Effectiveness of Robotic Devices for Medical Rehabilitation: An Umbrella Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Registration
2.2. Criteria for Considering Studies for This SR
2.2.1. Type of SRs
2.2.2. Types of Participants
2.2.3. Types of Interventions
2.2.4. Types of Outcome Measures
2.3. Search Methods for the Identification of Studies
2.4. Data Collection Process and Analysis
2.4.1. Selection of SRs
2.4.2. Data Extraction and Management
2.4.3. Managing Overlap of Primary Studies
2.5. Analysis and Synthesis of Results
2.5.1. Characteristics of Each SR
2.5.2. Number of the Included SRs, RCTs, and Participants
2.6. Quality Assessment of SRs
2.7. Robotic Devices Used in the Included SRs
2.8. Outcome Measures Used in the Included SRs
2.9. Grading the Evidence for the Effectiveness of RT
3. Results
3.1. Number of Included SRs, RCTs, and Participants
3.2. Quality Assessment of SRs
3.3. Robotic Devices Used in the Included SRs
3.4. Outcome Measures Used in the Included SRs
3.5. Effectiveness of RT
4. Discussion
4.1. Number of the Included SRs, RCTs, and Participants
4.2. Quality Assessment of SRs
4.3. Robotic Devices Used in the Included SRs
4.4. Outcome Measures Used in the Included SRs
4.5. Effectiveness of RT and Implications to Future Studies
4.6. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cieza, A.; Causey, K.; Kamenov, K.; Hanson, S.W.; Chatterji, S.; Vos, T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2021, 396, 2006–2017. [Google Scholar] [CrossRef] [PubMed]
- Suputtitada, A. Highlights in medical and surgical rehabilitation 2021/22. Front. Rehabil. Sci. 2023, 4, 1219924. [Google Scholar] [CrossRef] [PubMed]
- Everard, G.; Declerck, L.; Detrembleur, C.; Leonard, S.; Bower, G.; Dehem, S.; Lejeune, T. New technologies promoting active upper limb rehabilitation after stroke: An overview and network meta-analysis. Eur. J. Phys. Rehabil. Med. 2022, 58, 530–548. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, P.; Li, C. Systematic review and network meta-analysis of robot-assisted gait training on lower limb function in patients with cerebral palsy. Neurol. Sci. 2023, 44, 3863–3875. [Google Scholar] [CrossRef]
- Zuccon, G.; Lenzo, B.; Bottin, M.; Rosati, G. Rehabilitation robotics after stroke: A bibliometric literature review. Expert Rev. Med. Devices 2022, 19, 405–421. [Google Scholar] [CrossRef]
- Stampacchia, G.; Gazzotti, V.; Olivieri, M.; Andrenelli, E.; Bonaiuti, D.; Calabro, R.S.; Carmignano, S.M.; Cassio, A.; Fundaro, C.; Companini, I.; et al. Gait robot-assisted rehabilitation in persons with spinal cord injury: A scoping review. NeuroRehabilitation 2022, 51, 609–647. [Google Scholar] [CrossRef] [PubMed]
- Carmignano, S.M.; Fundarò, C.; Bonaiuti, D.; Calabrò, R.S.; Cassio, A.; Mazzoli, D.; Bizzarini, E.; Campanini, I.; Cerulli, S.; Chisari, C.; et al. Robot-assisted gait training in patients with Parkinson’s disease: Implications for clinical practice. A systematic review. NeuroRehabilitation 2022, 51, 649–663. [Google Scholar] [CrossRef]
- Mannella, K.; Cudlip, A.C.; Holmes, M.W.R. Adaptations in Muscular Strength for Individuals with Multiple Sclerosis Following Robotic Rehabilitation: A Scoping Review. Front. Rehabil. Sci. 2022, 3, 882614. [Google Scholar] [CrossRef]
- Calabro, R.S.; Sorrentino, G.; Cassio, A.; Mazzoli, D.; Andrenelli, E.; Bizzarini, E.; Campanini, I.; Carmignano, S.M.; Cerulli, S.; Chisari, C.; et al. Robotic-assisted gait rehabilitation following stroke: A systematic review of current guidelines and practical clinical recommendations. Eur. J. Phys. Rehabil. Med. 2021, 57, 460–471. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Ziai, W.C.; Cordonnier, C.; Dowlatshahi, D.; Francis, B.; Goldstein, J.N.; Hemphill, J.C., III; Johnson, R.; Keigher, K.M.; Mack, W.J. 2022 Guideline for the management of patients with spontaneous intracerebral hemorrhage: A guideline from the American Heart Association/American Stroke Association. Stroke 2022, 53, e282–e361. [Google Scholar] [CrossRef]
- Gates, M.; Gates, A.; Pieper, D.; Fernandes, R.M.; Tricco, A.C.; Moher, D.; Brennan, S.E.; Li, T.; Pollock, M.; Lunny, C.; et al. Reporting guideline for overviews of reviews of healthcare interventions: Development of the PRIOR statement. BMJ 2022, 378, e070849. [Google Scholar] [CrossRef] [PubMed]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef] [PubMed]
- Cieza, A.; Fayed, N.; Bickenbach, J.; Prodinger, B. Refinements of the ICF Linking Rules to strengthen their potential for establishing comparability of health information. Disabil. Rehabil. 2019, 41, 574–583. [Google Scholar] [CrossRef]
- Cieza, A.; Brockow, T.; Ewert, T.; Amman, E.; Kollerits, B.; Chatterji, S.; Ustun, T.B.; Stucki, G. Linking health-status measurements to the international classification of functioning, disability and health. J. Rehabil. Med. 2002, 34, 205–210. [Google Scholar] [CrossRef]
- Fusar-Poli, P.; Radua, J. Ten simple rules for conducting umbrella reviews. Evid.-Based Ment. Health 2018, 21, 95–100. [Google Scholar] [CrossRef]
- Carrillo, C.; Tilley, D.; Horn, K.; Gonzalez, M.; Coffman, C.; Hilton, C.; Mani, K. Effectiveness of Robotics in Stroke Rehabilitation to Accelerate Upper Extremity Function: Systematic Review. Occup. Ther. Int. 2023, 2023, 7991765. [Google Scholar] [CrossRef]
