The Association between Intracranial Calcifications and Symptoms in Patients with Primary Familial Brain Calcification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Diagnostic Procedures
2.2.1. Motor Dysfunction
2.2.2. Cognitive Disorders
2.3. Calcification Measurements
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.1.1. Motor Dysfunction
3.1.2. Cognitive Disorders
3.2. Brain Calcifications
3.3. Association between the Total Amount of Calcifications and Motor and Cognitive Disorders
3.4. Association between Location of Calcifications and Motor Dysfunction and Cognitive Disorders
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Laboratory Testing (Serum) | ||
---|---|---|
Sodium | Potassium | Calcium |
Magnesium | Phosphate | Aluminum |
Hemoglobin A1C | Urea | Creatine + eGFR |
Alkaline Phosphatase | Gamma-Glutamyl Transferase | ASAT |
ALAT | Lactate Dehydrogenase | Creatine Kinase |
Albumin | Total protein | C-Reactive Protein |
Triglycerides | Cholesterol | HDL Cholesterol |
LDL Cholesterol | Non-HDL cholesterol | Ferritin |
Folic Acid | Vitamin B12 | Glucose |
Hemoglobin | Hematocrit | Erythrocytes |
MCV | MCH | MCHC |
Erythrocyte Sedimentation Rate | Platelets | Leukocytes |
TSH | Free Thyroxine (T4) | Parathyroid Hormone |
25-Hydroxy Vitamin D | Copper | Zinc |
Zinc (Dissociated Serum) | ||
Infectious disease serology | ||
Brucella species antibodies | ||
Cytomegalovirus quantitative DNA PCR | ||
Human Immunodeficiency Virus-1/2 antibodies and p24 antigen | ||
Human herpesvirus type 6 and 8 DNA PCR | ||
Rubella virus IgM and IgG | ||
Toxoplasmosis gondii IgM and IgG | ||
Tuberculosis (using Interferon Gamma Release Assay/QuantiFERON test) |
Appendix B
References
- Manyam, B.V. What Is and What Is Not “Fahr’s Disease”. Park. Relat. Disord. 2005, 11, 73–80. [Google Scholar] [CrossRef]
- Nicolas, G.; Charbonnier, C.; de Lemos, R.R.; Richard, A.C.; Guillin, O.; Wallon, D.; Legati, A.; Geschwind, D.; Coppola, G.; Frebourg, T.; et al. Brain Calcification Process and Phenotypes According to Age and Sex: Lessons from SLC20A2, PDGFB, and PDGFRB Mutation Carriers. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2015, 168, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, G.; Charbonnier, C.; Campion, D.; Veltman, J.A. Estimation of Minimal Disease Prevalence from Population Genomic Data: Application to Primary Familial Brain Calcification. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2018, 177, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Cen, Z.; Fu, F.; Chen, Y.; Chen, X.; Yang, D.; Wang, H.; Wu, H.; Zheng, X.; Xie, F.; et al. Underestimated Disease Prevalence and Severe Phenotypes in Patients with Biallelic Variants: A Cohort Study of Primary Familial Brain Calcification from China. Park. Relat. Disord. 2019, 64, 211–219. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Shi, L.; Ren, J.; Patti, M.; Wang, T.; De Oliveira, J.R.M.; Sobrido, M.J.; Quintáns, B.; Baquero, M.; et al. Mutations in SLC20A2 Link Familial Idiopathic Basal Ganglia Calcification with Phosphate Homeostasis. Nat. Genet. 