The Prognostic Role of RDW in Hospitalized Heart Failure Patients with and Without Chronic Kidney Disease
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Patients and Setting
2.3. Endpoints
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Triposkiadis, F.; Xanthopoulos, A.; Parissis, J.; Butler, J.; Farmakis, D. Pathogenesis of chronic heart failure: Cardiovascular aging, risk factors, comorbidities, and disease modifiers. Heart Fail. Rev. 2022, 27, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulos, A.; Papamichail, A.; Briasoulis, A.; Loritis, K.; Bourazana, A.; Magouliotis, D.E.; Sarafidis, P.; Stefanidis, I.; Skoularigis, J.; Triposkiadis, F. Heart Failure in Patients with Chronic Kidney Disease. J. Clin. Med. 2023, 12, 6105. [Google Scholar] [CrossRef] [PubMed]
- Beldhuis, I.E.; Lam, C.S.P.; Testani, J.M.; Voors, A.A.; Van Spall, H.G.C.; Ter Maaten, J.M.; Damman, K. Evidence-Based Medical Therapy in Patients With Heart Failure With Reduced Ejection Fraction and Chronic Kidney Disease. Circulation 2022, 145, 693–712. [Google Scholar] [CrossRef] [PubMed]
- Bessman, J.D.; Gilmer, P.R., Jr.; Gardner, F.H. Improved classification of anemias by MCV and RDW. Am. J. Clin. Pathol. 1983, 80, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Fava, C.; Cattazzo, F.; Hu, Z.D.; Lippi, G.; Montagnana, M. The role of red blood cell distribution width (RDW) in cardiovascular risk assessment: Useful or hype? Ann. Transl. Med. 2019, 7, 581. [Google Scholar] [CrossRef]
- Cole, J.; Ertoy, D.; Lin, H.; Sutliff, R.L.; Ezan, E.; Guyene, T.T.; Capecchi, M.; Corvol, P.; Bernstein, K.E. Lack of angiotensin II-facilitated erythropoiesis causes anemia in angiotensin-converting enzyme-deficient mice. J. Clin. Investig. 2000, 106, 1391–1398. [Google Scholar] [CrossRef]
- Felker, G.M.; Allen, L.A.; Pocock, S.J.; Shaw, L.K.; McMurray, J.J.; Pfeffer, M.A.; Swedberg, K.; Wang, D.; Yusuf, S.; Michelson, E.L.; et al. Red cell distribution width as a novel prognostic marker in heart failure: Data from the CHARM Program and the Duke Databank. J. Am. Coll. Cardiol. 2007, 50, 40–47. [Google Scholar] [CrossRef]
- Cauthen, C.A.; Tong, W.; Jain, A.; Tang, W.H. Progressive rise in red cell distribution width is associated with disease progression in ambulatory patients with chronic heart failure. J. Card. Fail. 2012, 18, 146–152. [Google Scholar] [CrossRef]
- Huang, Y.L.; Hu, Z.D.; Liu, S.J.; Sun, Y.; Qin, Q.; Qin, B.D.; Zhang, W.W.; Zhang, J.R.; Zhong, R.Q.; Deng, A.M. Prognostic value of red blood cell distribution width for patients with heart failure: A systematic review and meta-analysis of cohort studies. PLoS ONE 2014, 9, e104861. [Google Scholar] [CrossRef]
- Shao, Q.; Li, L.; Li, G.; Liu, T. Prognostic value of red blood cell distribution width in heart failure patients: A meta-analysis. Int. J. Cardiol. 2015, 179, 495–499. [Google Scholar] [CrossRef]
- Ji, X.; Ke, W. Red blood cell distribution width and all-cause mortality in congestive heart failure patients: A retrospective cohort study based on the Mimic-III database. Front. Cardiovasc. Med. 2023, 10, 1126718. [Google Scholar] [CrossRef]
