Perspectives for the Use of Umbilical Cord Blood in Transplantation and Beyond: Initiatives for an Advanced and Sustainable Public Banking Program in Greece
Abstract
:1. Introduction
2. UCB Banking for Allogeneic HSCT: The Greek Policies for Efficacy Optimization Based on the Population HLA Profiling
3. Novel Applications of UCB beyond HSCT: Insights from the Greek Experience
3.1. UCB-Derived, off-the-Shelf Adoptive Immunotherapy
3.2. UCB and Cord-Tissue Derived Mesechymal Stem/Stromal Cells
3.3. UCB-Derived Induced Pluripotent Stem Cells from Homozygous Units
3.4. UCB-Derived Plasma Rich Platelet and Related Components
3.5. UCB-Derived Microparticles
4. Ethical and Legal Issues
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Gluckman, E.; Broxmeyer, H.E.; Auerbach, A.D.; Friedman, H.S.; Douglas, G.W.; Devergie, A.; Esperou, H.; Thierry, D.; Socie, G.; Lehn, P.; et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N. Engl. J. Med. 1989, 321, 1174–1178. [Google Scholar] [CrossRef] [PubMed]
- Petrini, C. Umbilical cord blood banking: From personal donation to international public registries to global bioeconomy. J. Blood Med. 2014, 5, 87–97. [Google Scholar] [CrossRef]
- Wagner, A.M.; Krenger, W.; Suter, E.; Ben Hassem, D.; Surbek, D.V. High acceptance rate of hybrid allogeneic autologous umbilical cord blood banking among actual and potential Swiss donors. Transfusion 2013, 53, 1510–1519. [Google Scholar] [CrossRef]
- Guilcher, G.M.T.; Fernandez, C.V.; Joffe, S. Are hybrid umbilical cord blood banks really the best of both worlds? J. Med. Ethics 2015, 41, 272–275. [Google Scholar] [CrossRef]
- O’Connor, M.A.; Samuel, G.; Jordens, C.F.; Kerridge, I.H. Umbilical cord blood banking: Beyond the public-private divide. J. Law Med. 2012, 19, 512–516. [Google Scholar] [PubMed]
- World Marrow Donor Association (WMDA) Data 2023. Available online: https://wmda.info/ (accessed on 15 February 2024).
- Fuchs, E.J.; O’Donnell, P.V.; Eapen, M.; Logan, B.; Antin, J.H.; Dawson, P.; Devine, S.; Horowitz, M.M.; Horwitz, M.E.; Karanes, C.; et al. Double unrelated umbilical cord blood vs HLA-haploidentical bone marrow transplantation: The BMT CTN 1101 trial. Blood 2021, 137, 420–428. [Google Scholar] [CrossRef]
- Wagner, J.E.; Barker, J.N.; DeFor, T.E.; Baker, K.S.; Blazar, B.R.; Eide, C.; Goldman, A.; Kersey, J.; Krivit, W.; MacMillan, M.L.; et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: Influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood 2002, 100, 1611–1618. [Google Scholar] [CrossRef] [PubMed]
- NetCord-FACT International Standards for Cord Blood Collection, Banking, and Release for Administration, 7th ed.; Foundation for the Accreditation of Cellular Therapies (FACT), University of Nebraska Medical Center: Omaha, NE, USA, 2019; Available online: https://fact.navexone.com/content/dotNet/documents/?docid=229&public=true (accessed on 15 February 2024).