2012, 44, 254–256. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.; Westenberger, A.; Sobrido, M.J.; García-Murias, M.; Domingo, A.; Sears, R.L.; Lemos, R.R.; Ordoñez-Ugalde, A.; Nicolas, G.; Da Cunha, J.E.G.; et al. Mutations in the Gene Encoding PDGF-B Cause Brain Calcifications in Humans and Mice. Nat. Genet. 2013, 45, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, G.; Pottier, C.; Maltête, D.; Coutant, S.; Rovelet-Lecrux, A.; Legallic, S.; Rousseau, S.; Vaschalde, Y.; Guyant-Maréchal, L.; Augustin, J.; et al. Mutation of the PDGFRB Gene as a Cause of Idiopathic Basal Ganglia Calcification. Neurology 2013, 80, 181–187. [Google Scholar] [CrossRef]
- Legati, A.; Giovannini, D.; Nicolas, G.; López-Sánchez, U.; Quintáns, B.; Oliveira, J.R.M.; Sears, R.L.; Ramos, E.M.; Spiteri, E.; Sobrido, M.J.; et al. Mutations in XPR1 Cause Primary Familial Brain Calcification Associated with Altered Phosphate Export. Nat. Genet. 2015, 47, 579–581. [Google Scholar] [CrossRef]
- Bauer, M.; Rahat, D.; Zisman, E.; Tabach, Y.; Lossos, A.; Meiner, V.; Arkadir, D. MYORG Mutations: A Major Cause of Recessive Primary Familial Brain Calcification. Curr. Neurol. Neurosci. Rep. 2019, 19, 70. [Google Scholar] [CrossRef]
- Schottlaender, L.V.; Abeti, R.; Jaunmuktane, Z.; Macmillan, C.; Chelban, V.; O’Callaghan, B.; McKinley, J.; Maroofian, R.; Efthymiou, S.; Athanasiou-Fragkouli, A.; et al. Bi-Allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification. Am. J. Hum. Genet. 2020, 106, 412–421. [Google Scholar] [CrossRef]
- Ramos, E.M.; Oliveira, J.; Sobrido, M.J.; Coppola, G. Primary Familial Brain Calcification. In GeneReviews; Adam, M.P., Ardinger, H.H., Pagon, R.A., Eds.; University of Washington: Seattle, WA, USA, 1993–2022. [Google Scholar]
- Westenberger, A.; Balck, A.; Klein, C. Primary Familial Brain Calcifications: Genetic and Clinical Update. Curr. Opin. Neurol. 2019, 32, 571–578. [Google Scholar] [CrossRef]
- Manyam, B.V.; Walters, A.S.; Narla, K.R. Bilateral Striopallidodentate Calcinosis: Clinical Characteristics of Patients Seen in a Registry. Mov. Disord. 2001, 16, 258–264. [Google Scholar] [CrossRef]
- Nicolas, G.; Pottier, C.; Charbonnier, C.; Guyant-Maréchal, L.; Le Ber, I.; Pariente, J.; Labauge, P.; Ayrignac, X.; Defebvre, L.; Maltête, D.; et al. Phenotypic Spectrum of Probable and Genetically-Confirmed Idiopathic Basal Ganglia Calcification. Brain 2013, 136, 3395–3407. [Google Scholar] [CrossRef]
- Tadic, V.; Westenberger, A.; Domingo, A.; Alvarez-Fischer, D.; Klein, C.; Kasten, M. Primary Familial Brain Calcification with Known Gene Mutations: A Systematic Review and Challenges of Phenotypic Characterization. JAMA Neurol. 2015, 72, 460–467. [Google Scholar] [CrossRef]
- Bonazza, S.; La Morgia, C.; Martinelli, P.; Capellari, S. Strio-Pallido-Dentate Calcinosis: A Diagnostic Approach in Adult Patients. Neurol. Sci. 2011, 32, 537–545. [Google Scholar] [CrossRef]