- Gu, F.; Wu, H.; Jin, X.; Kong, C.; Zhao, W. Association of red cell distribution width with the risk of 3-month readmission in patients with heart failure: A retrospective cohort study. Front. Cardiovasc. Med. 2023, 10, 1123905. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulos, A.; Giamouzis, G.; Melidonis, A.; Kitai, T.; Paraskevopoulou, E.; Paraskevopoulou, P.; Patsilinakos, S.; Triposkiadis, F.; Skoularigis, J. Red blood cell distribution width as a prognostic marker in patients with heart failure and diabetes mellitus. Cardiovasc. Diabetol. 2017, 16, 81. [Google Scholar] [CrossRef]
- Imai, R.; Uemura, Y.; Okumura, T.; Takemoto, K.; Uchikawa, T.; Koyasu, M.; Ishikawa, S.; Iwamiya, S.; Ozaki, Y.; Shibata, R.; et al. Impact of red blood cell distribution width on non-cardiac mortality in patients with acute decompensated heart failure with preserved ejection fraction. J. Cardiol. 2017, 70, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Delgado, C.; Baweja, M.; Crews, D.C.; Eneanya, N.D.; Gadegbeku, C.A.; Inker, L.A.; Mendu, M.L.; Miller, W.G.; Moxey-Mims, M.M.; Roberts, G.V.; et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am. J. Kidney Dis. 2022, 79, 268–288.e1. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Akhter, M.W.; Aronson, D.; Bitar, F.; Khan, S.; Singh, H.; Singh, R.P.; Burger, A.J.; Elkayam, U. Effect of elevated admission serum cre-atinine and its worsening on outcome in hospitalized patients with decompensated heart failure. Am. J. Cardiol. 2004, 94, 957–960. [Google Scholar] [CrossRef]
- Giamouzis, G.; Kalogeropoulos, A.P.; Georgiopoulou, V.V.; Agha, S.A.; Rashad, M.A.; Laskar, S.R.; Smith, A.L.; Butler, J. Incremental value of renal function in risk prediction with the Seattle Heart Failure Model. Am. Heart J. 2009, 157, 299–305. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef]
- Wilcox, C.S.; Testani, J.M.; Pitt, B. Pathophysiology of Diuretic Resistance and Its Implications for the Management of Chronic Heart Failure. Hypertension 2020, 76, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Triposkiadis, F.; Giamouzis, G.; Parissis, J.; Starling, R.C.; Boudoulas, H.; Skoularigis, J.; Butler, J.; Filippatos, G. Reframing the association and significance of co-morbidities in heart failure. Eur. J. Heart Fail. 2016, 18, 744–758. [Google Scholar] [CrossRef] [PubMed]
- Szlagor, M.; Dybiec, J.; Młynarska, E.; Rysz, J.; Franczyk, B. Chronic Kidney Disease as a Comorbidity in Heart Failure. Int. J. Mol. Sci. 2023, 24, 2988. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; de Jong, P.E.; Coresh, J.; El Nahas, M.; Astor, B.C.; Matsushita, K.; Gansevoort, R.T.; Kasiske, B.L.; Eckardt, K.U. The definition, classification, and prognosis of chronic kidney disease: A KDIGO Controversies Conference report. Kidney Int. 2011, 80, 17–28. [Google Scholar] [CrossRef]
- Stevens, P.E.; O’Donoghue, D.J.; de Lusignan, S.; Van Vlymen, J.; Klebe, B.; Middleton, R.; Hague, N.; New, J.; Farmer, C.K. Chronic kidney disease management in the United Kingdom: NEOERICA project results. Kidney Int. 2007, 72, 92–99. [Google Scholar] [CrossRef]
