% | t | p | d | M1 Mean ± Sd | M2 Mean ± Sd | Δ% | t | p | d | |
Body Mass (Kg) | 65.64 ± 6.77 | 66.00 ± 5.44 | 0% | −0.251 | 0.807 | −0.068 | 63.62 ± 12.99 | 64.75 ± 11.88 | 3% | −0.794 | 0.443 | −0.068 |
Hang Grip (Kgf) | 26.91 ± 7.83 | 26.72 ± 5.83 | 0% | 0.110 | 0.915 | −0.007 | 20.08 ± 8.11 | 22.50 ± 5.64 | 12% | −1.351 | 0.202 | −0.007 |
Arm Curl (Reps) | 22.27 ± 5.42 | 24.09 ± 3.24 | 8% | −1.237 | 0.244 | −0.373 | 18.92 ± 3.01 | 24.31 ± 2.59 | 26% | −4.696 | 0.001 * | −0.373 |
Waist circumference (cm) | 89.73 ± 7.18 | 85.73 ± 8.71 | −4% | 1.298 | 0.223 | 0.391 | 85.35 ± 11.82 | 84.79 ± 11.40 | 0% | 0.638 | 0.535 | 0.391 |
Hip circinferemce (cm) | 101.82 ± 6.74 | 101.36 ± 3.34 | 0% | 0.255 | 0.804 | 0.084 | 98.46 ± 9.98 | 98.38 ± 10.44 | 0% | 0.166 | 0.871 | 0.084 |
5TSTS (sg) | 6.85 ± 1.16 | 6.93 ± 1.43 | 1% | −0.155 | 0.880 | −0.058 | 7.54 ± 1.11 | 6.10 ± 1.24 | −18% | 5.392 | <0.001 * | −0.058 |
CS30 (reps) | 22.73 ± 2.94 | 23.27 ± 4.47 | 2% | −0.534 | 0.605 | −0.161 | 23.85 ± 4.51 | 20.31 ± 3.99 | 19% | −8.469 | <0.001 * | −0.161 |
TUG (sg) | 5.91 ± 0.701 | 5.41 ± 1.33 | −7% | 1.025 | 0.330 | 0.243 | 4.79 ± 0.68 | 5.56 ± 1.02 | −14% | 4.212 | 0.001 * | 0.243 |
Seat and Reach (cm) | 3.27 ± 5.35 | 6.73 ± 9.63 | 106% | −0.879 | 0.400 | −0.265 | −6.52 ± 11.18 | 2.15 ± 6.73 | −118% | −4.127 | 0.001 * | −0.265 |
Back Stretch (cm) | −7.46 ± 10.69 | −4.45 ± 9.32 | −40% | −1.722 | 0.116 | −0.519 | −6.89 ± 8.52 | −3.46 ± 7.63 | −52% | −3.722 | 0.003 * | −0.519 |
2MST (reps) | 189.18 ± 38.19 | 192.64 ± 62.22 | 2% | −0.134 | 0.896 | −0.040 | 174.69 ± 26.85 | 222.08 ± 37.17 | 29% | −9.617 | <0.001 * | −0.040 |
Total Fat (kg) | 20.55 ± 5.20 | 19.73 ± 4.43 | −4% | 0.726 | 0.484 | 0.213 | 20.24 ± 7.15 | 19.59 ± 7.71 | −3% | 1.888 | 0.083 | 0.213 |
Total Fat (%) | 30.91 ± 5.69 | 29.81 ± 4.77 | −3% | 0.815 | 0.434 | 0.228 | 29.42 ± 8.82 | 26.61 ± 9.73 | −10% | 2.225 | 0.046 * | 0.228 |
Lean Mass (kg) | 43.09 ± 4.59 | 43.00 ± 3.77 | −1% | 0.115 | 0.911 | 0.094 | 41.97 ± 6.13 | 42.40 ± 5.65 | 1% | −0.758 | 0.463 | 0.094 |
Body Water (%) | 48.73 ± 4.03 | 48.55 ± 3.98 | 0% | 0.176 | 0.864 | −0.003 | 49.38 ± 5.55 | 49.95 ± 5.69 | 1% | −1.171 | 0.264 | −0.003 |
Visceral Fat (a.u.) | 7.91 ± 2.59 | 8.18 ± 2.52 | 3% | −1.399 | 0.192 | −0.422 | 7.08 ± 2.63 | 6.92 ± 2.33 | −1% | 0.519 | 0.613 | −0.422 |