- Saleem, S.; Aslam, H.M.; Anwar, M.; Anwar, S.; Saleem, M.; Saleem, A.; Rehmani, M.A.K. Fahr’s Syndrome: Literature Review of Current Evidence. Orphanet J. Rare Dis. 2013, 8, 156. [Google Scholar] [CrossRef]
- Mufaddel, A.A.; Al-Hassani, G.A. Familial Idiopathic Basal Ganglia Calcification (Fahr’s Disease). Neurosciences 2014, 19, 171–177. [Google Scholar] [PubMed]
- De Brouwer, E.J.M.; Kockelkoren, R.; De Vis, J.B.; Dankbaar, J.W.; Velthuis, B.K.; Takx, R.A.; De Jonghe, A.; Emmelot-Vonk, M.H.; Koek, H.L.; de Jong, P.A. Prevalence and Vascular Risk Factors of Basal Ganglia Calcifications in Patients at Risk for Cerebrovascular Disease. J. Neuroradiol. 2020, 47, 337–342. [Google Scholar] [CrossRef]
- Golüke, N.M.S.; de Brouwer, E.J.M.; de Jonghe, A.; Claus, J.J.; Staekenborg, S.S.; Emmelot-Vonk, M.H.; de Jong, P.A.; Koek, H.L. Intracranial Artery Calcifications: Risk Factors and Association with Cardiovascular Disease and Cognitive Function. J. Neuroradiol. 2022, 49, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Golüke, N.M.S.; Meijer, E.; van Maren, E.A.; de Jonghe, A.; Emmelot-Vonk, M.H.; van Valen, E.; de Jong, P.A.; Koek, H.L. Amount and Distribution of Intracranial Calcification in Symptomatic and Asymptomatic Primary Familial Brain Calcification. Neurol. Clin. Pract. 2023, 13, e200163. [Google Scholar] [CrossRef] [PubMed]
- De Brouwer, E.J.; Golüke, N.M.; Claus, J.J.; Staekenborg, S.S.; Emmelot-Vonk, M.H.; de Jong, P.A.; Koek, H.L.; De Jonghe, A. Basal Ganglia Calcifications: No Association with Cognitive Function. J. Neuroradiol. 2023, 50, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Balck, A.; Schaake, S.; Kuhnke, N.S.; Domingo, A.; Madoev, H.; Margolesky, J.; Dobricic, V.; Alvarez-Fischer, D.; Laabs, B.H.; Kasten, M.; et al. Genotype–Phenotype Relations in Primary Familial Brain Calcification: Systematic MDSGene Review. Mov. Disord. 2021, 36, 2468–2480. [Google Scholar] [CrossRef] [PubMed]
- Verhage, F. Intelligentie En Leeftijd; Onderzoek Bij Nederlanders van Twaalf Tot Zevenenzeventig Jaar; Koninklijke Van Gorcum: Assen, The Netherlands, 1964. [Google Scholar]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The Diagnosis of Mild Cognitive Impairment Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS Clinical Diagnostic Criteria for Parkinson’s Disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Tinetti, M.E.; Franklin Williams, T.; Mayewski, R.; York, N. Fall Risk Index for Elderly Patients Based on Number of Chronic Disabilities. Am. J. Med. 1986, 80, 429–434. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Taylor, C.S.; Matsuda, P.N.; Studer, M.T.; Whetten, B.K. Expanding the Scoring System for the Dynamic Gait Index. Phys. Ther. 2013, 93, 1493–1506. [Google Scholar] [CrossRef]
- Franchignoni, F.; Horak, F.; Godi, M.; Nardone, A.; Giordano, A. Using Psychometric Techniques to Improve the Balance Evaluation Systems Test: The Mini-Bestest. J. Rehabil. Med. 2010, 42, 323–331. [Google Scholar] [CrossRef]
