Immuno-Diagnostic Interest in Monitoring CD16+CD56+ (Natural Killer) Cells and CD19+CD45+ (B Lymphocytes) in Individuals Newly Diagnosed with HIV in a Tertiary Care Center
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Data Collection
- –
- HIV RNA/mL plasma level at diagnosis, which was ranked into 5 levels: ≤500, 501–3000, 3001–10,000, 10,001–30,000, and >30,000 copies/mL. This ranking corresponds to 5 risk categories, determined by Mellors et al., and was demonstrated to be associated with differential 6-year risks of progression to AIDS of 5.4%, 16.6%, 31.7%, 55.2%, and 80.0% [9].
- –
- Blood count data including total white blood cells (WBCs), lymphocyte count, platelets, and monocyte count.
- –
- Counts and percentages of the following phenotypes: CD3+CD45+, CD3+CD4+CD45+, CD3+CD8+CD45+, CD16+CD56+ (NK cells), and CD19+CD45+ (B cells), and CD4:CD8 ratio.
2.3. Diagnostic Immunology Assays
2.3.1. Immunophenotyping of Lymphocytes
2.3.2. Nucleic Acid Amplification Test for the Quantitation of Human HIV-1 Ribonucleic Acid (RNA) in Human Plasma
2.4. Statistical Approaches
2.4.1. Hypothesis 1
2.4.2. Hypothesis 2
2.4.3. Hypothesis 3
2.5. Statistical Methods
3. Results
3.1. Baseline Characteristics
3.2. Change in HIV RNA/mL Plasma from Baseline to Outcome
3.3. Change in Blood Count and Phenotyping Parameters
3.4. Correlation of Immunophenotyping Parameters with HIV RNA/mL Plasma Levels
3.5. Significance of NK Cell Count, B Cell Count, and CD3+ Count in Indicating AIDS Status (Pooled Data)
4. Discussion
4.1. Summary of Findings
4.2. Discussing Baseline Observations
4.3. Impact of HIV Infection on NK Cells
4.4. Impact of HIV Infection on CD19+ Lymphocytes
4.5. Clinical Implications
- –
- One of the potential applications is in the comprehensive assessment of immune status in HIV-infected individuals, especially at diagnosis.
- –
- Clinicians can further use these CD markers to track the effectiveness of ART and make informed decisions regarding treatment adjustments when necessary. This constitutes an area for research into the added value of monitoring these parameters for more effective management.
- –
- More notably, NK cell count has shown remarkable sensitivity in indicating AIDS status, with 95.5% sensitivity at a cutoff of <73 cells/mm3. The analysis of the kinetics of NK count changes during HIV infection would present a potential application in the early identification of patients progressing towards AIDS, allowing for timely intervention.
- –
- On the other hand, the inclusion of these markers in routine assessment and monitoring will entail extra costs that may require further evidence to support their added clinical value and cost-effectiveness. The complexity of the assay and the need for specialized equipment may limit its accessibility, especially in resource-limited settings where the burden of HIV is often the highest. It is to note that, in our department, the phenotyping assay systematically analyzes all lymphocyte subsets, including CD4, CD8, and other CD markers.
- –
- Furthermore, the effective implementation of these markers requires technical expertise not only in performing the assay but also in interpreting the results, which may not be readily available in all clinical settings.
- –
- The alarming rates of late HIV diagnosis, with a substantial portion of patients already in the AIDS stage at the time of diagnosis, underline the need for increased awareness and routine testing in Saudi Arabia. Early identification of HIV infection is paramount in preventing the progression to AIDS and reducing the transmission of the virus within the community.
4.6. Research Implications
- –
- Further research is warranted to establish the correlations between viral load and NK cell as well as B cell counts, unlike CD4+ cell counts, which have a well-established threshold for staging HIV infection. Defining standard thresholds is crucial for streamlining clinical interpretation and ensuring consistent results across different laboratories and technicians.
- –
- Secondly, the longitudinal stability of the markers in question needs to be evaluated. CD4+ cell counts are known to fluctuate with disease progression and treatment, and it is necessary to understand how NK and B cell counts may vary over time and in response to ART.
- –
- The markers’ specificity and sensitivity in detecting various stages of HIV across different populations need confirmation to ensure accurate disease staging, without interfering with other conditions.
