Achieving Better Understanding of Obstructive Sleep Apnea Treatment Effects on Cardiovascular Disease Outcomes through Machine Learning Approaches: A Narrative Review
Abstract
:1. Introduction
2. Statistical Methodology and Machine Learning Algorithms
3. Applying Machine Learning and Artificial Intelligence to Obstructive Sleep Apnea Data Domains
3.1. Assessment of Clinical Data
3.2. Harnessing the Power of Polysomnography
3.3. Proteomics to Predict Cardiovascular Disease Risk in OSA
3.4. Image-Based Machine Learning in OSA
3.5. Adding Multiple Domains for Better Prediction
4. Future Perspectives: Understanding Cardiovascular Disease Outcomes after OSA Treatment—A Futuristic Approach Using Machine Learning
5. Ethics in Machine Learning and Artificial Intelligence
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.-L.; et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef]
- Punjabi, N.M.; Gottlieb, D.J. COUNTERPOINT: Should Asymptomatic OSA Be Treated in Patients with Significant Cardiovascular Disease? No. Chest 2022, 161, 607–611. [Google Scholar] [CrossRef]
- Drager, L.F.; Bortolotto, L.A.; Figueiredo, A.C.; Krieger, E.M.; Lorenzi-Filho, G. Effects of continuous positive airway pressure on early signs of atherosclerosis in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2007, 176, 706–712. [Google Scholar] [CrossRef]
- Haentjens, P.; Van Meerhaeghe, A.; Moscariello, A.; De Weerdt, S.; Poppe, K.; Dupont, A.; Velkeniers, B. The impact of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome: Evidence from a meta-analysis of placebo-controlled randomized trials. Arch. Intern. Med. 2007, 167, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Giles, T.; Lasserson, T.; Smith, B.; White, J.; Wright, J.; Cates, C. Continuous positive airways pressure for obstructive sleep apnoea in adults. Cochrane Database Syst. Rev. 2006, 1, CD001106. [Google Scholar] [CrossRef]
- McEvoy, R.D.; Antic, N.A.; Heeley, E.; Luo, Y.; Ou, Q.; Zhang, X.; Mediano, O.; Chen, R.; Drager, L.F.; Liu, Z.; et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N. Engl. J. Med. 2016, 375, 919–931. [Google Scholar] [CrossRef] [PubMed]
- Peker, Y.; Glantz, H.; Eulenburg, C.; Wegscheider, K.; Herlitz, J.; Thunström, E. Effect of Positive Airway Pressure on Cardiovascular Outcomes in Coronary Artery Disease Patients with Nonsleepy Obstructive Sleep Apnea. The RICCADSA Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2016, 194, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-de-la-Torre, M.; Sánchez-de-la-Torre, A.; Bertran, S.; Abad, J.; Duran-Cantolla, J.; Cabriada, V.; Mediano, O.; Masdeu, M.J.; Alonso, M.L.; Masa, J.F.; et al. Effect of obstructive sleep apnoea and its treatment with continuous positive airway pressure on the prevalence of cardiovascular events in patients with acute coronary syndrome (ISAACC study): A randomised controlled trial. Lancet Respir. Med. 2020, 8, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Grote, L.; Sommermeyer, D.; Zou, D.; Eder, D.N.; Hedner, J. Oximeter-based autonomic state indicator algorithm for cardiovascular risk assessment. Chest 2011, 139, 253–259. [Google Scholar] [CrossRef]
- Sommermeyer, D.; Zou, D.; Eder, D.N.; Hedner, J.; Ficker, J.H.; Randerath, W.; Priegnitz, C.; Penzel, T.; Fietze, I.; Sanner, B.; et al. The use of overnight pulse wave analysis for recognition of cardiovascular risk factors and risk: A multicentric evaluation. J. Hypertens. 2014, 32, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 144, E56–E67. [Google Scholar] [CrossRef]
- National Institutes of Health Sleep Research Plan|NHLBI, NIH. 2021. Available online: https://www.nhlbi.nih.gov/all-publications-and-resources/2021-nih-health-sleep-research-plan (accessed on 12 September 2023).