- Faber, M.; Bosscher, R.; Van Wieringen, P. Clinimetric Properties of the Performance-Oriented Mobility Assessment. Phys. Ther. 2006, 86, 944–954. [Google Scholar] [CrossRef]
- Mak, M.K.Y.; Auyeung, M.M. The Mini-Bestest Can Predict Parkinsonian Recurrent Fallers: A 6-Month Prospective Study. J. Rehabil. Med. 2013, 45, 565–571. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Baldwin, M.; Polissar, N.; Gruber, W. Predicting the Probability for Falls in Community-Dwelling Older Adults. Phys. Ther. 1997, 77, 812–819. [Google Scholar] [CrossRef]
- Movement Disorder Society Task Force on Rating Scales for Parkonson’s Disease. The Unified Parkinson’s Disease Rating Scale (UPDRS): Status and Recommendations. Mov. Disord. Soc. 2003, 18, 738–750. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Julayanont, P.; Phillips, N.; Chertkow, H.; Nasreddine, Z.S. The Montreal Cognitive Assessment (MoCA): Concept and Clinical Review; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Benke, T.; Karner, E.; Seppi, K.; Delazer, M.; Marksteiner, J.; Donnemiller, E. Subacute Dementia and Imaging Correlates in a Case of Fahr’s Disease. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1163–1165. [Google Scholar] [CrossRef]
- De Vent, N.R.; van Rentergem, J.A.A.; Schmand, B.A.; Murre, J.M.J.; Huizenga, H.M. Advanced Neuropsychological Diagnostics Infrastructure (ANDI): A Normative Database Created from Control Datasets. Front. Psychol. 2016, 7, 1601. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.G.; Holden, S.; Bernard, B.; Ouyang, B.; Goetz, C.G.; Stebbins, G.T. Defining Optimal Cutoff Scores for Cognitive Impairment Using Movement Disorder Society Task Force Criteria for Mild Cognitive Impairment in Parkinson’s Disease. Mov. Disord. 2013, 28, 1972–1979. [Google Scholar] [CrossRef] [PubMed]
- Reitan, R. Neuropsychological Test Battery; Reitan Neuropsychological Laboratory: Mesa, AZ, USA, 1995. [Google Scholar]
- Reitan, R. The Relation of the Trail Making Test to Organic Brain Damage. J. Consult. Psychol. 1955, 19, 393–394. [Google Scholar] [CrossRef] [PubMed]
- Hammes, J. De Stroop Kleur-Woord Test: Handleiding; Swets & Zeitlinger: Lisse, The Netherlands, 1971. [Google Scholar]
- Wechsler, D.; Coalson, D.L.; Raiford, S.E. WAIS-IV Technical and Interpretive Manual; Pearson: San Antonio, TX, USA, 2008. [Google Scholar]
- Wechsler, D. WAIS-III: Administration and Scoring Manual; The Psychological Corporation: San Antonio, TX, USA, 1997. [Google Scholar]
- Schmand, E.; Groenink, S.; Van den Dungen, M. Letterfluency: Psychometrische Eigenschappen En Nederlandse Normen. Tijdschr. Gerontol. Geriatr. 2008, 39, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Luteijn, F.; Barelds, D.P.F. Groninger Intelligentie Test-2 (GIT-2); Harcourt Test Publishers: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Wilson, B.A.; Cockburn, J.; Baddeley, A. The Rivermead Behavioural Memory Test; Thames Valley Test Company: London, UK, 1985. [Google Scholar]
- Van Balen, H.; Groot Zwaaftink, A. The Rivermead Behavioural Memory Test; Thames Valley Test Company: London, UK, 1987. [Google Scholar]
