Combination Prostatic Artery Embolization Prior to Water-Jet Ablation (Aquablation) for Benign Prostatic Hypertrophy: A Propensity Score Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Experimental Design
2.2. Patient Selection
2.3. Procedure
3. Results
Baseline Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gilling, P.J.; Barber, N.; Bidair, M.; Anderson, P.; Sutton, M.; Aho, T.; Kramolowsky, E.; Thomas, A.; Kaufman, R.P.; Badlani, G.; et al. Five-year outcomes for Aquablation therapy compared to TURP: Results from a double-blind, randomized trial in men with LUTS due to BPH. Can. J. Urol. 2022, 29, 10960–10968. [Google Scholar]
- Taktak, S.; Jones, P.; Haq, A.; Rai, B.P.; Somani, B.K. Aquablation: A novel and minimally invasive surgery for benign prostate enlargement. Ther. Adv. Urol. 2018, 10, 183–188. [Google Scholar] [CrossRef]
- Desai, M.; Bidair, M.; Bhojani, N.; Trainer, A.; Arther, A.; Kramolowsky, E.; Doumanian, L.; Elterman, D.; Kaufman, R.P.; Lingeman, J.; et al. WATER II (80–150 mL) procedural outcomes. BJU Int. 2019, 123, 106–112. [Google Scholar] [CrossRef]
- Gilling, P.; Barber, N.; Bidair, M.; Anderson, P.; Sutton, M.; Aho, T.; Kramolowsky, E.; Thomas, A.; Cowan, B.; Kaufman, R.P., Jr.; et al. WATER: A Double-Blind, Randomized, Controlled Trial of Aquablation(®) vs Transurethral Resection of the Prostate in Benign Prostatic Hyperplasia. J. Urol. 2018, 199, 1252–1261. [Google Scholar] [CrossRef]
- Menon, A.; Gilling, P.J. Aquablation and question of hemostasis. Can. J. Urol. 2021, 28, 10691. [Google Scholar]
- Kably, I.; Acharya, V.; Richardson, A.J.; Bhatia, S. Prostatic Artery Embolization in Refractory Hematuria of Prostatic Origin. Tech. Vasc. Interv. Radiol. 2020, 23, 100694. [Google Scholar] [CrossRef]
- Picel, A.C.; Hsieh, T.C.; Shapiro, R.M.; Vezeridis, A.M.; Isaacson, A.J. Prostatic Artery Embolization for Benign Prostatic Hyperplasia: Patient Evaluation, Anatomy, and Technique for Successful Treatment. Radiographics 2019, 39, 1526–1548. [Google Scholar] [CrossRef]
- Pisco, J.; Bilhim, T.; Ribeiro, M.; Fernandes, L.; Costa, N.; Oliveira, A. Short-, medium-, and long-term outcome of prostate artery embolization for patients with benign prostatic hyperplasia: 1000 patients. J. Vasc. Interv. Radiol. 2017, 28, S3. [Google Scholar] [CrossRef]
- Sapoval, M.; Thiounn, N.; Descazeaud, A.; Déan, C.; Ruffion, A.; Pagnoux, G.; Duarte, R.C.; Robert, G.; Petitpierre, F.; Karsenty, G. Prostatic artery embolisation versus medical treatment in patients with benign prostatic hyperplasia (PARTEM): A randomised, multicentre, open-label, phase 3, superiority trial. Lancet Reg. Health Eur. 2023, 31, 100672. [Google Scholar] [CrossRef]
- Abt, D.; Hechelhammer, L.; Müllhaupt, G.; Markart, S.; Güsewell, S.; Kessler, T.M.; Schmid, H.-P.; Engeler, D.S.; Mordasini, L. Comparison of prostatic artery embolisation (PAE) versus transurethral resection of the prostate (TURP) for benign prostatic hyperplasia: Randomised, open label, non-inferiority trial. BMJ 2018, 361, k2338. [Google Scholar] [CrossRef]