- Kottgen, A.; Russell, S.D.; Loehr, L.R.; Crainiceanu, C.M.; Rosamond, W.D.; Chang, P.P.; Chambless, L.E.; Coresh, J. Reduced kidney function as a risk factor for incident heart failure: The atherosclerosis risk in communities (ARIC) study. J. Am. Soc. Nephrol. 2007, 18, 1307–1315. [Google Scholar] [CrossRef]
- Damman, K.; Testani, J.M. The kidney in heart failure: An update. Eur. Heart J. 2015, 36, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- Boorsma, E.M.; Ter Maaten, J.M.; Voors, A.A.; van Veldhuisen, D.J. Renal Compression in Heart Failure: The Renal Tamponade Hypothesis. JACC Heart Fail. 2022, 10, 175–183. [Google Scholar] [CrossRef]
- Schefold, J.C.; Filippatos, G.; Hasenfuss, G.; Anker, S.D.; von Haehling, S. Heart failure and kidney dysfunction: Epidemiology, mechanisms and management. Nat. Rev. Nephrol. 2016, 12, 610–623. [Google Scholar] [CrossRef]
- Ronco, C.; Haapio, M.; House, A.A.; Anavekar, N.; Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 2008, 52, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Valero, B.; Cachofeiro, V.; Martínez-Martínez, E. Fibrosis, the Bad Actor in Cardiorenal Syndromes: Mechanisms Involved. Cells 2021, 10, 1824. [Google Scholar] [CrossRef] [PubMed]
- Babitt, J.L.; Lin, H.Y. Mechanisms of anemia in CKD. J. Am. Soc. Nephrol. 2012, 23, 1631–1634. [Google Scholar] [CrossRef] [PubMed]
- Buliga-Finis, O.N.; Ouatu, A.; Tanase, D.M.; Gosav, E.M.; Seritean Isac, P.N.; Richter, P.; Rezus, C. Managing Anemia: Point of Convergence for Heart Failure and Chronic Kidney Disease? Life 2023, 13, 1311. [Google Scholar] [CrossRef] [PubMed]
- Salvagno, G.L.; Sanchis-Gomar, F.; Picanza, A.; Lippi, G. Red blood cell distribution width: A simple parameter with multiple clinical applications. Crit. Rev. Clin. Lab. Sci. 2015, 52, 86–105. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulos, A.; Giamouzis, G.; Dimos, A.; Skoularigki, E.; Starling, R.C.; Skoularigis, J.; Triposkiadis, F. Red Blood Cell Distribution Width in Heart Failure: Pathophysiology, Prognostic Role, Controversies and Dilemmas. J. Clin. Med. 2022, 11, 1951. [Google Scholar] [CrossRef]
- Su, J.L.; Zhang, S.G.; Gao, R.J.; Han, Q.F.; Wang, L.H.; Zhou, Y.H.; Li, T.; Yao, H.C. Red cell distribution width is a predictor of mortality in patients with chronic heart failure. Int. J. Cardiol. 2016, 212, 79–81. [Google Scholar] [CrossRef]
- Van Craenenbroeck, E.M.; Pelle, A.J.; Beckers, P.J.; Possemiers, N.M.; Ramakers, C.; Vrints, C.J.; Van Hoof, V.; Denollet, J.; Conraads, V.M. Red cell distribution width as a marker of impaired exercise tolerance in patients with chronic heart failure. Eur. J. Heart Fail. 2012, 14, 54–60. [Google Scholar] [CrossRef]
- Senthong, V.; Hudec, T.; Neale, S.; Wu, Y.; Hazen, S.L.; Tang, W.H. Relation of Red Cell Distribution Width to Left Ventricular End-Diastolic Pressure and Mortality in Patients With and Without Heart Failure. Am. J. Cardiol. 2017, 119, 1421–1427. [Google Scholar] [CrossRef]
