Impact of Intercostal Artery Reinsertion on Neurological Outcome after Thoracoabdominal Aortic Replacement: A 25-Year Single-Center Experience
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Study Design and Variables
2.3. Preoperative Assessment
2.4. Surgical Technique
2.5. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- LeMaire, S.A.; Price, M.D.; Green, S.Y.; Zarda, S.; Coselli, J.S. Results of open thoracoabdominal aortic aneurysm repair. Ann. Cardiothorac. Surg. 2012, 1, 286–292. [Google Scholar]
- Acher, C.W.; Wynn, M.M.; Hoch, J.R.; Popic, P.; Archibald, J.; Turnipseed, W.D. Combined use of cerebral spinal fluid drainage and naloxone reduces the risk of paraplegia in thoracoabdominal aneurysm repair. J. Vasc. Surg. 1994, 19, 236–248. [Google Scholar] [CrossRef]
- Lancaster, R.T.; Conrad, M.F.; Patel, V.I.; Cambria, M.R.; Ergul, E.A.; Cambria, R.P. Further experience with distal aortic perfusion and motor-evoked potential monitoring in the management of extent I-III thoracoabdominal aortic anuerysms. J. Vasc. Surg. 2013, 58, 283–290. [Google Scholar] [CrossRef]
- Fehrenbacher, J.W.; Siderys, H.; Terry, C.; Kuhn, J.; Corvera, J.S. Early and late results of descending thoracic and thoracoabdominal aortic aneurysm open repair with deep hypothermia and circulatory arrest. J. Thorac. Cardiovasc. Surg. 2010, 140 (Suppl. S6), S154–S190. [Google Scholar] [CrossRef]
- Tanaka, A.; Safi, H.J.; Estrera, A.L. Current strategies of spinal cord protection during thoracoabdominal aortic surgery. Gen. Thorac. Cardiovasc. Surg. 2018, 66, 307–314. [Google Scholar] [CrossRef]
- Conrad, M.F.; Ergul, E.A.; Patel, V.I.; Cambria, M.R.; Lamuraglia, G.M.; Simon, M.; Cambria, R.P. Evolution of operative strategies in open thoracoabdominal aneurysm repair. J. Vasc. Surg. 2011, 53, 1195–1201.e1. [Google Scholar] [CrossRef] [PubMed]
- Wongkornrat, W.; Yamamoto, S.; Sekine, Y.; Ono, M.; Fujikawa, T.; Oshima, S.; Sasaguri, S. Predictors of paraplegia with current thoracoabdominal aortic aneurysm repair. Asian Cardiovasc. Thorac. Ann. 2015, 23, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Griepp, R.B.; Griepp, E.B. Spinal cord perfusion and protection during descending thoracic and thoracoabdominal aortic surgery: The collateral network concept. Ann. Thorac. Surg. 2007, 83, S865–S892. [Google Scholar] [CrossRef] [PubMed]
- Acher, C.W.; Wynn, M.M.; Mell, M.W.; Tefera, G.; Hoch, J.R. A quantitative assessment of the impact of intercostal artery reimplantation on paralysis risk in thoracoabdominal aortic aneurysm repair. Ann. Surg. 2008, 248, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.D.; Kron, I.L.; Parrino, P.E.; Shockey, K.S.; Kern, J.A.; Tribble, C.G. Preservation of intercostal arteries during thoracoabdominal aortic aneurysm surgery: A retrospective study. J. Thorac. Cardiovasc. Surg. 1999, 118, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Mutsuga, M.; Narita, Y.; Araki, Y.; Maekawa, A.; Oshima, H.; Usui, A.; Ueda, Y. Spinal cord protection during a thoracoabdominal aortic repair for a chronic type B aortic dissection using the aortic tailoring strategy. Interact. Cardiovasc. Thorac. Surg. 2010, 11, 15–19. [Google Scholar] [CrossRef]