- Doumen, S.; Sorba, L.; Feys, P.; Tedesco Triccas, L. Efficacy and Dose of Rehabilitation Approaches for Severe Upper Limb Impairments and Disability During Early Acute and Subacute Stroke: A Systematic Review. Phys. Ther. 2023, 103, pzad002. [Google Scholar] [CrossRef]
- Gnasso, R.; Palermi, S.; Picone, A.; Tarantino, D.; Fusco, G.; Messina, M.M.; Sirico, F. Robotic-Assisted Rehabilitation for Post-Stroke Shoulder Pain: A Systematic Review. Sensors 2023, 23, 8239. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.O.; Saragih, I.D.; Batubara, S.O. Robotic arm use for upper limb rehabilitation after stroke: A systematic review and meta-analysis. Kaohsiung J. Med. Sci. 2023, 39, 435–445. [Google Scholar] [CrossRef]
- Yang, X.; Shi, X.; Xue, X.; Deng, Z. Efficacy of Robot-Assisted Training on Rehabilitation of Upper Limb Function in Patients with Stroke: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2023, 104, 1498–1513. [Google Scholar] [CrossRef]
- Moggio, L.; de Sire, A.; Marotta, N.; Demeco, A.; Ammendolia, A. Exoskeleton versus end-effector robot-assisted therapy for finger-hand motor recovery in stroke survivors: Systematic review and meta-analysis. Top. Stroke Rehabil. 2022, 29, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jia, G.; Ma, J.; Wang, S.; Cheng, L. Short and long-term effects of robot-assisted therapy on upper limb motor function and activity of daily living in patients post-stroke: A meta-analysis of randomized controlled trials. J. NeuroEng. Rehabil. 2022, 19, 76. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Wang, G.; Wang, A.; Cheng, L.J.; Lau, Y. Robot-assisted distal training improves upper limb dexterity and function after stroke: A systematic review and meta-regression. Neurol. Sci. 2022, 43, 1641–1657. [Google Scholar] [CrossRef] [PubMed]
- Rozevink, S.G.; Hijmans, J.M.; Horstink, K.A.; van der Sluis, C.K. Effectiveness of task-specific training using assistive devices and task-specific usual care on upper limb performance after stroke: A systematic review and meta-analysis. Disabil. Rehabil. Assist. Technol. 2021, 18, 1245–1258. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, H.; Zhang, J.; Yang, S.; Cai, S. Robot-Assisted Therapy for Upper Extremity Motor Impairment After Stroke: A Systematic Review and Meta-Analysis. Phys. Ther. 2021, 101, pzab010. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, C.; Fan, W.; Gu, M.; Yasin, G.; Xiao, S.; Huang, J.; Huang, X. Robot-Assisted Arm Training versus Therapist-Mediated Training after Stroke: A Systematic Review and Meta-Analysis. J. Healthc. Eng. 2020, 2020, 8810867. [Google Scholar] [CrossRef]
- Chien, W.T.; Chong, Y.Y.; Tse, M.K.; Chien, C.W.; Cheng, H.Y. Robot-assisted therapy for upper-limb rehabilitation in subacute stroke patients: A systematic review and meta-analysis. Brain Behav. 2020, 10, e01742. [Google Scholar] [CrossRef]
- Ferreira, F.; Chaves, M.E.A.; Oliveira, V.C.; Van Petten, A.; Vimieiro, C.B.S. Effectiveness of robot therapy on body function and structure in people with limited upper limb function: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0200330. [Google Scholar] [CrossRef]
- Mehrholz, J.; Pohl, M.; Platz, T.; Kugler, J.; Elsner, B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. 2018, 9, CD006876. [Google Scholar] [CrossRef]
- Bertani, R.; Melegari, C.; De Cola, M.C.; Bramanti, A.; Bramanti, P.; Calabro, R.S. Effects of robot-assisted upper limb rehabilitation in stroke patients: A systematic review with meta-analysis. Neurol. Sci. 2017, 38, 1561–1569. [Google Scholar] [CrossRef]
- Kim, G.; Lim, S.; Kim, H.; Lee, B.; Seo, S.; Cho, K.; Lee, W. Is robot-assisted therapy effective in upper extremity recovery in early stage stroke?—A systematic literature review. J. Phys. Ther. Sci. 2017, 29, 1108–1112. [Google Scholar] [CrossRef] [PubMed]
- Veerbeek, J.M.; Langbroek-Amersfoort, A.C.; van Wegen, E.E.; Meskers, C.G.; Kwakkel, G. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke. Neurorehabil Neural Repair 2017, 31, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li-Tsang, C.W.; Au, R.K. Robotic approaches for the rehabilitation of upper limb recovery after stroke: A systematic review and meta-analysis. Int. J. Rehabil. Res. 2017, 40, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Norouzi-Gheidari, N.; Archambault, P.S.; Fung, J. Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: Systematic review and meta-analysis of the literature. J. Rehabil. Res. Dev. 2012, 49, 479–496. [Google Scholar] [CrossRef] [PubMed]
- Leow, X.R.G.; Ng, S.L.A.; Lau, Y. Overground Robotic Exoskeleton Training for Patients with Stroke on Walking-Related Outcomes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Arch. Phys. Med. Rehabil. 2023, 104, 1698–1710. [Google Scholar] [CrossRef]