- –
- The clinical benefits of these markers and their cost-effectiveness still need to be proven through rigorous trials before they can be adopted into standard HIV management protocols.
4.7. Limitations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frank, T.D.; Carter, A.; Jahagirdar, D.; Biehl, M.H.; Douwes-Schultz, D.; Larson, S.L.; Arora, M.; Dwyer-Lindgren, L.; Steuben, K.M.; Abbastabar, H. Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: A systematic analysis for the global burden of diseases, injuries, and risk factors study 2017. Lancet HIV 2019, 6, e831–e859. [Google Scholar] [CrossRef]
- WHO. The Use of Antiretroviral Drugs for Treating and Preventing HIV Infection. 2016. Available online: https://iris.who.int/bitstream/handle/10665/208825/9789241549684_eng.pdf?sequence=1 (accessed on 15 September 2022).
- Pham, M.D.; Romero, L.; Parnell, B.; Anderson, D.A.; Crowe, S.M.; Luchters, S. Feasibility of antiretroviral treatment monitoring in the era of decentralized HIV care: A systematic review. AIDS Res. Ther. 2017, 14, 3. [Google Scholar] [CrossRef]
- Kagan, J.M.; Sanchez, A.M.; Landay, A.; Denny, T.N. A brief chronicle of CD4 as a biomarker for HIV/AIDS: A tribute to the memory of John L. Fahey. Onco Ther. 2015, 6, 55–64. [Google Scholar] [CrossRef]
- Vivancos-Gallego, M.J.; Okhai, H.; Perez-Elías, M.J.; Gomez-Ayerbe, C.; Moreno-Zamora, A.; Casado, J.L.; Quereda, C.; Sanz, J.M.; Sanchez-Conde, M.; Serrano-Villar, S. CD4+:CD8+ T-cell ratio changes in people with HIV receiving antiretroviral treatment. Antivir. Ther. 2020, 25, 91–100. [Google Scholar] [CrossRef]
- McIntyre, J. Use of antiretrovirals during pregnancy and breastfeeding in low-income and middle-income countries. Curr. Opin. HIV AIDS 2010, 5, 48–53. [Google Scholar] [CrossRef]
- Appay, V.; Sauce, D. Assessing immune aging in HIV-infected patients. Virulence 2017, 8, 529–538. [Google Scholar] [CrossRef]
- Moir, S.; Fauci, A.S. B cells in HIV infection and disease. Nat. Rev. Immunol. 2009, 9, 235–245. [Google Scholar] [CrossRef]
- Mellors, J.W. Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann. Intern. Med. 1997, 126, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, K. Current status of HIV/AIDS in the ART Era. J. Infect. Chemother. 2017, 23, 12–16. [Google Scholar] [CrossRef] [PubMed]
- May, M.; Gompels, M.; Delpech, V.; Porter, K.; Post, F.; Johnson, M.; Dunn, D.; Palfreeman, A.; Gilson, R.; Gazzard, B. Impact of late diagnosis and treatment on life expectancy in people with HIV-1: UK collaborative HIV cohort (UK CHIC) study. BMJ 2011, 343, d6016. [Google Scholar] [CrossRef] [PubMed]
- Delpierre, C.; Cuzin, L.; Lert, F. Routine testing to reduce late HIV diagnosis in France. BMJ 2007, 334, 1354–1356. [Google Scholar] [CrossRef] [PubMed]
- MacCarthy, S.; Hoffmann, M.; Ferguson, L.; Nunn, A.; Irvin, R.; Bangsberg, D.; Gruskin, S.; Dourado, I. The HIV care cascade: Models, measures and moving forward. J. Int. AIDS Soc. 2015, 18, 19395. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Mao, Y.; Tang, W.; Han, J.; Xu, J.; Li, J. “Late for testing, early for antiretroviral therapy, less likely to die”: Results from a large HIV cohort study in China, 2006–2014. BMC Infect. Dis. 2018, 18, 272. [Google Scholar] [CrossRef] [PubMed]