- Kurtzberg, J.; Troy, J.D.; Page, K.M.; El Ayoubi, H.R.; Volt, F.; Scigliuolo, G.M.; Cappelli, B.; Rocha, V.; Ruggeri, A.; Gluckman, E. Unrelated Donor Cord Blood Transplantation in Children: Lessons Learned Over 3 Decades. Stem Cells Transl. Med. 2023, 12, 26–38. [Google Scholar] [CrossRef]
- Wynn, R.; Nataraj, R.; Nadaf, R.; Poulton, K.; Logan, A. Strategies for Success with Umbilical Cord Haematopoietic Stem Cell Transplantation in Children with Malignant and Non-Malignant Disease Indications. Front. Cell Dev. Biol. 2022, 10, 836594. [Google Scholar] [CrossRef]
- Matsuda, K.; Konuma, T.; Fuse, K.; Masuko, M.; Kawamura, K.; Hirayama, M.; Uchida, N.; Ikegame, K.; Wake, A.; Eto, T.; et al. Comparison of transplant outcomes between haploidentical transplantation and single cord blood transplantation in non-remission acute myeloid leukaemia: A nationwide retrospective study. Br. J. Haematol. 2023, 201, 106–113. [Google Scholar] [CrossRef]
- Scaradavou, A.; Boelens, J.J. Lower probability of relapse after myeloablative cord blood transplantation for patients with refractory AML. Br. J. Haematol. 2023, 200, 676–677. [Google Scholar] [CrossRef] [PubMed]
- Querol, S.; Rubinstein, P.; Madrigal, A. The wider perspective: Cord blood banks and their future prospects. Br. J. Haematol. 2021, 195, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Scaradavou, A. Cord blood beyond transplantation: Can we use the experience to advance all cell therapies? Br. J. Haematol. 2021, 194, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Vlaski-Lafarge, M.; Chevaleyre, J.; Cohen, J.; Ivanovic, Z.; Lafarge, X. Discarded plasma obtained after cord blood volume reduction as an alternative for fetal calf serum in mesenchymal stromal cells cultures. Transfusion 2020, 60, 1910–1917. [Google Scholar] [CrossRef] [PubMed]
- Christensen, R.D.; Bahr, T.M.; Christensen, T.R.; Ohls, R.K.; Krong, J.; Carlton, L.C.; Henry, E.; Sheffield, M.J.; Gerday, E.; Ilstrup, S.J.; et al. Banked term umbilical cord blood to meet the packed red blood cell transfusion needs of extremely-low-gestational-age neonates: A feasibility analysis. J. Perinatol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Rebulla, P.; Querol, S.; Pupella, S.; Prati, D.; Delgadillo, J.; De Angelis, V. Recycling Apparent Waste into Biologicals: The Case of Umbilical Cord Blood in Italy and Spain. Front. Cell Dev. Biol. 2022, 9, 812038. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, N. Is it time to re-think a sustainable banking model for the Italian Cord Blood Network? Blood Transfus. 2018, 16, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Pupella, S.; Bianchi, M.; Ceccarelli, A.; Calteri, D.; Lombardini, L.; Giornetti, A.; Marano, G.; Franchini, M.; Grazzini, G.; Liumbruno, G.M. A cost analysis of public cord blood banks belonging to the Italian Cord Blood Network. Blood Transfus. 2018, 16, 313–320. [Google Scholar] [CrossRef]
- Hernandez, D.; Danby, R.D.; Querol, S. Editorial: Umbilical cord blood and tissue in novel therapies and haematopoiesis research. Front. Cell Dev. Biol. 2022, 10, 979306. [Google Scholar] [CrossRef]
- Samarkanova, D.; Codinach, M.; Montemurro, T.; Mykhailova, L.; Tancredi, G.; Gallerano, P.; Mallis, P.; Michalopoulos, E.; Wynn, L.; Calvo, J.; et al. Multi-component cord blood banking: A proof-of-concept international exercise. Blood Transfus. 2023, 21, 526–537. [Google Scholar] [CrossRef]
- Álvarez-Palomo, B.; Veiga, A.; Raya, A.; Codinach, M.; Torrents, S.; Ponce Verdugo, L.; Rodriguez-Aierbe, C.; Cuellar, L.; Alenda, R.; Arbona, C.; et al. Public Cord Blood Banks as a source of starting material for clinical grade HLA-homozygous induced pluripotent stem cells. Stem Cell Res. Ther. 2022, 13, 408. [Google Scholar] [CrossRef] [PubMed]
- The MHC Sequencing Consortium. Complete sequence and gene map of a human major histocompatibility complex. Nature 1999, 401, 921–923. [Google Scholar] [CrossRef] [PubMed]