- Abt, D.; Müllhaupt, G.; Hechelhammer, L.; Markart, S.; Güsewell, S.; Schmid, H.-P.; Mordasini, L.; Engeler, D.S. Prostatic Artery Embolisation Versus Transurethral Resection of the Prostate for Benign Prostatic Hyperplasia: 2-yr Outcomes of a Randomised, Open-label, Single-centre Trial. Eur. Urol. 2021, 80, 34–42. [Google Scholar] [CrossRef]
- Pisco, J.M.; Bilhim, T.; Costa, N.V.; Torres, D.; Pisco, J.; Pinheiro, L.C.; Oliveira, A.G. Randomised Clinical Trial of Prostatic Artery Embolisation Versus a Sham Procedure for Benign Prostatic Hyperplasia. Eur. Urol. 2020, 77, 354–362. [Google Scholar] [CrossRef]
- Insausti, I.; de Ocáriz, A.S.; Galbete, A.; Capdevila, F.; Solchaga, S.; Giral, P.; Bilhim, T.; Isaacson, A.; Urtasun, F.; Napal, S. Randomized Comparison of Prostatic Artery Embolization versus Transurethral Resection of the Prostate for Treatment of Benign Prostatic Hyperplasia. J. Vasc. Interv. Radiol. 2020, 31, 882–890. [Google Scholar] [CrossRef]
- Tanneru, K.; Jazayeri, S.B.; Alam, M.U.; Kumar, J.; Bazargani, S.; Kuntz, G.; Ganapathi, H.P.; Bandyk, M.; Marino, R.; Koochekpour, S. An Indirect Comparison of Newer Minimally Invasive Treatments for Benign Prostatic Hyperplasia: A Network Meta-Analysis Model. J. Endourol. 2021, 35, 409–416. [Google Scholar] [CrossRef]
- Sajan, A.; Mehta, T.; Desai, P.; Isaacson, A.; Bagla, S. Minimally Invasive Treatments for Benign Prostatic Hyperplasia: Systematic Review and Network Meta-Analysis. J. Vasc. Interv. Radiol. 2022, 33, 359–367.e8. [Google Scholar] [CrossRef]
- Shin, B.N.H.; Qu, L.; Rhee, H.; Chung, E. Systematic review and network meta-analysis of re-intervention rates of new surgical interventions for benign prostatic hyperplasia. BJU Int. 2024, 134, 155–165. [Google Scholar] [CrossRef]
- Baerlocher, M.O.; Nikolic, B.; Sze, D.Y. Adverse Event Classification: Clarification and Validation of the Society of Interventional Radiology Specialty-Specific System. J. Vasc. Interv. Radiol. 2023, 34, 1–3. [Google Scholar] [CrossRef]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibañes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo classification of surgical complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Barber, N.; Bidair, M.; Gilling, P.; Anderson, P.; Zorn, K.C.; Badlani, G.; Humphreys, M.; Kaplan, S.; Kaufman, R.; et al. WATER versus WATER II 2-Year Update: Comparing Aquablation Therapy for Benign Prostatic Hyperplasia in 30–80-cm3 and 80–150-cm3 Prostates. Eur. Urol. Open Sci. 2021, 25, 21–28. [Google Scholar] [CrossRef]
- Assad, A.; Nguyen, D.D.; Barber, N.; Bidair, M.; Gilling, P.; Anderson, P.; Badlani, G.; Humphreys, M.; Kaplan, S.; Kaufman, R.; et al. WATER vs WATER II 3-Year Update: Comparing Aquablation Therapy for Benign Prostatic Hyperplasia in 30–80 cc and 80–150 cc Prostates. Urology 2022, 165, 268–274. [Google Scholar] [CrossRef]
- Elterman, D.; Bach, T.; Rijo, E.; Misrai, V.; Anderson, P.; Zorn, K.C.; Bhojani, N.; El Hajj, A.; Chughtai, B.; Desai, M. Transfusion rates after 800 Aquablation procedures using various haemostasis methods. BJU Int. 2020, 125, 568–572. [Google Scholar] [CrossRef]
- Wang, M.; Guo, L.; Duan, F.; Yuan, K.; Zhang, G.; Li, K.; Yan, J.; Wang, Y.; Kang, H. Prostatic arterial embolization for the treatment of lower urinary tract symptoms caused by benign prostatic hyperplasia: A comparative study of medium- and large-volume prostates. BJU Int. 2016, 117, 155–164. [Google Scholar] [CrossRef]