- Pahl, J.; Cerwenka, A. Tricking the balance: NK cells in anti-cancer immunity. Immunobiology 2017, 222, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Moretta, A.; Marcenaro, E.; Sivori, S.; Della Chiesa, M.; Vitale, M.; Moretta, L. Early liaisons between cells of the innate immune system in inflamed peripheral tissues. Trends Immunol. 2005, 26, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Mattiola, I.; Pesant, M.; Tentorio, P.F.; Molgora, M.; Marcenaro, E.; Lugli, E.; Locati, M.; Mavilio, D. Priming of human resting NK Cells by autologous M1 macrophages via the engagement of IL-1β, IFN-β, and IL-15 pathways. J. Immunol. 2015, 195, 2818–2828. [Google Scholar] [CrossRef] [PubMed]
- Rook, A.H.; Masur, H.; Lane, H.C.; Frederick, W.; Kasahara, T.; Macher, A.M.; Djeu, J.Y.; Manischewitz, J.F.; Jackson, L.; Fauci, A.S.; et al. Interleukin-2 enhances the depressed natural killer and cytomegalovirus-specific cytotoxic activities of lymphocytes from patients with the acquired immune deficiency syndrome. J. Clin. Investig. 1983, 72, 398–403. [Google Scholar] [CrossRef]
- Bonavida, B.; Katz, J.; Gottlieb, M. Mechanism of defective NK cell activity in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. I. Defective trigger on NK cells for NKCF production by target cells, and partial restoration by IL 2. J. Immunol. 1986, 137, 1157–1163. [Google Scholar] [CrossRef]
- Alcocer-Varela, J.; Alarcon-Segovia, D.; Abud-Mendoza, C. Immunoregulatory circuits in the acquired immune deficiency syndrome and related complex. Production of and response to interleukins 1 and 2, NK function and its enhancement by interleukin-2 and kinetics of the autologous mixed lymphocyte reaction. Clin. Exp. Immunol. 1985, 60, 31–38. [Google Scholar] [PubMed]
- Poli, G.; Introna, M.; Zanaboni, F.; Peri, G.; Carbonari, M.; Aiuti, F.; Lazzarin, A.; Moroni, M.; Mantovani, A. Natural killer cells in intravenous drug abusers with lymphadenopathy syndrome. Clin. Exp. Immunol. 1985, 62, 128–135. [Google Scholar] [PubMed]
- Voth, R.; Rossol, S.; Gräff, E.; Laubenstein, H.P.; Schröder, H.C.; Müller, W.E.G.; zum Büschenfelde, K.H.M.; Hess, G. Natural killer cell activity as a prognostic parameter in the progression to AIDS. J. Infect. Dis. 1988, 157, 851–852. [Google Scholar] [CrossRef]
- Mansour, I.; Doinel, C.; Rouger, P. CD16+ NK cells decrease in all stages of HIV infection through a selective depletion of the CD16+CD8+CD3− Subset. AIDS Res. Hum. Retroviruses 1990, 6, 1451–1457. [Google Scholar] [CrossRef]
- Vuillier, F.; Bianco, N.E.; Montagnier, L.; Dighiero, G. Selective depletion of low-density CD8+, CD16+ lymphocytes during HIV infection. AIDS Res. Hum. Retroviruses 1988, 4, 121–129. [Google Scholar] [CrossRef]