MET (Kcal) | 1341.64 ± 125.61 | 1356.91 ± 93.91 | −19% | 1.384 | 0.196 | 0.417 | 1304.08 ± 183.17 | 1310.54 ± 181.06 | 1% | −0.567 | 0.581 | 0.417 |
Sleep Quality (a.u.) | 4.64 ± 2.34 | 6.82 ± 1.17 | 47% | −2.869 | 0.017 * | −0.865 | 5.46 ± 1.45 | 4.62 ± 1.45 | −14% | 2.856 | 0.014 * | −0.865 |
Variable | Moment | Exercise (N = 13) | Control (N = 11) | ANOVA | Bayes Factor | Sig. Prob. |
---|---|---|---|---|---|---|
Body mass (kg) | Pre | 63.6 ± 12.9 | 65.6 ± 6.77 | Time | 0.31 ± 4.84% | Anecdotal |
Post | 64.6 ± 11.8 | 66 ± 5.44 | Group | 0.38 ± 1.1% | Anecdotal | |
Interaction | 0.04 ± 1.65% | Anecdotal | ||||
HG (kgf) | Pre | 20.2 ± 8.18 | 26.9 ± 7.83 | Time | 0.37 ± 0.98% | Anecdotal |
Post | 22.6 ± 5.68 | 26.7 ± 5.83 | Group | 2.41 ± 0.95% | Anecdotal | |
Interaction | 0.44 ± 2.48% | Anecdotal | ||||
ULS (rep) | Pre | 18.9 ± 3.01 | 22.3 ± 5.42 | Time | 85.02 ± 1.12% | Strong |
Post | 24.3 ± 2.59 | 24.1± 3.24 | Group | 0.56 ± 0.64% | Anecdotal | |
Interaction | 80.39 ± 1.76% | Strong | ||||
Waist (cm) | Pre | 85.5 11.8 | 89.9 ± 7.20 | Time | 0.44 ± 0.86% | Anecdotal |
Post | 84.8 11.4 | 85.7 ± 8.72 | Group | 0.39 ± 3.49% | Anecdotal | |
Interaction | 0.08 ± 2.13% | Anecdotal | ||||
Hip (cm) | Pre | 98.5 ± 9.94 | 102.0 ± 6.74 | Time | 0.29 ± 1.32% | Anecdotal |
Post | 98.4 ± 10.5 | 101.0 ± 3.36 | Group | 0.57 ± 1.7% | Anecdotal | |
Interaction | 0.06 ± 2.09% | Anecdotal | ||||
LLP (sec) | Pre | 7.46 ± 1.33 | 6.73 ± 1.35 | Time | 0.85 ± 0.88% | Anecdotal |
Post | 6.08 ± 1.26 | 7.09 ± 1.3 | Group | 0.37 ± 0.81% | Anecdotal | |
Interaction | 2.00 ± 3.31% | Anecdotal | ||||
LLS (rep) | Pre | 20.3 ± 3.99 | 22.7 ± 2.94 | Time | 1.92 ± 1.74% | Anecdotal |
Post | 23.8 ± 4.51 | 23.3 ± 4.47 | Group | 0.43 ± 0.8% | Anecdotal | |
Interaction | 0.78 ± 2.95% | Anecdotal | ||||
DB (sec) | Pre | 5.56 ± 1.02 | 5.80 ± 0.824 | Time | 2.68 ± 0.95% | Anecdotal |
Post | 4.78 0.681 | 5.38 ± 1.34 | Group | 0.61 ± 2.98% | Anecdotal | |
Interaction | 0.79 ± 3.6% | Anecdotal | ||||
LLF (cm) | Pre | −6.54 ± 11.2 | 3.27 ± 5.35 | Time | 3.79 ± 0.64% | Moderate |
Post | 2.15 ± 6.73 | 6.73 ± 9.63 | Group | 2.62 ± 0.63% | Anecdotal | |
Interaction | 7.94 ± 2.16% | Strong | ||||
ULF (cm) | Pre | −6.85 ± 8.57 | −7.46 ± 10.7 | Time | 0.82 ± 0.72% | Anecdotal |
Post | −3.46 ± 7.63 | −4.46 ± 9.32 | Group | 0.41 ± 0.56% | Anecdotal | |