- Yang, J.; Gong, Y.; Yu, L.; Peng, L.; Cui, Y.; Huang, H. Effect of exoskeleton robot-assisted training on gait function in chronic stroke survivors: A systematic review of randomised controlled trials. BMJ Open 2023, 13, e074481. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Ruan, M.; Yun, R.S.; Zhong, Y.X.; Zhang, Y.X.; Wang, Y.J.; Sun, Y.L.; Cui, J.W. Is Leg-Driven Treadmill-Based Exoskeleton Robot Training Beneficial to Poststroke Patients: A Systematic Review and Meta-Analysis. Am. J. Phys. Med. Rehabil. 2023, 102, 331–339. [Google Scholar] [CrossRef]
- Calafiore, D.; Negrini, F.; Tottoli, N.; Ferraro, F.; Ozyemisci-Taskiran, O.; de Sire, A. Efficacy of robotic exoskeleton for gait rehabilitation in patients with subacute stroke: A systematic review. Eur. J. Phys. Rehabil. Med. 2022, 58, 1–8. [Google Scholar] [CrossRef]
- Baronchelli, F.; Zucchella, C.; Serrao, M.; Intiso, D.; Bartolo, M. The Effect of Robotic Assisted Gait Training with Lokomat (R) on Balance Control After Stroke: Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 661815. [Google Scholar] [CrossRef]
- Nedergard, H.; Arumugam, A.; Sandlund, M.; Brandal, A.; Hager, C.K. Effect of robotic-assisted gait training on objective biomechanical measures of gait in persons post-stroke: A systematic review and meta-analysis. J. NeuroEng. Rehabil. 2021, 18, 64. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, Y.; Dang, Y.; Teng, M.; Zhang, X.; Cheng, Y.; Zhang, X.; Yu, Q.; Yin, A.; Lu, X. Effects of robot-assisted training on balance function in patients with stroke: A systematic review and meta-analysis. J. Rehabil. Med. 2021, 53, jrm00174. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; Cheng, Y.H.; Lai, C.H.; Lin, Y.N. Clinical non-superiority of technology-assisted gait training with body weight support in patients with subacute stroke: A meta-analysis. Ann. Phys. Rehabil. Med. 2019, 63, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Maranesi, E.; Riccardi, G.R.; Di Donna, V.; Di Rosa, M.; Fabbietti, P.; Luzi, R.; Pranno, L.; Lattanzio, F.; Bevilacqua, R. Effectiveness of Intervention Based on End-effector Gait Trainer in Older Patients with Stroke: A Systematic Review. J. Am. Med. Dir. Assoc. 2019, 21, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Mehrholz, J.; Thomas, S.; Kugler, J.; Pohl, M.; Elsner, B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst. Rev. 2020, 10, CD006185. [Google Scholar] [CrossRef]
- Moucheboeuf, G.; Griffier, R.; Gasq, D.; Glize, B.; Bouyer, L.; Dehail, P.; Cassoudesalle, H. Effects of robotic gait training after stroke: A meta-analysis. Ann. Phys. Rehabil. Med. 2020, 63, 518–534. [Google Scholar] [CrossRef]
- Postol, N.; Marquez, J.; Spartalis, S.; Bivard, A.; Spratt, N.J. Do powered over-ground lower limb robotic exoskeletons affect outcomes in the rehabilitation of people with acquired brain injury? Disabil. Rehabil. Assist. Technol. 2019, 14, 764–775. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.X.; Ge, L.; Wang, C.C.; Ma, Q.S.; Liao, Y.T.; Huang, P.P.; Wang, G.D.; Xie, Q.L.; Rask, M. Robot-assisted therapy for balance function rehabilitation after stroke: A systematic review and meta-analysis. Int. J. Nurs. Stud. 2019, 95, 7–18. [Google Scholar] [CrossRef]
- Bruni, M.F.; Melegari, C.; De Cola, M.C.; Bramanti, A.; Bramanti, P.; Calabro, R.S. What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and meta-analysis. J. Clin. Neurosci. 2018, 48, 11–17. [Google Scholar] [CrossRef]
- Cho, J.E.; Yoo, J.S.; Kim, K.E.; Cho, S.T.; Jang, W.S.; Cho, K.H.; Lee, W.H. Systematic Review of Appropriate Robotic Intervention for Gait Function in Subacute Stroke Patients. BioMed Res. Int. 2018, 2018, 4085298. [Google Scholar] [CrossRef]
- Mehrholz, J.; Thomas, S.; Werner, C.; Kugler, J.; Pohl, M.; Elsner, B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst. Rev. 2017, 5, CD006185. [Google Scholar] [CrossRef]
- Hesse, S.; Schattat, N.; Mehrholz, J.; Werner, C. Evidence of end-effector based gait machines in gait rehabilitation after CNS lesion. NeuroRehabilitation 2013, 33, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Mehrholz, J.; Pohl, M. Electromechanical-assisted gait training after stroke: A systematic review comparing end-effector and exoskeleton devices. J. Rehabil. Med. 2012, 44, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Ada, L.; Dean, C.M.; Vargas, J.; Ennis, S. Mechanically assisted walking with body weight support results in more independent walking than assisted overground walking in non-ambulatory patients early after stroke: A systematic review. J. Physiother. 2010, 56, 153–161. [Google Scholar] [CrossRef]
- Saragih, I.D.; Everard, G.; Tzeng, H.M.; Saragih, I.S.; Lee, B.O. Efficacy of Robots-Assisted Therapy in Patients with Stroke: A Meta-Analysis Update. J. Cardiovasc. Nurs. 2023, 38, E192–E217. [Google Scholar] [CrossRef]
- Lo, K.; Stephenson, M.; Lockwood, C. Effectiveness of robotic assisted rehabilitation for mobility and functional ability in adult stroke patients: A systematic review. JBI Database Syst. Rev. Implement. Rep. 2017, 15, 3049–3091. [Google Scholar] [CrossRef]
- Huang, L.; Huang, H.L.; Dang, X.W.; Wang, Y.J. Effect of Body Weight Support Training on Lower Extremity Motor Function in Patients with Spinal Cord Injury: A Systematic Review and Meta-Analysis. Am. J. Phys. Med. Rehabil. 2024, 103, 149–157. [Google Scholar] [CrossRef]