- Jaganjac, S.; Schefe, L.; Avdagić, E.; Spahović, H.; Hiros, M. Preoperative kidney tumor embolization as procedure for therapy of advanced kidney cancer. Acta Inf. Med. 2014, 22, 302–305. [Google Scholar] [CrossRef]
- Sare, A.; Kothari, P.; Cieslak, J.A., 3rd; Gantz, O.; Aly, S.; Kumar, A.; Patel, N.; Shukla, P.A. Perioperative Blood Loss after Preoperative Prostatic Artery Embolization in Patients Undergoing Simple Prostatectomy: A Propensity Score–Matched Study. J. Vasc. Interv. Radiol. 2021, 32, 1113–1118. [Google Scholar] [CrossRef]
- Rilling, W.S.; Chen, G.W. Preoperative embolization. Semin. Interv. Radiol. 2004, 21, 3–9. [Google Scholar] [CrossRef]
- Moreira, A.M.; de Assis, A.M.; Carnevale, F.C.; Antunes, A.A.; Srougi, M.; Cerri, G.G. A Review of Adverse Events Related to Prostatic Artery Embolization for Treatment of Bladder Outlet Obstruction Due to BPH. Cardiovasc. Interv. Radiol. 2017, 40, 1490–1500. [Google Scholar] [CrossRef]
- Fassia, M.; Balasubramanian, A.; Basourakos, S.; Fassia, M.; Balasubramanian, A.; Basourakos, S.; Lewicki, P.; Fainberg, J.; Currie, B.; Te, A.; et al. Abstract No. 509 Prostate artery embolization is associated with a reduced rate of post-Aquablation bleeding. J. Vasc. Interv. Radiol. 2022, 33, S187–S188. [Google Scholar] [CrossRef]
- Sandhu, J.S.; Bixler, B.R.; Dahm, P.; Goueli, R.; Kirkby, E.; Stoffel, J.T.; Wilt, T.J. Management of Lower Urinary Tract Symptoms Attributed to Benign Prostatic Hyperplasia (BPH): AUA Guideline Amendment 2023. J. Urol. 2024, 211, 11–19. [Google Scholar] [CrossRef]
- Bilhim, T.; McWilliams, J.P.; Bagla, S. Updated American Urological Association Guidelines for the Management of Benign Prostatic Hyperplasia: Prostatic Artery Embolization Made it into the Guidelines! CardioVascular Interv. Radiol. 2024, 47, 150–153. [Google Scholar] [CrossRef]
- Babore, Y.; Moorthy, G.; Li, X.; Vance, A.; Clark, T. Abstract No. 98 Outcomes of Prostate Artery Embolization Following Failure of Prostatic Urethral Lift (UroLift): A Case-Control Study. J. Vasc. Interv. Radiol. 2024, 35, S44. [Google Scholar] [CrossRef]
- Goyal, P.; Varadhan, A.K.; Jenkins, K.; Hohlastos, E.; Salem, R.; Mouli, S.K. Prostatic Artery Embolization in Patients with Refractory Lower Urinary Tract Symptoms after a Prior Minimally Invasive Surgical Treatment. J. Vasc. Interv. Radiol. 2024, 35, 744–750. [Google Scholar] [CrossRef] [PubMed]
Before Propensity Score Matching | |||
---|---|---|---|
Aqua | PAE + Aqua | ||
(n = 56) | (n = 89) | p Value | |
Age, mean (SD) | 62.2 (8.6) | 69.6 (8.9) | <0.001 |
PRE-TREATMENT VARIABLES | |||
PSA, mean (SD) | 3.1 (5.3) | 4.2 (3.1) | 0.292 |
Qmax (mL), mean (SD) | 10.1 (5.3) | 9.5 (6.3) | 0.624 |
PVR (mL), mean (SD) | 113.2 (111.2) | 140.7 (125.5) | 0.241 |
IPSS, mean (SD) | 18.1 (7.4) | 16.0 (8.8) | 0.247 |
QOL, mean (SD) | 3.6 (1.4) | 3.8 (4.1) | 0.802 |
IIEF, mean (SD) | 16.1 (6.9) | 15.9 (6.8) | 0.901 |
Urocuff Peak Flow, mean (SD) | 10.6 (8.7) | 9.5 (4.6) | 0.549 |
Urocuff Detrusor Pressure, mean (SD) | 120.4 (46.9) | 142.5 (50.8) | 0.102 |
Prostate Gland Size (mL), mean (SD) | 52.6 (24.8) | 79.0 (27.3) | <0.001 |
INTRA-/PERI-TREATMENT VARIABLES | |||