Interaction | 0.80 ± 83.77% | Anecdotal | ||||
AF (rep) | Pre | 175.0 ± 26.9 | 189.0 ± 38.2 | Time | 2.33 ± 0.99% | Anecdotal |
Post | 222.0 ± 37.2 | 193.0 ± 62.2 | Group | 0.36 ± 0.75% | Anecdotal | |
Interaction | 1.24 ± 1.78% | Anecdotal | ||||
Tot. BF (kg) | Pre | 20.3 ± 7.05 | 20.5 ± 5.20 | Time | 0.31 ± 2.31% | Anecdotal |
Post | 19.7 ± 7.74 | 19.7 ± 4.43 | Group | 0.36 ± 0.94% | Anecdotal | |
Interaction | 0.04 ± 3.85% | Anecdotal | ||||
BF percentage (%) | Pre | 29.4 ± 8.80 | 30.9 ± 5.63 | Time | 0.46 ± 1.09% | Anecdotal |
Post | 26.5 ± 9.81 | 29.9 ± 4.66 | Group | 0.52 ± 1.41% | Anecdotal | |
Interaction | 0.10 ± 5.03% | Anecdotal | ||||
Tot. LM (kg) | Pre | 42 ± 6.03 | 43.3 ± 4.65 | Time | 0.30 ± 1.29% | Anecdotal |
Post | 42.4 ± 5.74 | 43 ± 3.77 | Group | 0.45 ± 7.9% | Anecdotal | |
Interaction | 0.05 ± 2.41% | Anecdotal | ||||
Wat. Percentage (%) | Pre | 50 ± 5.13 | 48.7 ± 4.03 | Time | 0.29 ± 1.49% | Anecdotal |
Post | 50.1 ± 5.75 | 48.7 ± 4.12 | Group | 0.50 ± 2.21% | Anecdotal | |
Interaction | 0.05 ± 2.3% | Anecdotal | ||||
Visc. Fat (Index) | Pre | 7.08 ± 2.63 | 7.91 ± 2.59 | Time | 0.30 ± 1.65% | Anecdotal |
Post | 6.92 ± 2.33 | 8.18 ± 2.52 | Group | 0.64 ± 0.98% | Anecdotal | |
Interaction | 0.07 ± 2.43% | Anecdotal | ||||
Basal Met. | Pre | 1304 ± 183 | 1669 ± 762 | Time | 0.58 ± 1.55% | Anecdotal |
Post | 1311 ± 181 | 1357 ± 937 | Group | 0.83 ± 0.78% | Anecdotal | |
Interaction | 0.47 ± 1.64% | Anecdotal | ||||
Sleep score | Pre | 5.46 ± 1.45 | 4.64 ± 2.34 | Time | 0.51 ± 3.41% | Anecdotal |
Post | 4.62 ± 1.26 | 6.82 ± 1.17 | Group | 0.56 ± 1.11% | Anecdotal | |
Interaction | 10.35 ± 2.07% | Strong |
Group | Variable | Age | Body Mass | Hand Grip | Arm Curl | Wist Circumference | Hip Circumference | STS5T | CS30 | TUG | Seat and Reach | Bach Strech | 2MST | Total Fat | Fat Percentage | Lean Mass | Body Water | Visceral Fatt | MET | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Sleep Quality M1 | r | −0.55 | 0.196 | 0.3 | 0.282 | 0.427 | 0.392 | 0.237 | 0.426 | 0.378 | 0.175 | −0.255 | 0.441 | −0.153 | −0.03 | −0.183 | 0.372 | 0.036 | −0.155 |
p | 0.079 | 0.564 | 0.37 | 0.402 | 0.19 | 0.233 | 0.483 | 0.191 | 0.252 | 0.606 | 0.448 | 0.174 | 0.654 | 0.929 | 0.59 | 0.26 | 0.917 | 0.649 | ||
Sleep Quality M2 | r | 0.150 | 0.042 | 0.214 | −0.418 | 0.145 | −0.124 | 0.082 | −0.124 | −0.101 | −0.014 | −0.128 | 0.038 | −0.485 | −0.064 | 0.193 | 0.665 * | 0.386 | 0.442 | |