- Ivnik, R.J.; Malec, J.F.; Smith, G.E.; Tangalos, E.G.; Petersen, R.C.; Kokmen, E.; Kurland, L.T. Mayo’s Older Americans Normative Studies: Updated AVLT Norms for Ages 56 to 97. Clin. Neuropsychol. 1992, 6, 83–104. [Google Scholar] [CrossRef]
- Meyers, J.; Meyers, K. Rey Complex Figure Test and Recognition Trial; Psychological Assessment Resources, Inc.: Odessa, FL, USA, 1995. [Google Scholar]
- Lindeboom, J.; Schmand, B.; Tulner, L.; Walstra, G.; Jonker, C. Visual Association Test to Detect Early Dementia of the Alzheimer Type. J. Neurol. Neurosurg. Psychiatry 2002, 73, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.X.; Zou, X.H.; Wang, C.; Yao, X.P.; Su, H.Z.; Lai, L.L.; Chen, H.T.; Lai, J.H.; Liu, Y.B.; Chen, D.P.; et al. Spectrum of SLC20A2, PDGFRB, PDGFB, and XPR1 Mutations in a Large Cohort of Patients with Primary Familial Brain Calcification. Hum. Mutat. 2019, 40, 392–403. [Google Scholar] [CrossRef]
- König, P. Psychopathological Alterations in Cases Symmetrical Basal Ganglia Sclerosis. Biol. Psychiatry 1989, 25, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Geschwind, D.H.; Loginov, M.; Stern, J.M. Identification of a Locus on Chromosome 14q for Idiopathic Basal Ganglia Calcification (Fahr Disease). Am. J. Hum. Genet. 1999, 65, 764–772. [Google Scholar] [CrossRef] [PubMed]
- O’hoski, S.; Winship, B.; Herridge, L.; Agha, T.; Brooks, D.; Beauchamp, M.K.; Sibley, K.M. Increasing the Clinical Utility of the BESTest, Mini-BESTest, and Brief-BESTest: Normative Values in Canadian Adults Who Are Healthy and Aged 50 Years or Older. Phys. Ther. 2014, 94, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Rosenblatt, A.; Leroi, I. Neuropsychiatry of Huntington’s Disease and Other Basal Ganglia Disorders. Psychosomatics 2000, 41, 24–30. [Google Scholar] [CrossRef]
- Adamaszek, M.; D’Agata, F.; Ferrucci, R.; Habas, C.; Keulen, S.; Kirkby, K.C.; Leggio, M.; Mariën, P.; Molinari, M.; Moulton, E.; et al. Consensus Paper: Cerebellum and Emotion. Cerebellum 2017, 16, 552–576. [Google Scholar] [CrossRef]
Global Cognitive Functioning |
Montreal Cognitive Assessment [36,37] |
Attention/Processing speed |
Trail Making Test part A [41,42] |
Stroop Test reading and color naming [43] |
WAIS-IV-NL Digital Symbol Substitution Test [44] |
WAIS-III-NL Forward Digit Span [45] |
Executive function |
Trail Making Test part B (adjusted for part A) [41,42] |
Stroop Test color–word interference [43] |
WAIS-III-NL Backward Digit span [45] |
Letter fluency test [46] |
GIT-2 semantic fluency test [47] |
Memory 1 |
MoCA Memory Index Score [36] |
Rivermead Behavioral Memory Test immediate and delayed recall [48,49] |
15-word Auditory Verbal Learning Test immediate and delayed recall [50] |
Rey-Osterrieth Complex Figure Test immediate and delayed recall [51] |
Visual Association Test [52] |
Variable | N (%) |
---|---|
Female | 25 (50.0) |
Educational level 1 | |
Low (Verhage 1–4) | 14 (28.0) |
Average (Verhage 5) | 15 (30.0) |
High (Verhage 6–7) | 21 (42.0) |