- Pingel, J.; Solloch, U.V.; Hofmann, J.A.; Lange, V.; Ehninger, G.; Schmidt, A.H. High-resolution HLA haplotype frequencies of stem cell donors in Germany with foreign parentage: How can they be used to improve unrelated donor searches? Hum. Immunol. 2013, 74, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Gragert, L.; Eapen, M.; Williams, E.; Freeman, J.; Spellman, S.; Baitty, R.; Hartzman, R.; Rizzo, J.D.; Horowitz, M.; Confer, D.; et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N. Engl. J. Med. 2014, 371, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Latsoudis, H.; Stylianakis, E.; Mavroudi, I.; Kanterakis, A.; Pavlidis, P.; Georgopoulou, A.; Batsali, A.; Gontika, I.; Fragiadaki, I.; Zamanakou, M.; et al. Significance of regional population HLA immunogenetic datasets in the efficacy of umbilical cord blood banks and marrow donor registries: A study of Cretan HLA genetic diversity. Cytotherapy 2022, 24, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Latsoudis, H.; Loulakaki, M.; Pavlidis, P.; Kanterakis, A.; Mavroudi, I.; Fragiadaki, I.; Gontika, I.; Papadaki, H.A. The intra-population HLA diversity in Crete and the importance of the regional public umbilical cord blood bank in HLA-based donor selection for allogeneic hematopoietic stem cell transplantation. HemaSphere 2022, 6, 1237–1238. [Google Scholar] [CrossRef]
- Motta, C.M.; Keller, M.D.; Bollard, C.M. Applications of virus-specific T cell therapies post-BMT. Semin. Hematol. 2023, 60, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Hont, A.B.; Powell, A.B.; Sohai, D.K.; Valdez, I.K.; Stanojevic, M.; Geiger, A.E.; Chaudhary, K.; Dowlati, E.; Bollard, C.M.; Cruz, C.R.Y. The generation and application of antigen-specific T cell therapies for cancer and viral-associated disease. Mol. Ther. 2022, 30, 2130–2152. [Google Scholar] [CrossRef]
- June, C.H.; Sadelain, M. Chimeric Antigen Receptor Therapy. N. Engl. J. Med. 2018, 379, 64–73. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Alvanou, M.; Karavalakis, G.; Tzannou, I.; Yannaki, E. Pathogen-specific T Cells: Targeting Old Enemies and New Invaders in Transplantation and Beyond. Hemasphere 2023, 7, e809. [Google Scholar] [CrossRef]
- Pfeiffer, T.; Tzannou, I.; Wu, M.; Ramos, C.; Sasa, G.; Martinez, C.; Lulla, P.; Krance, R.A.; Scherer, L.; Ruderfer, D.; et al. Posoleucel, an Allogeneic, Off-the-Shelf Multivirus-Specific T-Cell Therapy, for the Treatment of Refractory Viral Infections in the Post-HCT Setting. Clin. Cancer Res. 2023, 29, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, A.; Karavalakis, G.; Papadopoulou, E.; Xochelli, A.; Bousiou, Z.; Vogiatzoglou, A.; Papayanni, P.G.; Georgakopoulou, A.; Giannaki, M.; Stavridou, F.; et al. SARS-CoV-2-specific T cell therapy for severe COVID-19: A randomized phase 1/2 trial. Nat. Med. 2023, 29, 2019–2029. [Google Scholar] [CrossRef]
- Koukoulias, K.; Papadopoulou, A.; Kouimtzidis, A.; Papayanni, P.G.; Papaloizou, A.; Sotiropoulos, D.; Yiangou, M.; Costeas, P.; Anagnostopoulos, A.; Yannaki, E.; et al. Non-transplantable cord blood units as a source for adoptive immunotherapy of leukaemia and a paradigm of circular economy in medicine. Br. J. Haematol. 2021, 194, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Hont, A.B.; Cruz, C.R.; Ulrey, R.; O’Brien, B.; Stanojevic, M.; Datar, A.; Albihani, S.; Saunders, D.; Hanajiri, R.; Panchapakesan, K.; et al. Immunotherapy of Relapsed and Refractory Solid Tumors with Ex Vivo Expanded Multi-Tumor Associated Antigen Specific Cytotoxic T Lymphocytes: A Phase I Study. J. Clin. Oncol. 2019, 37, 2349–2359. [Google Scholar] [CrossRef]
- Lulla, P.D.; Tzannou, I.; Vasileiou, S.; Carrum, G.; Ramos, C.A.; Kamble, R.; Wang, T.; Wu, M.; Bilgi, M.; Gee, A.P.; et al. The safety and clinical effects of administering a multiantigen-targeted T cell therapy to patients with multiple myeloma. Sci. Transl. Med. 2020, 12, eaaz3339. [Google Scholar] [CrossRef]
- Merindol, N.; Grenier, A.J.; Caty, M.; Charrier, E.; Duval, A.; Duval, M.; Champagne, M.A.; Soudeyns, H. Umbilical cord blood T cells respond against the Melan-A/MART-1 tumor antigen and exhibit reduced alloreactivity as compared with adult blood-derived T cells. J. Immunol. 2010, 185, 856–866. [Google Scholar] [CrossRef]