Number of Passes Required for Treatment, mean (SD) | 1.8 (0.5) | 2.0 (0.2) | <0.001 |
Case Length (minutes), mean (SD) | 58.7 (22.7) | 57.4 (16.7) | 0.722 |
Hospital Length of Stay (hours), mean (SD) | 35.2 (24.1) | 18.3 (19.1) | <0.001 |
After Propensity Score Matching | |||
---|---|---|---|
Aqua | PAE + Aqua | ||
(n = 56) | (n = 89) | p Value | |
Age, mean (SD) | 62.2 (8.6) | 60.5 (109.6) | 0.912 |
PRE-TREATMENT VARIABLES | |||
PSA, mean (SD) | 3.2 (5.5) | 3.6 (13.8) | 0.877 |
Qmax (mL), mean (SD) | 10.1 (5.4) | 13.4 (33.4) | 0.519 |
PVR (mL), mean (SD) | 116.8 (112.7) | 144.5 (339.3) | 0.613 |
IPSS, mean (SD) | 18.00 (7.5) | 14.6 (24.7) | 0.446 |
QOL, mean (SD) | 3.6 (1.4) | 3.2 (5.1) | 0.704 |
IIEF, mean (SD) | 15.8 (6.8) | 19.7 (47.7) | 0.685 |
Urocuff Peak Flow, mean (SD) | 10.7 (8.8) | 14.7 (41.1) | 0.631 |
Urocuff Detrusor Pressure, mean (SD) | 118.1 (46.4) | 200.0 (498.8) | 0.429 |
Prostate Gland Size (mL), mean (SD) | 52.3 (24.7) | 55.6 (96.7) | 0.803 |
INTRA-/PERI-TREATMENT VARIABLES | |||
Number of Passes Required for Treatment, mean (SD) | 1.8 (0.5) | 2.1 (4.2) | 0.631 |
Case Length (minutes), mean (SD) | 58.2 (22.7) | 53.9 (109.6) | 0.789 |
Hospital Length of Stay (hours), mean (SD) | 34.4 (23.5) | 24.7 (75.3) | 0.347 |
After Propensity Score Matching | ||
---|---|---|
Odds Ratio * | p Value | |
Discharged with a Foley catheter | 0.3 | 0.004 |
Continuous Bladder Irrigation Required > 2 h | 7.6 | <0.001 |
Hemostatic Measures Required | 14.7 | <0.001 |
Hematuria | 3.0 | 0.013 |
Urinary Retention | 17.1 | 0.021 |
Dysuria | 2.8 | 0.227 |
Bladder Irrigation Required | 2.7 | 0.146 |
Required reoperation within 30 days | 1.8 | 0.361 |
Required reoperation after 30 days | 13.0 | 0.003 |
Required Foley catheter for greater than 30 days | 8.7 | 0.233 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagla, S.; Singh, I.; Sajan, A.; Sare, A.; Pavidapha, A.; Mehta, T.; Klein, J.; Marhamati, S.; Lerner, L. Combination Prostatic Artery Embolization Prior to Water-Jet Ablation (Aquablation) for Benign Prostatic Hypertrophy: A Propensity Score Analysis. J. Clin. Med. 2024, 13, 6930. https://doi.org/10.3390/jcm13226930
Bagla S, Singh I, Sajan A, Sare A, Pavidapha A, Mehta T, Klein J, Marhamati S, Lerner L. Combination Prostatic Artery Embolization Prior to Water-Jet Ablation (Aquablation) for Benign Prostatic Hypertrophy: A Propensity Score Analysis. Journal of Clinical Medicine. 2024; 13(22):6930. https://doi.org/10.3390/jcm13226930
Chicago/Turabian StyleBagla, Sandeep, Inderjit Singh, Abin Sajan, Antony Sare, Alex Pavidapha, Tej Mehta, John Klein, Shawn Marhamati, and Lori Lerner. 2024. "Combination Prostatic Artery Embolization Prior to Water-Jet Ablation (Aquablation) for Benign Prostatic Hypertrophy: A Propensity Score Analysis" Journal of Clinical Medicine 13, no. 22: 6930. https://doi.org/10.3390/jcm13226930
APA StyleBagla, S., Singh, I., Sajan, A., Sare, A., Pavidapha, A., Mehta, T., Klein, J., Marhamati, S., & Lerner, L. (2024). Combination Prostatic Artery Embolization Prior to Water-Jet Ablation (Aquablation) for Benign Prostatic Hypertrophy: A Propensity Score Analysis. Journal of Clinical Medicine, 13(22), 6930. https://doi.org/10.3390/jcm13226930