- Wan, C.; Huang, S.; Wang, X.; Ge, P.; Wang, Z.; Zhang, Y.; Li, Y.; Su, B. Effects of robot-assisted gait training on cardiopulmonary function and lower extremity strength in individuals with spinal cord injury: A systematic review and meta-analysis. J. Spinal Cord. Med. 2024, 47, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Ding, M.; Wang, J.; Pan, H.; Sun, X.; Huang, L.; Fu, C.; He, C.; Wei, Q. Effectiveness of robotic-assisted gait training on cardiopulmonary fitness and exercise capacity for incomplete spinal cord injury: A systematic review and meta-analysis of randomized controlled trials. Clin. Rehabil. 2023, 37, 312–329. [Google Scholar] [CrossRef]
- Fang, C.Y.; Tsai, J.L.; Li, G.S.; Lien, A.S.; Chang, Y.J. Effects of Robot-Assisted Gait Training in Individuals with Spinal Cord Injury: A Meta-Analysis. BioMed Res. Int. 2020, 2020, 2102785. [Google Scholar] [CrossRef]
- Nam, K.Y.; Kim, H.J.; Kwon, B.S.; Park, J.W.; Lee, H.J.; Yoo, A. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: A systematic review. J. NeuroEng. Rehabil. 2017, 14, 24. [Google Scholar] [CrossRef]
- Mehrholz, J.; Harvey, L.A.; Thomas, S.; Elsner, B. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord. 2017, 55, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Fisahn, C.; Aach, M.; Jansen, O.; Moisi, M.; Mayadev, A.; Pagarigan, K.T.; Dettori, J.R.; Schildhauer, T.A. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review. Glob. Spine J. 2016, 6, 822–841. [Google Scholar] [CrossRef] [PubMed]
- Cheung, E.Y.Y.; Ng, T.K.W.; Yu, K.K.K.; Kwan, R.L.C.; Cheing, G.L.Y. Robot-Assisted Training for People with Spinal Cord Injury: A Meta-Analysis. Arch. Phys. Med. Rehabil. 2017, 98, 2320–2331.e12. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.A.; Lin, C.L.; Huang, W.C.; Wang, H.Y.; Peng, C.W.; Chen, H.C. Effect of Robot-Assisted Gait Training on Multiple Sclerosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Neurorehabil Neural Repair 2023, 37, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Bowman, T.; Gervasoni, E.; Amico, A.P.; Antenucci, R.; Benanti, P.; Boldrini, P.; Bonaiuti, D.; Burini, A.; Castelli, E.; Draicchio, F.; et al. What is the impact of robotic rehabilitation on balance and gait outcomes in people with multiple sclerosis? A systematic review of randomized control trials. Eur. J. Phys. Rehabil. Med. 2021, 57, 246–253. [Google Scholar] [CrossRef]
- Yeh, S.W.; Lin, L.F.; Tam, K.W.; Tsai, C.P.; Hong, C.H.; Kuan, Y.C. Efficacy of robot-assisted gait training in multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2020, 41, 102034. [Google Scholar] [CrossRef]
- Sattelmayer, M.; Chevalley, O.; Steuri, R.; Hilfiker, R. Over-ground walking or robot-assisted gait training in people with.multiple sclerosis: Does the effect depend on baseline walking speed and disease related disabilities? A systematic review and meta-regression. BMC Neurol. 2019, 19, 93. [Google Scholar] [CrossRef]
- Conner, B.C.; Remec, N.M.; Lerner, Z.F. Is robotic gait training effective for individuals with cerebral palsy? A systematic review and meta-analysis of randomized controlled trials. Clin. Rehabil. 2022, 36, 873–882. [Google Scholar] [CrossRef]
- Cortes-Perez, I.; Gonzalez-Gonzalez, N.; Peinado-Rubia, A.B.; Nieto-Escamez, F.A.; Obrero-Gaitan, E.; Garcia-Lopez, H. Efficacy of Robot-Assisted Gait Therapy Compared to Conventional Therapy or Treadmill Training in Children with Cerebral Palsy: A Systematic Review with Meta-Analysis. Sensor 2022, 22, 9910. [Google Scholar] [CrossRef]
- Llamas-Ramos, R.; Sanchez-Gonzalez, J.L.; Llamas-Ramos, I. Robotic Systems for the Physiotherapy Treatment of Children with Cerebral Palsy: A Systematic Review. Int. J. Environ. Res. Public. Health 2022, 19, 5116. [Google Scholar] [CrossRef]
- Lefmann, S.; Russo, R.; Hillier, S. The effectiveness of robotic-assisted gait training for paediatric gait disorders: Systematic review. J. NeuroEng. Rehabil. 2017, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhou, J.; Chen, Q.; Xu, Q.; Wang, S.; Yuan, L.; Zhang, D.; Bi, H.; Li, H. Effect of robot-assisted gait training on motor dysfunction in Parkinson’s patients: A systematic review and meta-analysis. J. Back Musculoskelet. Rehabil. 2024, 37, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Yang, X.; Deng, Z. Efficacy of rehabilitation robot-assisted gait training on lower extremity dyskinesia in patients with Parkinson’s disease: A systematic review and meta-analysis. Ageing Res. Rev. 2023, 85, 101837. [Google Scholar] [CrossRef]
- Alwardat, M.; Etoom, M.; Al Dajah, S.; Schirinzi, T.; Di Lazzaro, G.; Sinibaldi Salimei, P.; Biagio Mercuri, N.; Pisani, A. Effectiveness of robot-assisted gait training on motor impairments in people with Parkinson’s disease: A systematic review and meta-analysis. Int. J. Rehabil. Res. 2018, 41, 287–296. [Google Scholar] [CrossRef]
- Ferreira, F.; Chaves, M.E.A.; Oliveira, V.C.; Martins, J.S.R.; Vimieiro, C.B.S.; Van Petten, A. Effect of Robot-Assisted Therapy on Participation of People with Limited Upper Limb Functioning: A Systematic Review with GRADE Recommendations. Occup. Ther. Int. 2021, 2021, 6649549. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.; Tedla, J.S. Effectiveness of robotics in improving upper extremity functions among people with neurological dysfunction: A systematic review. Int. J. Neurosci. 2019, 129, 369–383. [Google Scholar] [CrossRef]