Family history 1 | |
PFBC | 11 (22.0) |
Parkinson/Parkinsonism (n = 49) | 3 (6.0) |
Dementia (n = 49) | 18 (36.0) |
Psychiatric disorders (n = 44) | 12 (24.0) |
Activities of daily living 1 | |
ADL independent | 47 (94.0) |
iADL independent | 37 (74.0) |
Genetic testing 1 | 41 (82.0) |
No genetic mutation | 18 (43.9) |
Results not known yet 2 | 6 (14.6) |
Genetic mutation 2 | 17 (41.5) |
SLC20A2 3 | 10 (58.8) |
XPR1 3 | 3 (17.6) |
PDGFB 3 | 2 (11.8) |
MYORG 3 | 2 (11.8) |
PDGFRB 3 | 0 (0.0) |
JAM2 3 | 0 (0.0) |
Symptomatic 1 | 41 (82.0) |
Motor dysfunction 4 | 32 (78.0) |
Parkinsonism 5 6 | 11 (34.4) |
Bradykinesia/hypokinesia 6 | 15 (46.9) |
Rest tremor 6 | 7 (21.9) |
Rigidity 6 | 14 (43.8) |
Cerebellar dysfunction 6 7 | 25 (78.1) |
Limb ataxia 6 | 21 (65.6) |
Gait ataxia 6 | 8 (25.0) |
Intention tremor 6 | 4 (12.5) |
Increased fall risk 6 | 16 (50.0) |
Cognitive disorders 4 8 | 29 (70.7) |
Global cognitive functioning impaired 9 | 24 (82.8) |
Memory impaired 9 | 6 (21.4) |
Attention/processing speed impaired 9 | 12 (42.9) |
Executive function impaired 9 | 4 (13.8) |
Diagnosis regarding cognition 1 | |
No cognitive complaints | 11 (22.9) |
Subjective cognitive decline | 17 (35.4) |
Mild Cognitive Impairment | 17 (35.4) |
Dementia | 3 (6.3) |
Brain Area | N (%) | M 1 | SD |
---|---|---|---|
Lentiform nucleus | 48 (96.0) | 7.8 | 2.5 |
Caudate nucleus | 35 (70.0) | 4.8 | 4.3 |
Thalamus | 34 (68.0) | 4.8 | 3.8 |
Subcortical white matter | 32 (64.0) | 3.3 | 3.4 |
Cerebral cortex | 18 (36.0) | 1.1 | 1.7 |
Cerebellar hemispheres | 39 (78.0) | 4.8 | 3.6 |
Vermis | 24 (48.0) | 1.3 | 1.7 |
Mesencephalon | 8 (16.0) | 0.7 | 1.9 |
Pons | 6 (17.1) | 0.3 | 1.0 |
Medulla | 3 (6.0) | 0.1 | 0.6 |
TCS | 50 (100.0) | 29.0 | 18.1 |
Univariate Analysis | Age/Sex-Adjusted Analysis | |||||
---|---|---|---|---|---|---|
OR | 95%-CI | p-Value | OR | 95%-CI | p-Value | |
Motor dysfunction | 1.05 | 1.01–1.09 | 0.02 | 1.04 | 1.00–1.09 | 0.05 |
Parkinsonism | 1.03 | 1.00–1.07 | 0.14 | 1.04 | 1.00–1.09 | 0.09 |
Bradykinesia/hypokinesia | 1.06 | 1.02–1.11 | <0.01 | 1.07 | 1.02–1.12 | <0.01 |
Rest tremor | 0.96 | 0.91–1.02 | 0.16 | 0.94 | 0.88–1.01 | 0.08 |
Rigidity | 1.02 | 0.99–1.06 | 0.20 | 1.02 | 0.99–1.06 | 0.20 |
Cerebellar dysfunction | 1.04 | 1.00–1.08 | 0.03 | 1.04 | 1.00–1.07 | 0.06 |
Limb ataxia | 1.04 | 1.01–1.08 | 0.03 | 1.03 | 1.00–107 | 0.07 |
Gait ataxia | 1.05 | 1.00–1.10 | 0.04 | 1.06 | 1.00–1.12 | 0.04 |
Intention tremor | 1.01 | 0.96–1.07 | 0.62 | 1.04 | 0.97–1.11 | 0.27 |
Increased fall risk | 1.05 | 1.01–1.09 | 0.02 | 1.04 | 1.00–1.08 | 0.03 |
Cognitive disorders 2 | 1.03 | 0.99–1.06 | 0.14 | 1.03 | 0.99–1.07 | 0.10 |
Global cognitive functioning (MoCA) | 1.01 | 0.98–1.04 | 0.50 | 1.01 | 0.97–1.04 | 0.77 |
Memory 3 | 1.03 | 0.98–1.09 | 0.18 | 1.03 | 0.98–1.09 | 0.28 |
Attention/processing speed | 1.03 | 1.00–1.07 | 0.09 | 1.06 | 1.01–1.12 | 0.02 |
Executive function 3 | 0.96 | 0.89–1.03 | 0.22 | 0.90 | 0.79–1.03 | 0.13 |
Univariate Analysis | Age/Sex-Adjusted Analysis | |||||