- Fang, S.; Zhang, Z.; Wang, Y.; Jiang, F.; Yang, K.; He, F.; Zhang, C. Predictive value of left ventricular myocardial strain by four-dimensional speckle tracking echocardiography combined with red cell distribution width in heart failure with preserved ejection fraction. Echocardiography 2019, 36, 1074–1083. [Google Scholar] [CrossRef]
- Tonelli, M.; Sacks, F.; Arnold, M.; Moye, L.; Davis, B.; Pfeffer, M.; the Cholesterol and Recurrent Events (CARE) Trial Investigators. Relation Between Red Blood Cell Distribution Width and Cardiovascular Event Rate in People With Coronary Disease. Circulation 2008, 117, 163–168. [Google Scholar] [CrossRef]
- Hou, H.; Sun, T.; Li, C.; Li, Y.; Guo, Z.; Wang, W.; Li, D. An overall and dose-response meta-analysis of red blood cell distribution width and CVD outcomes. Sci. Rep. 2017, 7, 43420. [Google Scholar] [CrossRef] [PubMed]
- Makhoul, B.F.; Khourieh, A.; Kaplan, M.; Bahouth, F.; Aronson, D.; Azzam, Z.S. Relation between changes in red cell distribution width and clinical outcomes in acute decompensated heart failure. Int. J. Cardiol. 2013, 167, 1412–1416. [Google Scholar] [CrossRef]
- Núñez, J.; Núñez, E.; Rizopoulos, D.; Miñana, G.; Bodí, V.; Bondanza, L.; Husser, O.; Merlos, P.; Santas, E.; Pascual-Figal, D.; et al. Red blood cell distribution width is longitudinally associated with mortality and anemia in heart failure patients. Circ. J. 2014, 78, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.P.; Girerd, N.; Arrigo, M.; Medeiros, P.B.; Ricardo, M.B.; Almeida, T.; Rola, A.; Tolpannen, H.; Laribi, S.; Gayat, E.; et al. Enlarging Red Blood Cell Distribution Width During Hospitalization Identifies a Very High-Risk Subset of Acutely Decompensated Heart Failure Patients and Adds Valuable Prognostic Information on Top of Hemoconcentration. Medicine 2016, 95, e3307. [Google Scholar] [CrossRef]
- Muhlestein, J.B.; Lappe, D.L.; Anderson, J.L.; Muhlestein, J.B.; Budge, D.; May, H.T.; Bennett, S.T.; Bair, T.L.; Horne, B.D. Both initial red cell distribution width (RDW) and change in RDW during heart failure hospitalization are associated with length of hospital stay and 30-day outcomes. Int. J. Lab. Hematol. 2016, 38, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Uemura, Y.; Shibata, R.; Takemoto, K.; Uchikawa, T.; Koyasu, M.; Watanabe, H.; Mitsuda, T.; Miura, A.; Imai, R.; Watarai, M.; et al. Elevation of red blood cell distribution width during hospitalization predicts mortality in patients with acute decompensated heart failure. J. Cardiol. 2016, 67, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Turcato, G.; Zorzi, E.; Prati, D.; Ricci, G.; Bonora, A.; Zannoni, M.; Maccagnani, A.; Salvagno, G.L.; Sanchis-Gomar, F.; Cervellin, G.; et al. Early in-hospital variation of red blood cell distribution width predicts mortality in patients with acute heart failure. Int. J. Cardiol. 2017, 243, 306–310. [Google Scholar] [CrossRef]
- Lippi, G.; Turcato, G.; Cervellin, G.; Sanchis-Gomar, F. Red blood cell distribution width in heart failure: A narrative review. World J. Cardiol. 2018, 10, 6–14. [Google Scholar] [CrossRef]
- Podkowińska, A.; Formanowicz, D. Chronic Kidney Disease as Oxidative Stress- and Inflammatory-Mediated Cardiovascular Disease. Antioxidants 2020, 9, 752. [Google Scholar] [CrossRef]