p | 0.659 | 0.901 | 0.528 | 0.201 | 0.670 | 0.716 | 0.810 | 0.717 | 0.768 | 0.968 | 0.708 | 0.913 | 0.130 | 0.833 | 0.623 | 0.026 | 0.241 | 0.174 | ||
Experimental | Sleep Quality M1 | r | −0.023 | 0.364 | −0.154 | −0.201 | 0.454 | 0.485 | 0.360 | −0.272 | 0.575 * | 0.256 | −0.001 | 0.098 | 0.562 * | 0.619 * | −0.044 | −0.646 * | 0.515 | 0.064 |
p | 0.941 | 0.221 | 0.616 | 0.510 | 0.119 | 0.093 | 0.227 | 0.369 | 0.040 | 0.399 | 0.997 | 0.750 | 0.046 | 0.024 | 0.886 | 0.017 | 0.072 | 0.837 | ||
Sleep Quality M2 | r | −0.113 | 0.367 | −0.243 | −0.063 | 0.253 | 0.368 | 0.492 | −0.378 | 0.359 | −0.297 | −0.115 | 0.363 | 0.541 | 0.620 * | −0.052 | −0.523 | 0.472 | 0.004 | |
p | 0.714 | 0.218 | 0.423 | 0.839 | 0.404 | 0.217 | 0.088 | 0.203 | 0.229 | 0.325 | 0.708 | 0.222 | 0.056 | 0.024 | 0.867 | 0.067 | 0.103 | 0.991 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forte, P.; Encarnação, S.G.; Branquinho, L.; Barbosa, T.M.; Monteiro, A.M.; Pecos-Martín, D. The Effects of an 8-Month Multicomponent Training Program in Body Composition, Functional Fitness, and Sleep Quality in Aged People: A Randomized Controlled Trial. J. Clin. Med. 2024, 13, 6603. https://doi.org/10.3390/jcm13216603
Forte P, Encarnação SG, Branquinho L, Barbosa TM, Monteiro AM, Pecos-Martín D. The Effects of an 8-Month Multicomponent Training Program in Body Composition, Functional Fitness, and Sleep Quality in Aged People: A Randomized Controlled Trial. Journal of Clinical Medicine. 2024; 13(21):6603. https://doi.org/10.3390/jcm13216603
Chicago/Turabian StyleForte, Pedro, Samuel G. Encarnação, Luís Branquinho, Tiago M. Barbosa, António M. Monteiro, and Daniel Pecos-Martín. 2024. "The Effects of an 8-Month Multicomponent Training Program in Body Composition, Functional Fitness, and Sleep Quality in Aged People: A Randomized Controlled Trial" Journal of Clinical Medicine 13, no. 21: 6603. https://doi.org/10.3390/jcm13216603
APA StyleForte, P., Encarnação, S. G., Branquinho, L., Barbosa, T. M., Monteiro, A. M., & Pecos-Martín, D. (2024). The Effects of an 8-Month Multicomponent Training Program in Body Composition, Functional Fitness, and Sleep Quality in Aged People: A Randomized Controlled Trial. Journal of Clinical Medicine, 13(21), 6603. https://doi.org/10.3390/jcm13216603