---|---|---|---|---|---|---|
Location of Calcification | OR | 95%-CI | p-Value | OR | 95%-CI | p-Value |
Motor dysfunction | ||||||
Lentiform nucleus | 1.57 | 1.14–2.16 | <0.01 | 1.50 | 1.07–2.09 | 0.02 |
Caudate nucleus | 1.12 | 0.97–1.29 | 0.13 | 1.09 | 0.94–1.27 | 0.25 |
Thalamus | 1.08 | 0.92–1.25 | 0.36 | 1.05 | 0.89–1.23 | 0.56 |
Subcortical white matter | 1.23 | 1.00–1.51 | 0.05 | 1.19 | 0.96–1.47 | 0.11 |
Cerebral cortex | 1.31 | 0.89–1.95 | 0.17 | 1.22 | 0.81–1.84 | 0.35 |
Cerebellar hemisphere | 1.23 | 1.03–1.47 | 0.03 | 1.17 | 0.97–1.42 | 0.11 |
Vermis | 1.62 | 1.01–2.58 | 0.04 | 1.46 | 0.92–2.34 | 0.11 |
Midbrain | 2.17 | 0.55–8.61 | 0.27 | 2.08 | 0.53–8.19 | 0.29 |
Pons | 2.16 | 0.57–8.16 | 0.26 | 1.93 | 0.51–7.22 | 0.33 |
Medulla | 1.48 | 0.36–6.14 | 0.59 | 1.32 | 0.28–6.17 | 0.73 |
Cognitive disorders | ||||||
Lentiform nucleus | 1.13 | 0.89–1.43 | 0.32 | 1.16 | 0.89–1.52 | 0.29 |
Caudate nucleus | 1.02 | 0.89–1.17 | 0.74 | 1.03 | 0.89–1.20 | 0.65 |
Thalamus | 1.03 | 0.84–1.20 | 0.71 | 1.03 | 0.88–1.21 | 0.70 |
Subcortical white matter | 1.21 | 0.99–1.48 | 0.06 | 1.25 | 1.01–1.54 | 0.04 |
Cerebral cortex | 1.22 | 0.85–1.75 | 0.29 | 1.29 | 0.88–1.90 | 0.19 |
Cerebellar hemisphere | 1.09 | 0.93–1.29 | 0.27 | 1.12 | 0.93–1.36 | 0.22 |
Vermis | 1.29 | 0.88–1.88 | 0.19 | 1.44 | 0.94–2.22 | 0.10 |
Mesencephalon | NA | NA | NA | NA | NA | NA |
Pons | 1.28 | 0.67–2.42 | 0.46 | 1.41 | 0.73–2.71 | 0.31 |
Medulla | NA | NA | NA | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathijssen, G.; van Valen, E.; de Jong, P.A.; Golüke, N.M.S.; van Maren, E.A.; Snijders, B.M.G.; Brilstra, E.H.; Ruigrok, Y.M.; Bakker, S.; Goto, R.W.; et al. The Association between Intracranial Calcifications and Symptoms in Patients with Primary Familial Brain Calcification. J. Clin. Med. 2024, 13, 828. https://doi.org/10.3390/jcm13030828
Mathijssen G, van Valen E, de Jong PA, Golüke NMS, van Maren EA, Snijders BMG, Brilstra EH, Ruigrok YM, Bakker S, Goto RW, et al. The Association between Intracranial Calcifications and Symptoms in Patients with Primary Familial Brain Calcification. Journal of Clinical Medicine. 2024; 13(3):828. https://doi.org/10.3390/jcm13030828
Chicago/Turabian StyleMathijssen, Gini, Evelien van Valen, Pim A. de Jong, Nienke M. S. Golüke, Emiel A. van Maren, Birgitta M. G. Snijders, Eva H. Brilstra, Ynte M. Ruigrok, Susan Bakker, Renzo W. Goto, and et al. 2024. "The Association between Intracranial Calcifications and Symptoms in Patients with Primary Familial Brain Calcification" Journal of Clinical Medicine 13, no. 3: 828. https://doi.org/10.3390/jcm13030828
APA StyleMathijssen, G., van Valen, E., de Jong, P. A., Golüke, N. M. S., van Maren, E. A., Snijders, B. M. G., Brilstra, E. H., Ruigrok, Y. M., Bakker, S., Goto, R. W., Emmelot-Vonk, M. H., & Koek, H. L. (2024). The Association between Intracranial Calcifications and Symptoms in Patients with Primary Familial Brain Calcification. Journal of Clinical Medicine, 13(3), 828. https://doi.org/10.3390/jcm13030828