- Wynn, M.; Acher, C.; Marks, E.; Acher, C.W. The effect of intercostal artery reimplantation on spinal cord injury in thoracoabdominal aortic aneurysm surgery. J. Vasc. Surg. 2016, 64, 289–296. [Google Scholar] [CrossRef]
- Etz, C.D.; Halstead, J.C.; Spielvogel, D.; Shahani, R.; Lazala, R.; Homann, T.M.; Weisz, D.J.; Plestis, K.; Griepp, R.B. Thoracic and thoracoabdominal aneurysm repair: Is reimplantation of spinal cord arteries a waste of time? Ann. Thorac. Surg. 2006, 82, 1670–1677. [Google Scholar] [CrossRef]
- Crawford, E.S.; Crawford, J.L.; Safi, H.J.; Coselli, J.S.; Hess, K.R.; Brooks, B.; Norton, H.J.; Glaeser, D.H. Thoracoabdominal aortic aneurysms: Preoperative and intraoperative factors determining immediate and long-term results of operations in 605 patients. J. Vasc. Surg. 1986, 3, 389–404. [Google Scholar] [CrossRef] [PubMed]
- Hilton, R. Defining acute renal failure. CMAJ 2011, 183, 1167–1169. [Google Scholar] [CrossRef] [PubMed]
- Svensson, L.G.; Hess, K.R.; Coselli, J.S.; Safi, H.J. Influence of segmental arteries, extent, and atriofemoral bypass on postoperative paraplegia after thoracoabdominal aortic operations. J. Vasc. Surg. 1994, 20, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Safi, H.J.; Miller, C.C.; Huynh, T.T.T.; Estrera, A.L.; Porat, E.E.; Winnerkvist, A.N.; Allen, B.S.; Hassoun, H.T.; Moore, F.A. Distal Aortic Perfusion and Cerebrospinal Fluid Drainage for Thoracoabdominal and Descending Thoracic Aortic Repair. Ann. Surg. 2003, 238, 372–381. [Google Scholar] [CrossRef]
- Sinha, A.C.; Cheung, A.T. Spinal cord protection and thoracic aortic surgery. Curr. Opin. Anaesthesiol. 2010, 23, 95–102. [Google Scholar] [CrossRef]
- Ogino, H.; Sasaki, H.; Minatoya, K.; Matsuda, H.; Yamada, N.; Kitamura, S. Combined use of adamkiewicz artery demonstration and motor-evoked potentials in descending and thoracoabdominal repair. Ann. Thorac. Surg. 2006, 82, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.C.; Kwan, G.N.C.; van Driel, M.L.; Rophael, J.A. Distal aortic perfusion during thoracoabdominal aneurysm repair for prevention of paraplegia. Cochrane Database Syst. Rev. 2012, 14, CD008197. [Google Scholar] [CrossRef]
- Coselli, J.S.; LeMaire, S.A.; Köksoy, C.; Schmittling, Z.C.; Curling, P.E. Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair: Results of a randomized clinical trial. J. Vasc. Surg. 2002, 35, 631–639. [Google Scholar] [CrossRef] [PubMed]