- Mikulak, J.; Oriolo, F.; Zaghi, E.; Di Vito, C.; Mavilio, D. Natural killer cells in HIV-1 infection and therapy. AIDS 2017, 31, 2317–2330. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, D.W.; Balfour, H.H.; Dunmire, S.K.; Schmeling, D.O.; Hogquist, K.A.; Lanier, L.L. Cutting edge: NKG2ChiCD57+ NK cells respond specifically to acute infection with cytomegalovirus and not Epstein–Barr virus. J. Immunol. 2014, 192, 4492–4496. [Google Scholar] [CrossRef] [PubMed]
- Schlums, H.; Cichocki, F.; Tesi, B.; Theorell, J.; Beziat, V.; Holmes, T.D.; Han, H.; Chiang, S.C.C.; Foley, B.; Mattsson, K.; et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 2015, 42, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Flores-Borja, F.; Bosma, A.; Ng, D.; Reddy, V.; Ehrenstein, M.R.; Isenberg, D.A.; Mauri, C. CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci. Transl. Med. 2013, 5, 173ra23. [Google Scholar] [CrossRef] [PubMed]
- Moir, S.; Fauci, A.S. Pathogenic mechanisms of B-lymphocyte dysfunction in HIV disease. J. Allergy Clin. Immunol. 2008, 122, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Schnittman, S.M.; Lane, H.C.; Higgins, S.E.; Folks, T.; Fauci, A.S. Direct polyclonal activation of human B lymphocytes by the acquired immune deficiency syndrome virus. Science 1986, 233, 1084–1086. [Google Scholar] [CrossRef] [PubMed]
- Chirmule, N.; Oyaizu, N.; Kalyanaraman, V.S.; Pahwa, S. Inhibition of normal B-cell function by human immunodeficiency virus envelope glycoprotein, gp120. Blood 1992, 79, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, A.; Broström, C.; van Dijk, N.; Sönnerborg, A.; Chiodi, F. Apoptosis of CD4+ and CD19+ cells during human immunodeficiency virus type 1 infection—Correlation with clinical progression, viral load, and loss of humoral immunity. Virology 1997, 238, 180–188. [Google Scholar] [CrossRef]
- Ho, J.; Moir, S.; Malaspina, A.; Howell, M.L.; Wang, W.; DiPoto, A.C.; O’Shea, M.A.; Roby, G.A.; Kwan, R.; Mican, J.M.; et al. Two overrepresented B cell populations in HIV-infected individuals undergo apoptosis by different mechanisms. Proc. Natl. Acad. Sci. USA 2006, 103, 19436–19441. [Google Scholar] [CrossRef] [PubMed]
- Moir, S.; Malaspina, A.; Ogwaro, K.M.; Donoghue, E.T.; Hallahan, C.W.; Ehler, L.A.; Liu, S.; Adelsberger, J.; Lapointe, R.; Hwu, P.; et al. HIV-1 Induces Phenotypic and Functional Perturbations of B Cells in Chronically Infected Individuals. Proc. Natl. Acad. Sci. USA 2001, 98, 10362–10367. [Google Scholar] [CrossRef] [PubMed]
- Moir, S.; Malaspina, A.; Ho, J.; Wang, W.; DiPoto, A.C.; O’Shea, M.A.; Roby, G.; Mican, J.M.; Kottilil, S.; Chun, T.; et al. Normalization of B Cell Counts and Subpopulations after Antiretroviral Therapy in Chronic HIV Disease. J. Infect. Dis. 2008, 197, 572–579. [Google Scholar] [CrossRef] [PubMed]
Parameter | Category | Mean | SD | N | % |
---|---|---|---|---|---|
Age (N = 82) | Years | 49.0 | 13.83 | ||
Gender (M = 82) | Male | 44 | 53.7 | ||
Female | 38 | 46.3 | |||
Nationality (N = 82) | Saudi | 34 | 41.5 | ||
Yemeni | 28 | 34.1 | |||
Other | 20 | 24.4 | |||
HCV serology (N = 82) | Negative | 82 | 100.0 | ||
Positive | 0 | 0.0 | |||