- Abraham, A.A.; John, T.D.; Keller, M.D.; Cruz, C.R.N.; Salem, B.; Roesch, L.; Liu, H.; Hoq, F.; Grilley, B.J.; Gee, A.P.; et al. Safety and feasibility of virus-specific T cells derived from umbilical cord blood in cord blood transplant recipients. Blood Adv. 2019, 3, 2057–2068. [Google Scholar] [CrossRef] [PubMed]
- Koukoulias, K.; Papadopoulou, A.; Kouimtzidis, A.; Sotiropoulos, D.; Yiangou, M.; Anagnostopoulos, A.; Yannaki, E.; Kaloyannidis, P. An “all in one” T-cell Product from non-transplantable Cord Blood Units for Virus- and leukemia-specific T-cell Immunotherapy (Poster 121). Bone Marrow Transplant. 2020, 55, 270. [Google Scholar] [CrossRef]
- Dolstra, H.; Roeven, M.W.H.; Spanholtz, J.; Hangalapura, B.N.; Tordoir, M.; Maas, F.; Leenders, M.; Bohme, F.; Kok, N.; Trilsbeek, C.; et al. Successful Transfer of Umbilical Cord Blood CD34+ Hematopoietic Stem and Progenitor-derived NK Cells in Older Acute Myeloid Leukemia Patients. Clin. Cancer Res. 2017, 23, 4107–4118. [Google Scholar] [CrossRef]
- Shah, N.; Li, L.; McCarty, J.; Kaur, I.; Yvon, E.; Shaim, H.; Muftuoglu, M.; Liu, E.; Orlowski, R.Z.; Cooper, L.; et al. Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br. J. Haematol. 2017, 177, 457–466. [Google Scholar] [CrossRef]
- Wrona, E.; Borowiec, M.; Potemski, P. CAR-NK Cells in the Treatment of Solid Tumors. Int. J. Mol. Sci. 2021, 22, 5899. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Tong, J.; Wang, Y.; Yang, Y.; Wu, X. Case Report: Cord blood-derived natural killer cells as new potential immunotherapy drug for solid tumor: A case study for endometrial cancer. Front. Immunol. 2023, 14, 1213161. [Google Scholar] [CrossRef] [PubMed]
- Herrera, L.; Juan, M.; Eguizabal, C. Purification, Culture, and CD19-CAR Lentiviral Transduction of Adult and Umbilical Cord Blood NK Cells. Curr. Protoc. Immunol. 2020, 131, e108. [Google Scholar] [CrossRef]
- Basar, R.; Daher, M.; Rezvani, K. Next-generation cell therapies: The emerging role of CAR-NK cells. Blood Adv. 2020, 4, 5868–5876. [Google Scholar] [CrossRef] [PubMed]
- Karadimitris, A. Cord Blood CAR-NK Cells: Favorable Initial Efficacy and Toxicity but Durability of Clinical Responses Not Yet Clear. Cancer Cell 2020, 37, 426–427. [Google Scholar] [CrossRef] [PubMed]
- Pegram, H.J.; Purdon, T.J.; van Leeuwen, D.G.; Curran, K.J.; Giralt, S.A.; Barker, J.N.; Brentjens, R.J. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia 2015, 29, 415–422. [Google Scholar] [CrossRef]
- Liu, E.; Marin, D.; Banerjee, P.; Macapinlac, H.A.; Thompson, P.; Basar, R.; Nassif Kerbauy, L.; Overman, B.; Thall, P.; Kaplan, M.; et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N. Engl. J. Med. 2020, 382, 545–553. [Google Scholar] [CrossRef]
- Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009, 9, 162–174. [Google Scholar] [CrossRef]
- Gervassi, A.; Lejarcegui, N.; Dross, S.; Jacobson, A.; Itaya, G.; Kidzeru, E.; Gantt, S.; Jaspan, H.; Horton, H. Myeloid derived suppressor cells are present at high frequency in neonates and suppress in vitro T cell responses. PLoS ONE 2014, 9, e107816. [Google Scholar] [CrossRef]
- Köstlin, N.; Vogelmann, M.; Spring, B.; Schwarz, J.; Feucht, J.; Härtel, C.; Orlikowsky, T.W.; Poets, C.F.; Gille, C. Granulocytic myeloid-derived suppressor cells from human cord blood modulate T-helper cell response towards an anti-inflammatory phenotype. Immunology 2017, 152, 89–101. [Google Scholar] [CrossRef]
- Demosthenous, C.; Sakellari, I.; Douka, V.; Papayanni, P.G.; Anagnostopoulos, A.; Gavriilaki, E. The Role of Myeloid-Derived Suppressor Cells (MDSCs) in Graft-versus-Host Disease (GVHD). J. Clin. Med. 2021, 10, 2050. [Google Scholar] [CrossRef] [PubMed]
- Bizymi, N.; Georgopoulou, A.; Mastrogamvraki, N.; Matheakakis, A.; Gontika, I.; Fragiadaki, I.; Mavroudi, I.; Papadaki, H.A. Myeloid-Derived Suppressor Cells (MDSC) in the Umbilical Cord Blood: Biological Significance and Possible Therapeutic Applications. J. Clin. Med. 2022, 11, 727. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.J.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Baksh, D.; Yao, R.; Tuan, R.S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007, 25, 1384–1392. [Google Scholar] [CrossRef]