Characteristics | ICAR Group | Non ICAR Group | p-Value |
---|---|---|---|
Sex (male) | 152 (71.4%) | 86 (63.2%) | 0.112 |
BMI (kg/m2) | 26.20 (23.41–28.72) | 24.73 (22.30–27.44) | 0.005 |
Age at operation (years) | 62 (52.5–68) | 64 (54–71) | 0.042 |
Marfan | 27 (12.7%) | 13 (9.6%) | 0.373 |
Hypertension | 127 (59.6%) | 83 (61%) | 0.794 |
Hyperlipidemia | 30 (14.1%) | 31 (22.8%) | 0.037 |
Diabetes | 11 (5.2%) | 9 (6.6%) | 0.569 |
Coronary artery disease | 60 (28.2) | 41 (30.1%) | 0.691 |
Cerebrovascular disease | 11 (5.2%) | 14 (10.3%) | 0.070 |
Chronic renal disease | 38 (17.8%) | 28 (20.6%) | 0.523 |
COPD | 28 (13.1%) | 17 (12.5%) | 0.861 |
Tabacco smoking | 39 (18.3%) | 22 (16.2%) | 0.609 |
Peripheral vascular disease | 27 (12.7%) | 25 (18.4%) | 0.144 |
Re-do (prior cardiac) | 85 (39.9%) | 51 (37.5%) | 0.653 |
Re-do (prior open aortic) | 115 (54%) | 65 (47%) | 0.259 |
Prior EVAR | 2 (0.9%) | 1 (0.7%) | 0.841 |
Prior TEVAR | 2 (0.9%) | 3 (2.2%) | 0.331 |
Characteristics | ICAR Group | Non ICAR Group | p-Value |
---|---|---|---|
Elective | 189 (88.7%) | 107 (78.7%) | 0.011 |
Urgent | 11 (5.2%) | 9 (6.6%) | 0.569 |
Emergent | 12 (5.6%) | 18 (13.2%) | 0.013 |
Crawford Extent of Repair | ICAR Group | Non ICAR Group | p-Value |
---|---|---|---|
I | 37 (17.4%) | 16 (11.8%) | 0.155 |
II | 54 (25.4%) | 10 (7.4%) | <0.001 |
III | 82 (28.5%) | 41 (30.1%) | 0.111 |
IV | 8 (3.8%) | 45 (33.1%) | <0.001 |
V | 30 (14.1%) | 15 (11.0%) | 0.406 |
Characteristics | ICAR Group | Non ICAR Group | p-Value |
---|---|---|---|
FET-completion | 9 (4.2%) | 2 (1.5%) | 0.151 |
Selective renal artery perfusion | 107 (50.2%) | 70 (51.5%) | 0.822 |
CSF-drainage | 43 (20.2%) | 26 (19.1%) | 0.807 |
Left-heart-bypass | 1 (0.5%) | 3 (2.5%) | 0.137 |
Circulatory arrest | 31 (14.6%) | 14 (10.3%) | 0.247 |
Operation time (min) | 369.57 ± 113.89 | 303.77 ± 99.77 | <0.001 |
Bypass time (min) | 168.73 ± 75.59 | 117.70 ± 68.54 | <0.001 |
Cross-clamp time (min) | 103 (82–147) | 82 (62–129) | <0.001 |
Intraoperative mortality | 4 (1.9%) | 3 (2.2%) | 0.831 |
Characteristics | ICAR Group | Non ICAR Group | p-Value |
---|---|---|---|
Cumulative spinal cord-related complications | 26 (12.2%) | 16 (11.8%) | 0.902 |
Stroke | 6 (2.8%) | 3 (2.2%) | 0.725 |
Temporary paraplegia | 3(1.4%) | 3 (2.2%) | 0.576 |
Permanent paraplegia | 12 (5.6%) | 8 (5.9%) | 0.922 |
Temporary paraparesis | 3 (1.4%) | 1(0.7%) | 0.565 |
Permanent paraparesis | 9 (4.2%) | 4 (2.9%) | 0.537 |
Characteristics | IC Reinsertion | Non IC Reinsertion | p-Value |
---|---|---|---|
Ventilation > 72 h | 57 (26.4%) | 23 (16.9%) | 0.033 |
Respiratory failure | 72 (33.8%) | 32 (23.5%) | 0.041 |
Tracheostomy | 39 (18.3%) | 10 (7.4%) | 0.004 |
ARDS | 2 (1.8%) | 1 (0.7%) | 0.841 |
Pneumonia | 15 (7.0%) | 6 (4.4%) | 0.314 |
Pulmonary embolism | 3 (1.4%) | 1 (0.7%) | 0.565 |