HbsAg (N = 81) | Negative | 81 | 98.8 | ||
Positive | 0 | 0.0 | |||
Toxoplasmosis IgM (N = 31) | Negative | 31 | 37.8 | ||
Positive | 0.0 | 0.0 | |||
CMV IgG (N = 65) | Negative | 2 | 2.4 | ||
Positive | 63 | 76.8 | |||
CMV IgM (N = 6) | Negative | 5 | 6.1 | ||
Positive | 1 | 1.2 | |||
AIDS (CD4 < 200 cells/mm3) (N = 80) | No | 41 | 51.3 | ||
Yes | 39 | 48.8 |
Viral Load (HIV RNA/mL Plasma) | Baseline | After Treatment | Statistics * (p-Value) | ||
---|---|---|---|---|---|
N | % | N | % | ||
≤500 | 13 | 15.9 | 61 | 74.4 | 5.00 (<0.0001) |
501–3000 | 4 | 4.9 | 8 | 9.8 | |
3001–10 000 | 7 | 8.5 | 2 | 2.4 | |
10.001–30,000 | 5 | 6.1 | 4 | 4.9 | |
>30,000 | 53 | 64.6 | 7 | 8.5 |
Parameter | N | Baseline | After Treatment | Change | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
Median | IQR (Q1, Q3) | Median | IQR (Q1, Q3) | ||||||
Total WBC | 78 | 4.27 | 3.52 | 7.28 | 4.26 | 3.72 | 6.45 | 0.911 | |
Lymphocyte count | 69 | 1.54 | 0.94 | 3.54 | 2.22 | 1.51 | 3.58 | ⬀ | <0.001 * |
Platelets | 80 | 227 | 191.0 | 340.0 | 254 | 224.00 | 362.00 | 0.459 | |
Monocyte count | 69 | 0.57 | 0.38 | 1.46 | 0.52 | 0.35 | 0.87 | 0.177 | |
CD3+CD45+ count | 82 | 908 | 479 | 1903 | 1630 | 845 | 2638 | ⬀ | <0.001 * |
CD3+CD45+ Percentage | 82 | 75 | 66.00 | 83.75 | 76 | 71.00 | 80.00 | 0.229 | |
CD3+CD4+CD45+ count | 80 | 203 | 29 | 486 | 311 | 146 | 613 | ⬀ | <0.001 * |
CD3+CD4+CD45+ % | 80 | 15 | 4.0 | 25.0 | 14 | 7.00 | 30.00 | ⬂ | <0.001 * |
CD3+CD8+CD45+ count | 63 | 556 | 277 | 1276 | 979 | 427 | 1579 | ⬀ | <0.001 * |
CD3+CD8+CD45+ % | 63 | 53 | 34.25 | 66.00 | 48 | 35.00 | 65.00 | 0.193 | |
CD16+CD56+ (NK) count | 82 | 135 | 70 | 237 | 258 | 102 | 360 | ⬀ | <0.001 * |
CD16+CD56+ (NK) % | 82 | 11 | 8.00 | 14.00 | 10 | 8.00 | 15.00 | 0.453 | |
CD19+CD45+ (B cells) count | 80 | 111 | 60 | 201 | 150 | 101 | 390 | ⬀ | <0.001 * |
CD19+CD45+ (B cells) % | 80 | 10 | 6.00 | 15.00 | 9 | 5.00 | 15.00 | 0.858 | |
CD4/CD8 ratio | 59 | 0.29 | 0.06 | 0.67 | 0.37 | 0.14 | 0.64 | ⬀ | 0.001 * |
Time | Parameter | Viral Load (HIV RNA/mL Plasma) | NK Cells | B Lymphocytes | |||
---|---|---|---|---|---|---|---|
ρ | p-Value | ρ | p-Value | ρ | p-Value | ||
Pre-treatment | Viral Load | - | - | −0.26 | 0.020 * | −0.18 | 0.114 |
CD16+CD56+ | −0.26 | 0.020* | - | - | 0.58 | <0.001 * | |
CD19+CD45+ | −0.18 | 0.114 | 0.58 | <0.001 * | - | - | |
Post-treatment | Viral Load | - | - | −0.15 | 0.187 | −0.12 | 0.283 |
CD16+CD56+ | −0.15 | 0.187 | - | - | 0.46 | <0.001 * | |
CD19+CD45+ | −0.12 | 0.283 | 0.46 | <0.001 * | - | - |
Parameter | ≤500 | 501–3000 | 3001–10,000 | 10,001–30,000 | >30,000 | Kruskal–Wallis Test | Bivariate Correlation | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Median | IQR | Median | IQR | Median | IQR | Median | IQR | Median | IQR | Statistics | p-Value | Spearman’s Rho | p-Value | |
Total WBC | 4.8 | 2.52 | 4.45 | 1.92 | 4.49 | 1.23 | 4.53 | 2.81 | 3.94 | 3.13 | 8.65 | 0.070 | −0.15 | 0.005 * |
Lymphocyte count | 1.97 | 2 | 1.54 | 3.15 | 2.29 | 11.1 | 2.33 | 1.44 | 1.54 | 8.52 | 3.75 | 0.441 | −0.05 | 0.379 |