- Ananthaseshan, S.; Bojakowski, K.; Sacharczuk, M.; Poznanski, P.; Skiba, D.S.; Prahl Wittberg, L.; McKenzie, J.; Szkulmowska, A.; Berg, N.; Andziak, P.; et al. Red blood cell distribution width is associated with increased interactions of blood cells with vascular wall. Sci. Rep. 2022, 12, 13676. [Google Scholar] [CrossRef] [PubMed]
- Förhécz, Z.; Gombos, T.; Borgulya, G.; Pozsonyi, Z.; Prohászka, Z.; Jánoskuti, L. Red cell distribution width in heart failure: Prediction of clinical events and relationship with markers of ineffective erythropoiesis, inflammation, renal function, and nutritional state. Am. Heart J. 2009, 158, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.A.; Felker, G.M.; Mehra, M.R.; Chiong, J.R.; Dunlap, S.H.; Ghali, J.K.; Lenihan, D.J.; Oren, R.M.; Wagoner, L.E.; Schwartz, T.A.; et al. Validation and potential mechanisms of red cell distribution width as a prognostic marker in heart failure. J. Card. Fail. 2010, 16, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Obeagu, E.I.; Igwe, M.C.; Obeagu, G.U. Oxidative stress’s impact on red blood cells: Unveiling implications for health and disease. Medicine 2024, 103, e37360. [Google Scholar] [CrossRef]
- Gwozdzinski, K.; Pieniazek, A.; Gwozdzinski, L. Reactive Oxygen Species and Their Involvement in Red Blood Cell Damage in Chronic Kidney Disease. Oxid. Med. Cell Longev. 2021, 2021, 6639199. [Google Scholar] [CrossRef]
- Deng, X.; Gao, B.; Wang, F.; Zhao, M.H.; Wang, J.; Zhang, L. Red Blood Cell Distribution Width Is Associated With Adverse Kidney Outcomes in Patients With Chronic Kidney Disease. Front. Med. 2022, 9, 877220. [Google Scholar] [CrossRef]
- Yonemoto, S.; Hamano, T.; Fujii, N.; Shimada, K.; Yamaguchi, S.; Matsumoto, A.; Kubota, K.; Hashimoto, N.; Oka, T.; Senda, M.; et al. Red cell distribution width and renal outcome in patients with non-dialysis-dependent chronic kidney disease. PLoS ONE 2018, 13, e0198825. [Google Scholar] [CrossRef]
- Ganz, T.; Nemeth, E. Iron Balance and the Role of Hepcidin in Chronic Kidney Disease. Semin. Nephrol. 2016, 36, 87–93. [Google Scholar] [CrossRef]
- Rahmiyanti, L.; Rasyid, H.; Taslim, N.A.; As’ad, S.; Bukhari, A.; Aminuddin, A. Nutritional Status Associated to Red Cell Distribution Width, Length of Stay, and Clinical Outcome Patient with Chronic Kidney Diseases. Open Access Maced. J. Med. Sci. 2022, 10, 572–578. [Google Scholar] [CrossRef]
- Peris-Fernández, M.; Roca-Marugán, M.; Amengual, J.L.; Balaguer-Timor, Á.; Viejo-Boyano, I.; Soldevila-Orient, A.; Devesa-Such, R.; Sánchez-Pérez, P.; Hernández-Jaras, J. Uremic Toxins and Inflammation: Metabolic Pathways Affected in Non-Dialysis-Dependent Stage 5 Chronic Kidney Disease. Biomedicines 2024, 12, 607. [Google Scholar] [CrossRef]
- Vashistha, T.; Streja, E.; Molnar, M.Z.; Rhee, C.M.; Moradi, H.; Soohoo, M.; Kovesdy, C.P.; Kalantar-Zadeh, K. Red Cell Distribution Width and Mortality in Hemodialysis Patients. Am. J. Kidney Dis. 2016, 68, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, Z.L.; Zhang, Y.L.; Wen, Y.; Gao, Y.M.; Liu, B.C. Hypoxia and chronic kidney disease. EBioMedicine 2022, 77, 103942. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | Total Population | Group 1: eGFR < 60 | Group 2: eGFR ≥ 60 | p-Value |