- Adegani, F.J.; Langroudi, L.; Arefian, E.; Shafiee, A.; Dinarvand, P.; Soleimani, M. A comparison of pluripotency and differentiation status of four mesenchymal adult stem cells. Mol. Biol. Rep. 2013, 40, 3693–3703. [Google Scholar] [CrossRef]
- Kern, S.; Eichler, H.; Stoeve, J.; Klüter, H.; Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006, 24, 1294–1301. [Google Scholar] [CrossRef]
- Bieback, K.; Kern, S.; Klüter, H.; Eichler, H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 2004, 22, 625–634. [Google Scholar] [CrossRef]
- Vasaghi, A.; Dehghani, A.; Khademalhosseini, Z.; Khosravi Maharlooei, M.; Monabati, A.; Attar, A. Parameters that influence the isolation of multipotent mesenchymal stromal cells from human umbilical cord blood. Hematol. Oncol. Stem Cell Ther. 2013, 6, 1–8. [Google Scholar] [CrossRef]
- Batsali, A.K.; Pontikoglou, C.; Koutroulakis, D.; Pavlaki, K.I.; Damianaki, A.; Mavroudi, I.; Alpantaki, K.; Kouvidi, E.; Kontakis, G.; Papadaki, H.A. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton’s jelly and bone marrow-derived mesenchymal stem cells. Stem Cell Res. Ther. 2017, 8, 102. [Google Scholar] [CrossRef]
- Tahlawi, A.; Klontzas, M.E.; Allenby, M.C.; Morais, J.C.F.; Panoskaltsis, N.; Mantalaris, A. RGD-functionalized polyurethane scaffolds promote umbilical cord blood mesenchymal stem cell expansion and osteogenic differentiation. J. Tissue Eng. Regen. Med. 2019, 13, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Chatzinikolaidou, M.; Kaliva, M.; Batsali, A.; Pontikoglou, C.; Vamvakaki, M. Wharton’s jelly Mesenchymal Stem Cell response on chitosan-graft-poly (ε-caprolactone) copolymer for myocardium tissue engineering. Curr. Pharm. Des. 2014, 20, 2030–2039. [Google Scholar] [CrossRef] [PubMed]
- Mallis, P.; Boulari, D.; Chachlaki, P.; Stavropoulos-Giokas, C.; Michalopoulos, E. Vitrified Wharton’s jelly tissue as a biomaterial for multiple tissue engineering applications. Gynecol. Endorinol. 2020, 36, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Raileanu, V.N.; Whiteley, J.; Chow, T.; Kollara, A.; Mohamed, A.; Keating, A.; Rogers, I.M. Banking Mesenchymal Stromal Cells from Umbilical Cord Tissue: Large Sample Size Analysis Reveals Consistency Between Donors. Stem Cells Transl. Med. 2019, 8, 1041–1054. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, S.; Blanc, K.L.; Ciccocioppo, R.; Dagher, G.; Filiano, A.J.; Galipeau, J.; Krampera, M.; Krieger, L.; Lalu, M.M.; Nolta, J.; et al. An International Society for Cell and Gene Therapy Mesenchymal Stromal Cells (MSC) Committee perspectives on International Standards Organization/Technical Committee 276 Biobanking Standards for bone marrow-MSCs and umbilical cord tissue-derived MSCs for research purposes. Cytotherapy 2023, 25, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Nagamura-Inoue, T.; Nagamura, F. Umbilical cord blood and cord tissue banking as somatic stem cell resources to support medical cell modalities. Inflamm. Regen. 2023, 43, 59. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Álvarez-Palomo, B.; García-Martinez, I.; Gayoso, J.; Raya, A.; Veiga, A.; Abad, M.L.; Eiras, A.; Guzmán-Fulgencio, M.; Luis-Hidalgo, M.; Eguizabal, C.; et al. Evaluation of the Spanish population coverage of a prospective HLA haplobank of induced pluripotent stem cells. Stem Cell Res. Ther. 2021, 12, 233. [Google Scholar] [CrossRef]
- Alvarez-Palomo, A.B.; Requena-Osete, J.; Delgado-Morales, R.; Moreno-Manzano, V.; Grau-Bove, C.; Tejera, A.M.; Otero, M.J.; Barrot, C.; Santos-Barriopedro, I.; Vaquero, A.; et al. A synthetic mRNA cell reprogramming method using CYCLIN D1 promotes DNA repair, generating improved genetically stable human induced pluripotent stem cells. Stem Cells 2021, 39, 866–881. [Google Scholar] [CrossRef]
- Taylor, C.J.; Bolton, E.M.; Pocock, S.; Sharples, L.D.; Pedersen, R.A.; Bradley, J.A. Banking on human embryonic stem cells: Estimating the number of donor cell lines needed for HLA matching. Lancet 2005, 366, 2019–2025. [Google Scholar] [CrossRef]