- Garlet, A.B.; Righi, N.C.; Schardong, J.; Della Méa Plentz, R. Effects of robotic rehabilitation using the Erigo® device on patients with neurological injury: A systematic review and meta-analysis of randomized clinical trials. Disabil. Rehabil. Assist. Technol. 2024, 19, 1135–1144. [Google Scholar] [CrossRef]
- Singh, N.; Saini, M.; Kumar, N.; Srivastava, M.; Mehndiratta, A. Evidence of neuroplasticity with robotic hand exoskeleton for post-stroke rehabilitation: A randomized controlled trial. J. NeuroEng. Rehabil. 2021, 18, 76. [Google Scholar] [CrossRef]
- Xing, Y.; Bai, Y. A review of exercise-induced neuroplasticity in ischemic stroke: Pathology and mechanisms. Mol. Neurobiol. 2020, 57, 4218–4231. [Google Scholar] [CrossRef]
- Carpino, G.; Pezzola, A.; Urbano, M.; Guglielmelli, E. Assessing Effectiveness and Costs in Robot-Mediated Lower Limbs Rehabilitation: A Meta-Analysis and State of the Art. J. Healthc. Eng. 2018, 2018, 7492024. [Google Scholar] [CrossRef]
- Lo, K.; Stephenson, M.; Lockwood, C. The economic cost of robotic rehabilitation for adult stroke patients: A systematic review. JBI Database Syst. Rev. Implement. Rep. 2019, 17, 520–547. [Google Scholar] [CrossRef] [PubMed]
- Morrison, A.; Polisena, J.; Husereau, D.; Moulton, K.; Clark, M.; Fiander, M.; Mierzwinski-Urban, M.; Clifford, T.; Hutton, B.; Rabb, D. The effect of English-language restriction on systematic review-based meta-analyses: A systematic review of empirical studies. Int. J. Technol. Assess. Health Care 2012, 28, 138–144. [Google Scholar] [CrossRef] [PubMed]
Body Functions | Activities and Participation | Other Measures | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Motor Control | Muscle Strength | Muscle Tone | Range of Motion | Sensory Function | Pain | Upper-Limb Capacity | Activities of Daily Living | Comprehensive Measures | ||
Control of Voluntary Movement Functions [b760] | Muscle Power Functions [b730] | Muscle Tone Functions [b735] | Mobility of Joint Functions [b710] | Touch Function [b265] | Sensation of Pain [b280] | Fine Hand Use [d440], Hand and Arm Use [d445] | Washing Oneself [d510], Toileting [d520], Dressing [d540], Eating [d550] | |||
Stroke | FMA-UE (18) CMSA (3) FMA-WH (2) MSS (2) FMA-SE (1) K-SDQ | MI (6) a MRC (4) MPS (3) Grip force (1) Grip strength (1) Maximum resistive force (1) MMT (1) Motor power range (1) Dynamometer Surface EMG | MAS (5) AS (1) | pROM (1) ROM | Revised Nottingham Sensation Assessment Semmes–Weinstein hand monofilament test | VAS (2) CMSA Pain Inventory Scale (1) Pain Scale of FM (1) California functional evaluation (1) DN4 (1) Pain scale (1) NRS The severity degree of the painful shoulder was defined in four grades | WMFT (5) ARAT (4) QuickDASH (3) FAT (3) MAL (3) ABILHAND (2) AMAT (2) BBT (2) CAHAI (1) NHPT MAL-QOM Reaching Performance Scale Shoulder/Elbow Coordination Index | FIM (10) BI (7) MBI (4) mRS (2) ACTIVLIM questionnaire (1) Korean MBI (1) | SIS (8) a SF-36 (1) MCS PCS | Addenbrooke cognitive examination—revised (1) Dropouts during the intervention period (1) MMSE (1) participants’ cognitive function (1) Goal Attainment scale |
Spinal cord injury | GRASSP | ARAT | ||||||||
Neurological disease | FMA-UE Jebsen–Taylor Hand Function Test | MI a | FIM | Life Habits (1) SIS (1) SF-36 | QUEST UPDRS |
Body Functions | Activities and Participation | Other Measures | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Motor Control | Muscle Strength | Muscle Tone | Pain | Fatigue | Walking Independence | Walking Speed | Walking Capacity | Gait Index | Balance Capacity | Activities of Daily Living | Comprehensive Measures | ||
Control of Voluntary Movement Functions [b760] | Muscle Power Functions [b730] | Muscle Tone Functions [b735] | Sensation of Pain [b280] | Fatiguability [b4552] | Walking [d450] | Changing and Maintaining Body Position [d410–d429] | Washing Oneself [d510], Toileting [d520], Dressing [d540], Eating [d550] | ||||||
Stroke | CMSR (1) FMA-B (1) FMA-LE (1) MI (1) a | FAC (12) 15 m continuously with no aid (1) FGA | 10MWT (6) Walking speed (4) 5MWT (4) Maximum walking speed | 6MWT (8) RMI (6) 2MWT (4) EMS (1) Endurance (1) EU walking (1) 5MWT (1) a MMAS (1) Motor Assessment Scale (1) Peak VO2 (1) RMA (1) VO2 during the 5-Minute Walk Test (1) mEFAP MM WHS | Cadence (2) Spatial symmetry (1) Step length (1) Stride length (1) Temporal symmetry (1) Consistency of intralimb movements on the impaired limb Number of steps Rivermead Gait Assessment Stance duration and single-support time of both legs Stance time Stride duration and cadence Walking distance | BBS (8) TUG (6) Brunel Balance Assessment (1) PASS (1) ABC Dynamic balance time Dynamic balance trip Functional reach POMA-B SPPB Standing forward reach test Static balance test Sit-to-stand testTrunk impairment scale TWT | FIM (6) BI (5) ADL-IADL (1) FAI (1) MeEAP (1) SAS (1) SIS (1) a | QOL | Death from all causes until the end of the intervention phase (2) Dropouts (2) Lost to study during the intervention phase (2) Acceptability Mood Safety | ||||