---|---|---|---|---|
Number of patients | 171 | 95 | 76 | |
Females (%) | 49.1 | 53.7 | 43.4 | 0.18 |
Age, years | 79 (69–85) | 80 (73–86) | 75 (62–83) | 0.006 |
EF | 35 (21.3–48.8) | 35 (20.0–46.3) | 35 (23.8–50.0) | 0.978 |
NYHA III-IV (%) | 90.6 | 89.5 | 92.1 | 0.56 |
HFrEF (%) | 60.2 | 58.9 | 61.8 | 0.93 |
HFmrEF (%) | 6.4 | 8.4 | 3.9 | |
HFpEF (%) | 33.4 | 32.7 | 34.3 | |
Blood sample indices | ||||
Urea (mg/dL) | 51 (38.5–79) | 72 (57–101) | 39 (32–45) | <0.001 |
Creatinine (mg/dL) | 1.1 (0.9–1.6) | 1.5 (1.2–2.0) | 0.8 (0.7–1.0) | <0.001 |
eGFR (mL/min/1.73 m2) | 55.9 (36.7–76.0) | 36.3 (30.4–46.2) | 75.5 (64.4–88.3) | <0.001 |
Sodium (mmol/L) | 138 (134–140) | 138 (134–140) | 138 (135–140) | 0.81 |
Potassium (mmol/L) | 4.5 (4.1–5.0) | 4.5 (4.2–5.0) | 4.4 (4.0–4.9) | 0.11 |
Hemoglobin (g/dL) | 11.9 (10.4–13.1) | 11.6 (10.30–12.90) | 12.1 (10.6–13.2) | 0.18 |
Red blood cell distribution Width (%) | 16.2 (14.6–18.4) | 16.6 (15.0–18.8) | 15.6 (14.1–17.8) | 0.009 |
Comorbidities | ||||
CAD (%) | 48.5 | 53.7 | 42.1 | 0.17 |
HTN (%) | 96.0 | 93.4 | 98.0 | 0.24 |
AF (%) | 57.9 | 52.6 | 62.1 | 0.22 |
DM (%) | 35.7 | 27.6 | 42.1 | 0.06 |
Medication | ||||
SGLT2i (%) | 32.1 | 29.5 | 35.5 | 0.42 |
ACE-i/ARB (%) | 33.9 | 29.5 | 39.5 | 0.20 |
B-blockers (%) | 89.5 | 90.5 | 88.2 | 0.63 |
MRA (%) | 65.5 | 57.9 | 75.0 | 0.02 |
Furosemide (%) | 84.2 | 87.4 | 80.3 | 0.21 |
Sacubitril/valsartan (%) | 25.1 | 22.1 | 29.0 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giamouzis, G.; Kourek, C.; Magouliotis, D.E.; Briasoulis, A.; Zakynthinos, G.E.; Sawafta, A.; Iakovis, N.; Afxonidis, G.; Spiliopoulos, K.; Triposkiadis, F.; et al. The Prognostic Role of RDW in Hospitalized Heart Failure Patients with and Without Chronic Kidney Disease. J. Clin. Med. 2024, 13, 7395. https://doi.org/10.3390/jcm13237395
Giamouzis G, Kourek C, Magouliotis DE, Briasoulis A, Zakynthinos GE, Sawafta A, Iakovis N, Afxonidis G, Spiliopoulos K, Triposkiadis F, et al. The Prognostic Role of RDW in Hospitalized Heart Failure Patients with and Without Chronic Kidney Disease. Journal of Clinical Medicine. 2024; 13(23):7395. https://doi.org/10.3390/jcm13237395
Chicago/Turabian StyleGiamouzis, Grigorios, Christos Kourek, Dimitrios E. Magouliotis, Alexandros Briasoulis, George E. Zakynthinos, Assaf Sawafta, Nikolaos Iakovis, Georgios Afxonidis, Kyriakos Spiliopoulos, Filippos Triposkiadis, and et al. 2024. "The Prognostic Role of RDW in Hospitalized Heart Failure Patients with and Without Chronic Kidney Disease" Journal of Clinical Medicine 13, no. 23: 7395. https://doi.org/10.3390/jcm13237395
APA StyleGiamouzis, G., Kourek, C., Magouliotis, D. E., Briasoulis, A., Zakynthinos, G. E., Sawafta, A., Iakovis, N., Afxonidis, G., Spiliopoulos, K., Triposkiadis, F., Athanasiou, T., Skoularigis, J., & Xanthopoulos, A. (2024). The Prognostic Role of RDW in Hospitalized Heart Failure Patients with and Without Chronic Kidney Disease. Journal of Clinical Medicine, 13(23), 7395. https://doi.org/10.3390/jcm13237395