- Nakajima, F.; Tokunaga, K.; Nakatsuji, N. Human leukocyte antigen matching estimations in a hypothetical bank of human embryonic stem cell lines in the Japanese population for use in cell transplantation therapy. Stem Cells 2007, 25, 983–985. [Google Scholar] [CrossRef] [PubMed]
- Rim, Y.A.; Park, N.; Nam, Y.; Ham, D.S.; Kim, J.W.; Ha, H.Y.; Jung, J.W.; Jung, S.M.; Baek, I.C.; Kim, S.Y.; et al. Recent progress of national banking project on homozygous HLA-typed induced pluripotent stem cells in South Korea. J. Tissue Eng. Regen. Med. 2018, 12, e1531–e1536. [Google Scholar] [CrossRef] [PubMed]
- Roh, E.Y.; Oh, S.; Yoon, J.H.; Kim, B.J.; Song, E.Y.; Shin, S. Umbilical Cord Blood Units Cryopreserved in the Public Cord Blood Bank: A Breakthrough in iPSC Haplobanking? Cell Transplant. 2020, 29, 963689720926151. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Kato, T.M.; Sato, Y.; Umekage, M.; Ichisaka, T.; Tsukahara, M.; Takasu, N.; Yamanaka, S. A clinical-grade HLA haplobank of human induced pluripotent stem cells matching approximately 40% of the Japanese population. Med 2023, 4, 51–66. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, M.R.; Sommese, L.; Casamassimi, A.; Napoli, C. Platelet derivatives in regenerative medicine: An update. Transfus. Med. Rev. 2015, 29, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Tadini, G.; Pezzani, L.; Ghirardello, S.; Rebulla, P.; Esposito, S.; Mosca, F. Cord blood platelet gel treatment of dystrophic recessive epidermolysis bullosa. BMJ Case Rep. 2015, 2015, bcr2014207364. [Google Scholar] [CrossRef] [PubMed]
- Tadini, G.; Guez, S.; Pezzani, L.; Marconi, M.; Greppi, N.; Manzoni, F.; Rebulla, P.; Esposito, S. Preliminary evaluation of cord blood platelet gel for the treatment of skin lesions in children with dystrophic epidermolysis bullosa. Blood Transfus. 2015, 13, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Torkamaniha, E.; Amirkhani, M.A.; Dahmardehei, M.; Rebulla, P.; Piccin, A.; Hortamani, S.; Heidari-Kharaji, M.; Mansouri, P.; Hamidieh, A.A.; Nilforoushzadeh, M.A. Efficacy of allogeneic cord blood platelet gel on wounds of dystrophic epidermolysis bullosa patients after pseudosyndactyly surgery. Wound Repair Regen. 2021, 29, 134–143. [Google Scholar] [CrossRef]
- Piccin, A.; Rebulla, P.; Pupella, S.; Tagnin, M.; Marano, G.; Di Pierro, A.M.; Santodirocco, M.; Di Mauro, L.; Beqiri, L.; Kob, M.; et al. Impressive tissue regeneration of severe oral mucositis post stem cell transplantation using cord blood platelet gel. Transfusion 2017, 57, 2220–2224. [Google Scholar] [CrossRef]
- Volpe, P.; Marcuccio, D.; Stilo, G.; Alberti, A.; Foti, G.; Volpe, A.; Princi, D.; Surace, R.; Pucci, G.; Massara, M. Efficacy of cord blood platelet gel application for enhancing diabetic foot ulcer healing after lower limb revascularization. Semin. Vasc. Surg. 2017, 30, 106–112. [Google Scholar] [CrossRef]
- Bisceglia, G.; Santodirocco, M.; Faienza, A.; Mastrodonato, N.; Urbano, F.; Totaro, A.; Bazzocchi, F.; Di Mauro, L. First endocavitary treatment with cord blood platelet gel for perianal fistula. Regen. Med. 2020, 15, 1171–1176. [Google Scholar] [CrossRef]
- Samarkanova, D.; Martin, S.; Bisbe, L.; Puig, J.; Calatayud-Pinuaga, M.; Rodriguez, L.; Azqueta, C.; Coll, R.; Casaroli-Marano, R.; Madrigal, A.; et al. Clinical evaluation of allogeneic eye drops from cord blood platelet lysate. Blood Transfus. 2021, 19, 347–356. [Google Scholar] [CrossRef]
- Mallis, P.; Michalopoulos, E.; Balampanis, K.; Sarri, E.F.; Papadopoulou, E.; Theodoropoulou, V.; Georgiou, E.; Kountouri, A.; Lambadiari, V.; Stavropoulos-Giokas, C. Investigating the production of platelet lysate obtained from low volume Cord Blood Units: Focus on growth factor content and regenerative potential. Transfus. Apher. Sci. 2022, 61, 103465. [Google Scholar] [CrossRef]
- Mallis, P.; Gontika, I.; Dimou, Z.; Panagouli, E.; Zoidakis, J.; Makridakis, M.; Vlahou, A.; Georgiou, E.; Gkioka, V.; Stavropoulos-Giokas, C.; et al. Short Term Results of Fibrin Gel Obtained from Cord Blood Units: A Preliminary in Vitro Study. Bioengineering 2019, 6, 66. [Google Scholar] [CrossRef]