Spinal cord injury | GRASSP | LEMS (6) AMI MRC | MAS (2) AS (1) Intrinsic stiffness (1) Reflex stiffness (1) Intrinsic & reflex stiffness SCATS | VAS (1) PGIC | WISCI II (3) WISCI (2) | 10MWT (5) 15MWT (1) Walking speed | 6MWT (5) 2MWT (2) Peak VO2 (1) Walking distance (1) AT FEV1 FVC Max VO2 Maximal voluntary ventilation Maximum heart rate Maximum oxygen consumption during a functional task Maximum oxygen consumption during a nonfunctional task Metabolic equivalent of energy PEF | Ankle kinematic and kinetic assessments Gait characteristics | TUG (1) BBS MFR | FIM-locomotor (2) SCIM III (1) MBI SCIM | |||
Multiple sclerosis | MAS (2) VAS (1) a | VAS (2) a “Bodily pain” from SF-36 (1) Medical Outcomes Study Pain Effects Scale (1) | Fatigue Severity Scale (2) Cognitive and physical fatigue score (1) Modified fatigue impact scale (1), Würzburger Erschöpfungsinventar bei Multipler Sklerose scale (1) | FAC (1) | 10MWT (3) 20MWT (3) T25FW (3) Laboratory measures for walking speed evaluation (1) Walking speed (1) 3MWS | 2MWT (3) 6MWT (3) 3MWT (2) RMI (2) | Cadence (1) Double support time (1) Stride length (1) Step length | BBS (2) TUG (2) Tinetti Test (1) ABC SOT | FIM (2) BI (1) MBI (1) | MSQOL-54 (2) RAND-36 (2) SF-36 (2) | EDSS (2) Treatment acceptance: VAS (1) | ||
Cerebral palsy | Muscle strength | FAQ-WL (1) FAC | 10MWT (3) 3D gait (1) Cadence (1) Free walking speed (1) Step length (1) Step width (1) Stride length (1) Walking speed | 6MWT (2) Peripheral O2 saturation Walking ability | Gait parameters Gait patterns Lower-limb kinematics | Balance Postural and locomotor functions Standing activity Upper-body control | WeeFIM (1) COPM Functional independence Running and climbing activities | GMFM-D (2) GMFM-E (2) | |||||
Parkinson’s disease | 10MWT (3) Walking speed (2) | 6MWT (2) | Cadence (3) Stride length (3) Step length (1) Time (1) | BBS (3) TUG (3) ABC (2) | UPDRS-III (3) | ||||||||
Neurological disease | FM | MRC (1) Dynamometry | MAS (1) | Tinetti test | FIM | Blood pressure Coma Recovery Scale-Revised Heart rate Oxygen saturation |
Body Functions | Activities and Participation | Other Measures | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Motor Control | Muscle Strength | Muscle Tone | Range of Motion | Pain | Upper-Limb Capacity | Activities of Daily Living | Comprehensive Measures | ||||
Control of Voluntary Movement Functions [b760] | Muscle Power Functions [b730] | Muscle Tone Functions [b735] | Mobility of Joint Functions [b710] | Sensation of Pain [b280] | Fine Hand Use [d440], Hand and Arm Use [d445] | Washing Oneself [d510], Toileting [d520], Dressing [d540], Eating [d550] | |||||
Overall | Proximal | Distal | |||||||||
Stroke no specific phase | 1. FMA-UE | 1. FMA-SEC score | 1. FMA-WH score | 1. Grip force, MI, MRC | 1. MAS | - | 1. California functional evaluation, Douleur Neuropathique pain scale, pain scale, VAS | 1. AMAT, ARAT, BBT, CAHAI, NHPT, WMFT | 1. ABILHAND, BI, FIM, MBI, SIS | 1. SF-36, SIS | 1. Dropouts during the intervention period |
2. n = 2305 | 2. n = 369 | 2. n = 443 | 2. n = 826 | 2. n = 485 | 2. n = 261 | 2. n = 1557 | 2. n = 1768 | 2. n = 849 | 2. n = 1619 | ||
3. 0.20 [0.09 0.32] | 3. 2.62 [1.48 3.76] | 3. 1.22 [−0.61 3.05] | 3. 0.46 [0.16 0.77] | 3. −1.03 [−2.06 0.01] | 3. −0.34 [−0.58 −0.09] | 3. 0.109 [−0.066 0.284] | 3. 0.30 [0.14 0.45] | 3. −0.06 [−0.20 0.08] | 3. 0.00 [−0.02 0.02] | ||
4. p = 0.0007 | 4. p < 0.00001 | 4. p = 0.19 | 4. p = 0.0032 | 4. p < 0.00001 | 4. p = 0.01 | 4. p = 0.02 | 4. p = 0.0002 | 4. p = 0.378 | 4. p = 0.93 | ||
5. 37% | 5. 34% | 5. 75% | 5. 76% | 5. 96% | 5. 0% | 5. 56.4% | 5. 53% | 5. 35.6% | 5. 0% | ||
6. Zhang (2022) [22] | 6. Veerbeek (2017) [32] | 6. Veerbeek (2017) [32] | 6. Mehrholz (2018) [29] | 6. Yang (2023) [20] | 6. Saragih (2023) [54] | 6. Chen (2020) [26] | 6. Zhang (2022) [22] | 6. Chen (2020) [26] | 6. Mehrholz (2018) [29] | ||
Stroke < 3 months | 1. FMA-UE | 1. FMA-SEC score | 1. FMA-WH score | 1. MI (Arm subscale), MPS, MRC | 1. AS, MAS | - | - | 1. AMAT, ARAT, BBT, WMFT | 1. ABILHAND, BI, FIM, Frenchay Arm Test, MBI, SIS 2.0, SIS 3.0 (motor function, social participation) | - | - |
2. n = 650 | 2. n = 251 | 2. n = 251 | 2. n = 346 | 2. n = 299 | 2. n = 195 | 2. n = 532 | |||||
3. −0.11 [−2.38 2.16] | 3. 2.81 [1.44 4.17] | 3. 2.53 [0.46 4.60] | 3. 0.21 [−0.23 0.64] | 3. 0.21 [−0.03 0.45] | 3. −0.00 [−0.29 0.29] | 3. 0.40 [0.10 0.70] | |||||
4. p = 0.93 | 4. p < 0.0001 | 4. p = 0.02 | 4. p = 0.35 | 4. p = 0.08 | 4. p = 0.99 | 4. p = 0.0085 | |||||
5. 0.21% | 5. 44% | 5. 85% | 5. 69% | 5. 47% | 5. 40% | 5. 63% | |||||
6. Saragih (2023) [54] | 6. Veerbeek (2017) [32] | 6. Veerbeek (2017) [32] | 6. Veerbeek (2017) [32] | 6. Veerbeek (2017) [32] | 6. Veerbeek (2017) [32] | 6. Mehrholz (2018) [29] | |||||
Stroke > 3 months | 1. FMA-UE | 1. FMA-SEC score | 1. FMA-WH score | 1. MI (Arm subscale), MPS, MRC | 1. MAS | - | - | 1. AMAT, ARAT, BBT, WMFT | 1. ABILHAND, BI, FIM, Frenchay Arm Test, MBI, SIS 2.0, SIS 3.0 (motor function, social participation) | - | - |
2. n = 901 | 2. n = 118 | 2. n = 192 | 2. n = 148 | 2. n = 276 | 2. n = 487 | 2. n = 425 | |||||