Platelets | 272 | 110 | 331 | 139 | 259 | 38.8 | 226 | 14 | 227 | 113 | 29.43 | <0.001 * | −0.21 | <0.001 * |
Monocyte count | 0.52 | 0.59 | 0.54 | 0.77 | 0.56 | 5.34 | 0.57 | 0.32 | 0.58 | 6.5 | 0.52 | 0.971 | 0.04 | 0.524 |
CD3+CD45+ count | 1564 | 1450 | 1185 | 1684 | 1055 | 926 | 1287 | 585 | 867 | 980 | 41.07 | <0.001 * | −0.32 | <0.001 * |
CD3+CD45+ percentage | 75.5 | 15 | 76 | 10 | 74 | 3 | 79 | 0.75 | 74 | 16 | 4.28 | 0.369 | −0.18 | 0.731 |
CD3+CD4+CD45+ count | 415 | 505 | 167 | 184 | 432 | 402 | 412 | 155 | 110 | 255 | 56.04 | <0.001 * | −0.38 | <0.001 * |
CD3+CD4+CD45+ % | 19.5 | 24.3 | 12 | 15 | 30 | 16 | 24 | 9.75 | 7 | 17 | 38.76 | <0.001 * | −0.27 | <0.001 * |
CD3+CD8+CD45+ count | 893 | 885 | 711 | 1110 | 535 | 521 | 871 | 591 | 556 | 910 | 14.17 | 0.007 * | −0.17 | 0.002 * |
CD3+CD8+CD45+ % | 45 | 30.8 | 64 | 23 | 43 | 14.3 | 49 | 5 | 61 | 22.5 | 23.83 | <0.001 * | 0.22 | <0.001 * |
CD16+CD56+ (NK) count | 246 | 264 | 186 | 238 | 83 | 90 | 150 | 145 | 128 | 148 | 36.52 | <0.001 * | −0.29 | <0.001 * |
CD16+CD56+ (NK) % | 11 | 8.25 | 9 | 4 | 9.5 | 6 | 9 | 4.5 | 13 | 8 | 5.89 | 0.208 | 0.02 | 0.776 |
CD19+CD45+ (B cells) count | 209 | 259 | 163 | 139 | 159 | 180 | 129 | 226 | 105 | 128 | 41.81 | <0.001 * | −0.34 | <0.001 * |
CD19+CD45+ (B cells) % | 10 | 10 | 8 | 11 | 14 | 10.3 | 11 | 4.75 | 10 | 8.5 | 2.21 | 0.698 | −0.06 | 0.266 |
CD4/CD8 ratio | 0.47 | 0.84 | 0.14 | 0.307 | 0.79 | 0.12 | 0.47 | 0.25 | 0.12 | 0.278 | 48.76 | <0.001 * | −0.35 | <0.001 * |
Parameter | AUC (95%CI) | SE | p-Value | Youden’s Index | Cutoff Value | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|
NK cell count | 0.629 (0.568, 0.689) | 0.031 | <0.0001 | 0.242 | <73 cells/mm3 | 95.5% | 28.7% |
B cell count | 0.683 (0.626, 0.740) | 0.029 | <0.0001 | 0.290 | <166.5 cells/mm3 | 63.6% | 65.4% |
CD3+ count | 0.809 (0.761, 0.857) | 0.024 | <0.0001 | 0.547 | <876.5 cells/mm3 | 91.4% | 63.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mughales, J. Immuno-Diagnostic Interest in Monitoring CD16+CD56+ (Natural Killer) Cells and CD19+CD45+ (B Lymphocytes) in Individuals Newly Diagnosed with HIV in a Tertiary Care Center. J. Clin. Med. 2024, 13, 1154. https://doi.org/10.3390/jcm13041154
Al-Mughales J. Immuno-Diagnostic Interest in Monitoring CD16+CD56+ (Natural Killer) Cells and CD19+CD45+ (B Lymphocytes) in Individuals Newly Diagnosed with HIV in a Tertiary Care Center. Journal of Clinical Medicine. 2024; 13(4):1154. https://doi.org/10.3390/jcm13041154
Chicago/Turabian StyleAl-Mughales, Jamil. 2024. "Immuno-Diagnostic Interest in Monitoring CD16+CD56+ (Natural Killer) Cells and CD19+CD45+ (B Lymphocytes) in Individuals Newly Diagnosed with HIV in a Tertiary Care Center" Journal of Clinical Medicine 13, no. 4: 1154. https://doi.org/10.3390/jcm13041154
APA StyleAl-Mughales, J. (2024). Immuno-Diagnostic Interest in Monitoring CD16+CD56+ (Natural Killer) Cells and CD19+CD45+ (B Lymphocytes) in Individuals Newly Diagnosed with HIV in a Tertiary Care Center. Journal of Clinical Medicine, 13(4), 1154. https://doi.org/10.3390/jcm13041154