- Kontopodis, N.; Tavlas, E.; Papadopoulos, G.; Pantidis, D.; Kafetzakis, A.; Chalkiadakis, G.; Ioannou, C. Effectiveness of Platelet-Rich Plasma to Enhance Healing of Diabetic Foot Ulcers in Patients with Concomitant Peripheral Arterial Disease and Critical Limb Ischemia. Int. J. Low Extrem. Wounds 2016, 15, 45–51. [Google Scholar] [CrossRef]
- Burger, D.; Schock, S.; Thompson, C.S.; Montezano, A.C.; Hakim, A.M.; Touyz, R.M. Microparticles: Biomarkers and beyond. Clin. Sci. 2013, 124, 423–441. [Google Scholar] [CrossRef]
- Janowska-Wieczorek, A.; Majka, M.; Kijowski, J.; Baj-Krzyworzeka, M.; Reca, R.; Turner, A.R.; Ratajczak, J.; Emerson, S.G.; Kowalska, M.A.; Ratajczak, M.Z. Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood 2001, 98, 3143–3149. [Google Scholar] [CrossRef] [PubMed]
- Vasina, E.M.; Cauwenberghs, S.; Feijge, M.A.; Heemskerk, J.W.; Weber, C.; Koenen, R.R. Microparticles from apoptotic platelets promote resident macrophage differentiation. Cell Death Dis. 2011, 2, e211. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, M.Z.; Kucia, M.; Jadczyk, T.; Greco, N.J.; Wojakowski, W.; Tendera, M.; Ratajczak, J. Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: Can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia 2012, 26, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; El Andaloussi, S.; Wood, M.J. Exosomes and microvesicles: Extracellular vesicles for genetic information transfer and gene therapy. Hum. Mol. Genet. 2012, 21, R125–R134. [Google Scholar] [CrossRef] [PubMed]
- Raposo, G.; Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013, 200, 373–383. [Google Scholar] [CrossRef]
- Merkerova, M.; Belickova, M.; Bruchova, H. Differential expression of microRNAs in hematopoietic cell lineages. Eur. J. Haematol. 2008, 81, 304–310. [Google Scholar] [CrossRef]
- Liao, R.; Sun, J.; Zhang, L.; Lou, G.; Chen, M.; Zhou, D.; Chen, Z.; Zhang, S. MicroRNAs play a role in the development of human hematopoietic stem cells. J. Cell. Biochem. 2008, 104, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Xagorari, A.; Gerousi, M.; Sioga, A.; Bougiouklis, D.; Argiriou, A.; Anagnostopoulos, A.; Sotiropoulos, D. Identification of miRNAs from stem cell derived microparticles in umbilical cord blood. Exp. Hematol. 2019, 80, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Metheny, L. Umbilical cord blood derived cellular therapy: Advances in clinical development. Front. Oncol. 2023, 13, 1167266. [Google Scholar] [CrossRef]
- Shi, P.A.; Luchsinger, L.L.; Greally, J.M.; Delaney, C.S. Umbilical cord blood: An undervalued and underutilized resource in allogeneic hematopoietic stem cell transplant and novel cell therapy applications. Curr. Opin. Hematol. 2022, 29, 317–326. [Google Scholar] [CrossRef]
- Tian, P.; Elefanty, A.; Stanley, E.G.; Durnall, J.C.; Thompson, L.H.; Elwood, N.J. Creation of GMP-Compliant iPSCs From Banked Umbilical Cord Blood. Front. Cell Dev. Biol. 2022, 10, 835321. [Google Scholar] [CrossRef]
- Ray, S.K.; Mukherjee, S. Clinical Practice of Umbilical Cord Blood Stem Cells in Transplantation and Regenerative Medicine—Prodigious Promise for Imminent Times. Recent Pat. Biotechnol. 2022, 16, 16–34. [Google Scholar] [CrossRef] [PubMed]
TEST | Criteria |
---|---|
Total nucleated cell (TNC) count | ≥500 × 106 |
TNC recovery | ≥60% |
Viable CD34 cell count | ≥1.25 × 106 |
Viability of CD34 cells | ≥70% (on thawed representative sample) |
Viability of TNC count | ≥85% |
Potency | growth or positive result of potency (on thawed representative sample) |
Microbial screen | negative result for aerobes, anaerobes, fungus |
Donor Testing for Infectious disease | negative result for: HIV1, HIV2, Hepatitis B, Hepatitis C, HTLV I, HTLV II, Syphilis, CMV, and other additional tests for infectious transmissible agents in accordance to applicable law, or institutional policy |
Field of Research | References |
---|---|
HSCT | |
HLA immunoprofiling of the Greek population based on the available data of the public UCB banks and bone marrow donor registries and comparison with established international registries; development of a model to increase the efficacy and cost-effectiveness of the public UCB banks based on the population HLA diversity. | [27,28] |
Off-the-shelf adoptive immunotherapy | |