3. 0.68 [0.15 1.21] | 3. 2.17 [0.09 4.25] | 3. −0.19 [−1.65 1.27] | 3. −0.04 [−0.37 0.29] | 3. −1.89 [−3.33 −0.44] | 3. 0.05 [−0.13 0.23] | 3. 0.19 [−0.13 0.50] | |||||
4. p = 0.01 | 4. p = 0.04 | 4. p = 0.80 | 4. p = 0.82 | 4. p = 0.01 | 4. p = 0.58 | 4. p = 0.24 | |||||
5. 90% | 5. 23% | 5. 27% | 5. 0% | 5. 94% | 5. 0% | 5. 54% | |||||
6. Yang (2023) [20] | 6. Veerbeek (2017) [32] | 6. Veerbeek (2017) [32] | 6. Veerbeek (2017) [32] | 6. Yang (2023) [20] | 6. Veerbeek (2017) [32] | 6. Mehrholz (2018) [29] | |||||
Stroke < 6 months | 1. FMA-UE | - | - | 1. Grip strength, maximum resistive force with WAM control program, MI, MMT, motor power range, MPS, MRC | 1. MAS | 1. pROM with the assistance of WAM or therapist for the elbow, total pROM | 1. CMSA Pain Inventory Scale range 1–7, Pain Scale of FM, VAS | - | 1. FIM | 1. SIS | - |
2. n = 518 | 2. n = unknown | 2. n = 135 | 2. n = 53 | 2. n = 19 | 2. n = 237 | 2. n = 149 | |||||
3. 0.17 [−0.08 0.42] | 3. 0.0 [−0.9 1.0] | 3. −0.04 [−0.38 0.30] | 3. 0.2 [−0.4 0.7] | 3. 0.3 [−0.6 1.2] | 3. 0.26 [0.05 0.47] | 3. 0.03 [−0.30 0.36] | |||||
4. p = 0.177 | 4. p = 0.967 | 4. p = 0.81 | 4. p = 0.491 | 4. p = 0.565 | 4. p = 0.7 | 4. p = 0.86 | |||||
5. 53.2% | 5. 27.02% | 5. 0% | 5. -% | 5. -% | 5. 81.3% | 5. 0% | |||||
6. Wu (2021) [25] | 6. Ferreira (2018) [28] | 6. Chien (2020) [27] | 6. Ferreira (2018) [28] | 6. Ferreira (2018) [28] | 6. Bertani (2017) [30] | 6. Chien (2020) [27] | |||||
Stroke > 6 months | 1. FMA-UE | - | - | 1. Grip strength, maximum resistive force with WAM control program, MI, MMT, motor power range, MPS, MRC | 1. MAS | 1. pROM with the assistance of WAM or therapist for the elbow, total pROM | 1. CMSA Pain Inventory Scale range 1–7, Pain Scale of FM, VAS | - | 1. FIM | - | - |
2. n = 826 | 2. n = unknown | 2. n = unknown | 2. n = unknown | 2. n = unknown | 2. n = 339 | ||||||
3. 0.26 1 [0.12 0.41] | 3. 1.2 [−0.0 2.3] | 3. −0.8 [−2.5 0.9] | 3. −0.4 [−0.9 0.2] | 3. −0.2 [−0.6 0.2] | 3. 0.26 [0.05 0.47] | ||||||
4. p < 0.001 | 4. p = 0.051 | 4. p = 0.36 | 4. p = 0.212 | 4. p = 0.264 | 4. p = 0.01 | ||||||
5. 2.3% | 5. 16.51% | 5. 0% | 5. 0% | 5. 0% | 5. 0% | ||||||
6. Wu (2021) [25] | 6. Ferreira (2018) [28] | 6. Ferreira (2018) [28] | 6. Ferreira (2018) [28] | 6. Ferreira (2018) [28] | 6. Bertani (2017) [30] | ||||||
Neurological disease | - | - | - | - | - | - | - | - | - | 1. Life Habits, SIS | - |
2. n = 492 | |||||||||||
3. −0.60 [−1.10 −0.10] | |||||||||||
4. p = 0.022 | |||||||||||
5. 6.99% | |||||||||||
6. Ferreira (2021) [75] |
Body Functions | Activities and Participation | Other Measures | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Motor Control | Muscle Strength | Muscle Tone | Pain | Fatigue | Walking Independence | Walking Speed | Walking Capacity | Gait Index | Balance Capacity | Activities of Daily Living | Comprehensive Measures | ||
Control of Voluntary Movement Functions [b760] | Muscle Power Functions [b730] | Muscle Tone Functions [b735] | Sensation of Pain [b280] | Fatiguability [b4552] | Walking [d450] | Changing and Maintaining Body Position [d410–d429] | Washing Oneself [d510], Toileting [d520], Dressing [d540], Eating [d550] | ||||||
Stroke no specific phase | 1. FMA-B | - | - | - | - | 1. FAC, FIM, RMI | 1. Walking speed | 1. 6MWT | 1. Cadence | 1. BBS | - | - | 1. Death |
2. n = 180 | 2. n = 1567 | 2. n = 1600 | 2. n = 983 | 2. n = 349 | 2. n = 929 | 2. n = 2440 | |||||||
3. 3.57 [2.81 4.34] | 3. 2.14 [1.57 2.92] | 3. 0.06 [0.02 0.10] | 3. 10.86 [−5.72 27.44] | 3. 1.44 [−2.34 5.22] | 3. 4.64 [3.22 6.06] | 3. 0.00 [−0.01 0.01] | |||||||
4. p < 0.00001 | 4. p < 0.00001 | 4. p = 0.004 | 4. p = 0.20 | 4. p = 0.46 | 4. p < 0.00001 | 4. p = 0.82 | |||||||
5. 0% | 5. 6% | 5. 60% | 5. 42% | 5. 92% | 5. >50% | 5. 0% | |||||||
6. Zheng (2019) [47] | 6. Mehrholz (2020) [44] | 6. Mehrholz (2020) [44] | 6. Mehrholz (2020) [44] | 6. Nedergard (2021) [40] | 6. Zheng (2019) [47] | 6. Mehrholz (2020) [44] | |||||||
Stroke < 3 months | - | - | - | - | - | 1. FAC, FIM, RMI | 1. 10MWT | 1. 6MWT | 1. Cadence | - | - | - | - |
2. n = 1243 | 2. n = 142 | 2. n = 88 | 2. n = 93 | ||||||||||
3. 1.96 [1.47 2.62] | 3. 0.10 [−0.00 0.21] | 3. 35.46 [−12.98 83.91] | 3. −6.47 [−10.18 −2.76] | ||||||||||
4. p < 0.00001 | 4. p =0.058 | 4. p = 0.1514 | 4. p = 0.0006 | ||||||||||
5. 0% | 5. 0.01% | 5. 0.1% | 5. 63% | ||||||||||
6. Mehrholz (2020) [44] | 6. Ada (2010) [53] | 6. Ada (2010) [53] | 6. Zhu (2023) [37] | ||||||||||
Stroke > 3 months | - | - | - | - | - | 1. FAC, FIM, RMI | - | - | - | - | - | - | - |
2. n = 461 | |||||||||||||
3. 1.20 [0.40 3.65] | |||||||||||||
4. p = 0.74 | |||||||||||||
5. 29% | |||||||||||||
6. Mehrholz (2020) [44] | |||||||||||||
Stroke < 6 months | 1. CMSR, FMA-LE, MI | - | - | - | - | - | 1. 10MWT, 2MWT, 5MWT | 1. 2MWT, 6MWT, 5-Minute Walking Test, peak VO2 | - | 1. BBS, Brunel Balance Assessment, PASS, TUG | 1. ADL-IADL, FAI, FIM, SAS, SIS | - | - |
2. n = 389 | 2. n = 487 | 2. n = 471 | 2. n = 223 | 2. n = 586 | |||||||||
3. 0.15 [−0.09 0.40] | 3. 0.01 [−0.08 0.09] | 3. −0.04 [−0.36 0.28] | 3. 0.20 [−0.40 0.80] | 3. 0.14 [−0.13 0.42] | |||||||||
4. p = 0.22 | 4. p = 0.89 | 4. p = 0.82 | 4. p = 0.51 | 4. p = 0.30 | |||||||||