Left vocal cord paralysis | 9 (4.2%) | 2 (1.5%) | 0.151 |
Reanimation | 5 (2.3%) | 4 (2.9%) | 0.733 |
Sepsis | 11 (5.2%) | 5 (3.7%) | 0.517 |
Wound infection | 17 (8.0%) | 5 (3.7%) | 0.107 |
Bleeding requiring re-thoracotomy | 29 (13.6%) | 17 (12.5%) | 0.764 |
Acute kidney failure | 41 (19.2%) | 20 (14.7%) | 0.276 |
Dialysis (temporary) | 17 (8.0%) | 5 (3.7%) | 0.107 |
Dialysis (permanent) | 15 (7.0%) | 10 (7.4%) | 0.913 |
Atrial fibrillation | 3 (4.9%) | 5 (3.7%) | 0.167 |
Myocardial infarction | 4 (1.9%) | 2 (1.5%) | 0.775 |
Cardiac tamponade | 2 (0.9%) | 0 (0.0%) | 0.257 |
LCOS | 7 (3.3%) | 8 (5.9%) | 0.244 |
ECMO | 6 (2.8%) | 1 (0.7%) | 0.176 |
GI ischemia | 6 (2.8%) | 3 (2.2%) | 0.725 |
GI bleeding | 5 (2.3%) | 4 (2.9%) | 0.733 |
GI obstruction | 3 (1.4%) | 4 (2.9%) | 0.319 |
Pancreatitis | 4 (1.9%) | 2 (1.5%) | 0.775 |
ICU stay (d) | 4 (2–11) | 3 (2–6) | 0.066 |
Ventilation time (h) | 22.78 (13.87–83.78) | 19.18 (12.14–48.07) | 0.042 |
Hospital stay (d) | 15 (11–22) | 13 (9–20) | 0.027 |
In-hospital mortality | 39 (18.3%) | 28 (20.6%) | 0.598 |
30-day mortality | 28 (13.1%) | 22 (16.2%) | 0.431 |
Characteristics | Odds Ratio | 95% CI | p-Value |
---|---|---|---|
Bypass time (>3.Quartile) | 1.205 | 1.049–1.860 | 0.030 |
Cross-clamp time (>3.Quartile) | 5.846 | 1.416–24.136 | 0.015 |
Diabetes | 6.603 | 1.319–27.873 | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helms, F.; Poyanmehr, R.; Krüger, H.; Schmack, B.; Weymann, A.; Popov, A.-F.; Ruhparwar, A.; Martens, A.; Natanov, R. Impact of Intercostal Artery Reinsertion on Neurological Outcome after Thoracoabdominal Aortic Replacement: A 25-Year Single-Center Experience. J. Clin. Med. 2024, 13, 832. https://doi.org/10.3390/jcm13030832
Helms F, Poyanmehr R, Krüger H, Schmack B, Weymann A, Popov A-F, Ruhparwar A, Martens A, Natanov R. Impact of Intercostal Artery Reinsertion on Neurological Outcome after Thoracoabdominal Aortic Replacement: A 25-Year Single-Center Experience. Journal of Clinical Medicine. 2024; 13(3):832. https://doi.org/10.3390/jcm13030832
Chicago/Turabian StyleHelms, Florian, Reza Poyanmehr, Heike Krüger, Bastian Schmack, Alexander Weymann, Aron-Frederik Popov, Arjang Ruhparwar, Andreas Martens, and Ruslan Natanov. 2024. "Impact of Intercostal Artery Reinsertion on Neurological Outcome after Thoracoabdominal Aortic Replacement: A 25-Year Single-Center Experience" Journal of Clinical Medicine 13, no. 3: 832. https://doi.org/10.3390/jcm13030832
APA StyleHelms, F., Poyanmehr, R., Krüger, H., Schmack, B., Weymann, A., Popov, A. -F., Ruhparwar, A., Martens, A., & Natanov, R. (2024). Impact of Intercostal Artery Reinsertion on Neurological Outcome after Thoracoabdominal Aortic Replacement: A 25-Year Single-Center Experience. Journal of Clinical Medicine, 13(3), 832. https://doi.org/10.3390/jcm13030832