Production of dendritic cells by UCB-derived CD34+ cells stimulating the generation of bivalent leukemia-specific T-cells targeting Wilms tumor 1 and preferentially expressed antigen in melanoma antigens. | [35] |
Generation of a compact, “all-in-one”, T-cell product of UCB origin, called “LEVIS” (LEukemia-VIrus-specific T-cells), simultaneously targeting four viruses and two common leukemia associated antigens. | [40] |
Studies on the isolation, quantification, functional characterization, storage and expansion of the myeloid derived suppressor cells (MDSCs) from UCB units. | [54] |
Regenerative medicine | |
Mesenchymal stem/stromal cells (MSCs) | |
Studies on the quantitative, functional and differentiation properties of UCB- and Warton Jelly (WJ)-derived MSCs. | [62] |
Studies combining MSCs with scaffolds to explore the differentiation potential of UCB- and WJ-derived MSCs. | [63,64] |
Studies on methodologies for long-term storage of WJ with maintenance of MSC survival, proliferation, differentiation properties. | [65] |
Induced pluripotent stem cells (iPSCs) | |
Participation in the Cooperation in Science and Technology HAPLO-iPS Action aiming to develop super donor iPSC lines from UCB units homozygous for common HLA European haplotypes. | https://www.cost.eu/actions/CA21151/ (accessed on 15 February 2024) |
Specialized Transfusion Medicine | |
Evaluation of the qualitative properties of platelet lysates obtained from small volume, non-suitable for HSCT UCB units, in terms of growth factor content, wound healing and angiogenesis properties. | [85,86] |
Participation in a European network of public UCB banks to generate and promote protocols for the fractionation of inappropriate for HSCT UCB units into (a) UCB plasma rich platelet for the use in skin ulcers, (b) UCB platelet poor plasma for the preparation of eye drops, and (c) leukoreduced red blood cells for possible transfusion of neonates. | [22] |
Clinical study using UCB-derived plasma rich platelet for the treatment of diabetic patients with peripheral arterial disease and critical limb ischemia substituting the standard autologous plasma rich platelet treatment. | [87], unpublished data |
Other research initiatives with clinical potential | |
Investigation of the distinct signature characteristics of microparticles derived from UCB CD34+ cells and their potential use in the clinics. | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pateraki, P.; Latsoudis, H.; Papadopoulou, A.; Gontika, I.; Fragiadaki, I.; Mavroudi, I.; Bizymi, N.; Batsali, A.; Klontzas, M.E.; Xagorari, A.; et al. Perspectives for the Use of Umbilical Cord Blood in Transplantation and Beyond: Initiatives for an Advanced and Sustainable Public Banking Program in Greece. J. Clin. Med. 2024, 13, 1152. https://doi.org/10.3390/jcm13041152
Pateraki P, Latsoudis H, Papadopoulou A, Gontika I, Fragiadaki I, Mavroudi I, Bizymi N, Batsali A, Klontzas ME, Xagorari A, et al. Perspectives for the Use of Umbilical Cord Blood in Transplantation and Beyond: Initiatives for an Advanced and Sustainable Public Banking Program in Greece. Journal of Clinical Medicine. 2024; 13(4):1152. https://doi.org/10.3390/jcm13041152
Chicago/Turabian StylePateraki, Patra, Helen Latsoudis, Anastasia Papadopoulou, Ioanna Gontika, Irene Fragiadaki, Irene Mavroudi, Nikoleta Bizymi, Aristea Batsali, Michail E. Klontzas, Angeliki Xagorari, and et al. 2024. "Perspectives for the Use of Umbilical Cord Blood in Transplantation and Beyond: Initiatives for an Advanced and Sustainable Public Banking Program in Greece" Journal of Clinical Medicine 13, no. 4: 1152. https://doi.org/10.3390/jcm13041152
APA StylePateraki, P., Latsoudis, H., Papadopoulou, A., Gontika, I., Fragiadaki, I., Mavroudi, I., Bizymi, N., Batsali, A., Klontzas, M. E., Xagorari, A., Michalopoulos, E., Sotiropoulos, D., Yannaki, E., Stavropoulos-Giokas, C., & Papadaki, H. A. (2024). Perspectives for the Use of Umbilical Cord Blood in Transplantation and Beyond: Initiatives for an Advanced and Sustainable Public Banking Program in Greece. Journal of Clinical Medicine, 13(4), 1152. https://doi.org/10.3390/jcm13041152