5. 27% | 5. 66% | 5. 66% | 5. 79% | 5. 60% | |||||||||
6. Hsu (2020) [42] | 6. Hsu (2020) [42] | 6. Hsu (2020) [42] | 6. Hsu (2020) [42] | 6. Hsu (2020) [42] | |||||||||
Stroke > 6 months | - | - | - | - | - | - | 1. 10MWT, 5MWT, 6MWT, TUG | - | 1. Cadence | 1. BBS | - | - | - |
2. n = 130 | 2. n = 37 | 2. n = 129 | |||||||||||
3. −0.05 [−0.44 0.34] | 3. 2.97 [1.35 4.59] | 3. 1.61 [−0.02 3.35] | |||||||||||
4. p > 0.05 | 4. p = 0.0004 | 4. p = 0.05 | |||||||||||
5. -% | 5. 0% | 5. 0% | |||||||||||
6. Bruni (2018) [48] | 6. Zhu (2023) [37] | 6. Wang (2021) [41] | |||||||||||
Spinal cord injury | - | 1. LEMS | 1. MAS | 1. VAS | - | 1. WISCI, WISCI-II | 1. 10MWT | 1. 6MWT | - | 1. TUG | 1. FIM-Locomotion, WISCI-II | - | - |
2. n = 408 | 2. n = 110 | 2. n = 93 | 2. n = 122 | 2. n = 357 | 2. n = 236 | 2. n = 120 | 2. n = 250 | ||||||
3. 0.81 [0.14 1.48] | 3. 0.51 [−0.00 1.02] | 3. −0.890 [−3.086 1.306] | 3. −3.73 [−4.92 −2.53] | 3. 0.02 [−0.02 0.06] | 3. 16.05 [−15.73 47.83] | 3. 9.25 [2.76 15.73] | 3. 0.40 [0.02. 0.78] | ||||||
4. p < 0.0000 | 4. p = 0.05 | 4. p = 0.427 | 4. p < 0.00001 | 4. p = 0.25 | 4. p = 0.32 | 4. p = 0.005 | 4. p = 0.04 | ||||||
5. 84.5% | 5. 62% | 5. 75% | 5. 38% | 5. 40% | 5. 69% | 5. 74% | 5. 47% | ||||||
6. Wan (2024) [57] | 6. Li (2023) [58] | 6. Fang (2020) [59] | 6. Cheung (2017) [63] | 6. Nam (2017) [60] | 6. Nam (2017) [60] | 6. Nam (2017) a [60] | 6. Nam (2017) [60] | ||||||
Multiple sclerosis | - | - | 1. MAS, VAS | 1. Bodily pain on SF-36, VAS | 1. Fatigue severity scale, Modified fatigue imapact scale, Würzburger Erschöpfungsinventar bei Multipler Sklerose scale | 1. FAC, TUG | 1. 10MWT, 20MWT, T25FW, gait speed | 1. 6MWT | 1. Stride strength | 1. BBS, Tinetti. test | 1. FIM, MBI | 1. MSQOL-54,36-item short-form health survey, RAND-36 | 1. EDSS |
2. n = 92 | 2. n = 165 | 2. n = 307 | 2. n = 203 | 2. n = 342 | 2. n = 414 | 2. n = 67 | 2. n = 325 | 2. n = 139 | 2. n = 234 | 2. n = 144 | |||
3. 0.70 [0.08 1.33] | 3. 0.10 [−0.21 0.40] | 3. −0.27 [−0.49 −0.04] | 3. 0.15 [−0.37 0.67] | 3. 0.38 [0.15 0.60] | 3. 0.26 [0.04 0.48] | 3. 0.30 [−0.18 0.79] | 3. 0.26 [0.04 0.48] | 3. −0.02 [−0.36 0.32] | 3. 0.25 [−0.01 0.51] | 3. −0.25 [−0.58 0.08] | |||
4. p = 0.03 | 4. p = 0.53 | 4. p = 0.02 | 4. p = 0.58 | 4. p = 0.0010 | 4. p = 0.02 | 4. p = 0.22 | 4. p = 0.02 | 4. p = 0.91 | 4. p = 0.06 | 4. p = 0.14 | |||
5. 53% | 5. 0% | 5. 0% | 5. 68% | 5. 6% | 5. 18% | 5. 0% | 5. 0% | 5. 0% | 5. 0% | 5. 0% | |||
6. Yeh (2020) [66] | 6. Yeh (2020) [66] | 6. Yang (2023) [64] | 6. Yeh (2020) [66] | 6. Yang (2023) [64] | 6. Yang (2023) [64] | 6. Yeh (2020) [66] | 6. Yang (2023) [64] | 6. Yang (2023) [64] | 6. Yang (2023) [64] | 6. Yang (2023) [64] | |||
Cerebral palsy | - | - | - | - | - | - | 1. 10MWT | 1. 6MWT | 1. Step length | - | 1. FAQ-WL, WeeFIM | - | 1. GMFM-total |
2. n = 123 | 2. n =149 | 2. n = 81 | 2. n = 42 | 2. n = 154 | |||||||||
3. −0.1 [−0.47 0.29] | 3. 0.35 [−0.51 1.2] | 3. 0.1 [−0.41 0.6] | 3. 0.14 [−0.46 0.75] | 3. 0.18 [−0.2 0.56] | |||||||||
4. p = 0.63 | 4. p = 0.43 | 4. p = 0.71 | 4. p = 0.64 | 4. p = 0.36 | |||||||||
5. 0% | 5. 0% | 5. 0% | 5. 0% | 5. 0% | |||||||||
6. Cortes-Perez (2022) [69] | 6. Cortes-Perez (2022) [69] | 6. Cortes-Perez (2022) [69] | 6. Cortes-Perez (2022) [69] | 6. Cortes-Perez (2022) [69] | |||||||||
Parkinson’s disease | - | - | - | - | - | - | 1. 10MWT | 1. 6MWT | 1. Cadence | 1. TUG | - | - | 1. UPDRS-III |
2. n = 309 | 2. n = 252 | 2. n = 176 | 2. n = 404 | 2. n = 474 | |||||||||
3. 0.06 [0.03 0.10] | 3. 42.83 [22.05 63.62] | 3. 4.52 [0.94 8.10] | 3. −0.56 [−1.12 0.00] | 3. −2.16 [−2.48 −1.83] | |||||||||
4. p = 0.0009 | 4. p < 0.00001 | 4. p = 0.01 | 4. p = 0.05 | 4. p < 0.00001 | |||||||||
5. 5% | 5. 97% | 5. 12% | 5. 33% | 5. 27% | |||||||||
6. Jiang (2024) [72] | 6. Xue (2023) [73] | 6. Jiang (2024) [72] | 6. Jiang (2024) [72] | 6. Jiang (2024) [72] | |||||||||
Neurological disease | - | - | 1. MAS | - | - | - | - | - | - | - | - | - | - |
2. n = 140 | |||||||||||||
3. −0.29 [−0.49 −0.08] | |||||||||||||
4. p = 0.45 | |||||||||||||
5. 0% | |||||||||||||
6. Garlet (2024) [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiyono, K.; Tanabe, S.; Hirano, S.; Ii, T.; Nakagawa, Y.; Tan, K.; Saitoh, E.; Otaka, Y. Effectiveness of Robotic Devices for Medical Rehabilitation: An Umbrella Review. J. Clin. Med. 2024, 13, 6616. https://doi.org/10.3390/jcm13216616
Kiyono K, Tanabe S, Hirano S, Ii T, Nakagawa Y, Tan K, Saitoh E, Otaka Y. Effectiveness of Robotic Devices for Medical Rehabilitation: An Umbrella Review. Journal of Clinical Medicine. 2024; 13(21):6616. https://doi.org/10.3390/jcm13216616
Chicago/Turabian StyleKiyono, Kei, Shigeo Tanabe, Satoshi Hirano, Takuma Ii, Yuki Nakagawa, Koki Tan, Eiichi Saitoh, and Yohei Otaka. 2024. "Effectiveness of Robotic Devices for Medical Rehabilitation: An Umbrella Review" Journal of Clinical Medicine 13, no. 21: 6616. https://doi.org/10.3390/jcm13216616
APA StyleKiyono, K., Tanabe, S., Hirano, S., Ii, T., Nakagawa, Y., Tan, K., Saitoh, E., & Otaka, Y. (2024). Effectiveness of Robotic Devices for Medical Rehabilitation: An Umbrella Review. Journal of Clinical Medicine, 13(21), 6616. https://doi.org/10.3390/jcm13216616