- Dey, D.; Gaur, S.; Ovrehus, K.A.; Slomka, P.J.; Betancur, J.; Goeller, M.; Hell, M.M.; Gransar, H.; Berman, D.S.; Achenbach, S.; et al. Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: A multicentre study. Eur. Radiol. 2018, 28, 2655–2664. [Google Scholar] [CrossRef]
- Motwani, M.; Dey, D.; Berman, D.S.; Germano, G.; Achenbach, S.; Al-Mallah, M.H.; Andreini, D.; Budoff, M.J.; Cademartiri, F.; Callister, T.Q.; et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: A 5-year multicentre prospective registry analysis. Eur. Heart J. 2017, 38, 500–507. [Google Scholar] [CrossRef]
- Han, D.; Kolli, K.K.; Al’Aref, S.J.; Baskaran, L.; van Rosendael, A.R.; Gransar, H.; Andreini, D.; Budoff, M.J.; Cademartiri, F.; Chinnaiyan, K.; et al. Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry. J. Am. Heart Assoc. 2020, 9, e013958. [Google Scholar] [CrossRef]
- Ambale-Venkatesh, B.; Yang, X.; Wu, C.O.; Liu, K.; Hundley, W.G.; McClelland, R.; Gomes, A.S.; Folsom, A.R.; Shea, S.; Guallar, E.; et al. Cardiovascular Event Prediction by Machine Learning: The Multi-Ethnic Study of Atherosclerosis. Circ. Res. 2017, 121, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Sidey-Gibbons, J.A.M.; Sidey-Gibbons, C.J. Machine learning in medicine: A practical introduction. BMC Med. Res. Methodol. 2019, 19, 64. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Roveda, J.M.; Powers, L.S.; Quan, S.F. Obstructive sleep apnea predicts 10-year cardiovascular disease–related mortality in the Sleep Heart Health Study: A machine learning approach. J. Clin. Sleep Med. 2022, 18, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Pickett, K.L.; Suresh, K.; Campbell, K.R.; Davis, S.; Juarez-Colunga, E. Random survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker. BMC Med. Res. Methodol. 2021, 21, 216. [Google Scholar] [CrossRef] [PubMed]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920. [Google Scholar] [CrossRef] [PubMed]
- Bailly, S.; Grote, L.; Hedner, J.; Schiza, S.; McNicholas, W.T.; Basoglu, O.K.; Lombardi, C.; Dogas, Z.; Roisman, G.; Pataka, A.; et al. Clusters of sleep apnoea phenotypes: A large pan-European study from the European Sleep Apnoea Database (ESADA). Respirology 2021, 26, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Vavougios, G.D.; Natsios, G.; Pastaka, C.; Zarogiannis, S.G.; Gourgoulianis, K.I. Phenotypes of comorbidity in OSAS patients: Combining categorical principal component analysis with cluster analysis. J. Sleep Res. 2016, 25, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Zinchuk, A.V.; Jeon, S.; Koo, B.B.; Yan, X.; Bravata, D.M.; Qin, L.; Selim, B.J.; Strohl, K.P.; Redeker, N.S.; Concato, J.; et al. Polysomnographic phenotypes and their cardiovascular implications in obstructive sleep apnoea. Thorax 2018, 73, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med. 2022, 28, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Gahungu, N.; Shariar, A.; Playford, D.; Judkins, C.; Gabbay, E. Transfer learning artificial intelligence for automated detection of atrial fibrillation in patients undergoing evaluation for suspected obstructive sleep apnoea: A feasibility study. Sleep Med. 2021, 85, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Nasifoglu, H.; Erogul, O. Obstructive sleep apnea prediction from electrocardiogram scalograms and spectrograms using convolutional neural networks. Physiol. Meas. 2021, 42, 065010. [Google Scholar] [CrossRef] [PubMed]
- Holfinger, S.J.; Lyons, M.M.; Keenan, B.T.; Mazzotti, D.R.; Mindel, J.; Maislin, G.; Cistulli, P.A.; Sutherland, K.; McArdle, N.; Singh, B.; et al. Diagnostic Performance of Machine Learning-Derived OSA Prediction Tools in Large Clinical and Community-Based Samples. Chest 2022, 161, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Mazzotti, D.R.; Keenan, B.T.; Lim, D.C.; Gottlieb, D.J.; Kim, J.; Pack, A.I. Symptom Subtypes of Obstructive Sleep Apnea Predict Incidence of Cardiovascular Outcomes. Am. J. Respir. Crit. Care Med. 2019, 200, 493–506. [Google Scholar] [CrossRef]
- Ye, L.; Pien, G.W.; Ratcliffe, S.J.; Björnsdottir, E.; Arnardottir, E.S.; Pack, A.I.; Benediktsdottir, B.; Gislason, T. The different clinical faces of obstructive sleep apnoea: A cluster analysis. Eur. Respir. J. 2014, 44, 1600–1607. [Google Scholar] [CrossRef]
- Won, C.H. When will we ditch the AHI? J. Clin. Sleep Med. 2020, 16, 1001–1003. [Google Scholar] [CrossRef]
- Shahar, E. Apnea-hypopnea index: Time to wake up. Nat. Sci. Sleep 2014, 6, 51–56. [Google Scholar] [CrossRef]
- Redline, S.; Budhiraja, R.; Kapur, V.; Marcus, C.L.; Mateika, J.H.; Mehra, R.; Parthasarthy, S.; Somers, V.K.; Strohl, K.P.; Gozal, D.; et al. The Scoring of Respiratory Events in Sleep: Reliability and Validity. J. Clin. Sleep Med. 2007, 03, 169–200. [Google Scholar] [CrossRef]
- Malhotra, A.; Ayappa, I.; Ayas, N.; Collop, N.; Kirsch, D.; Mcardle, N.; Mehra, R.; Pack, A.I.; Punjabi, N.; White, D.P.; et al. Metrics of sleep apnea severity: Beyond the apnea-hypopnea index. Sleep 2021, 44, zsab030. [Google Scholar] [CrossRef] [PubMed]
- Won, C.H.; Qin, L.; Selim, B.; Yaggi, H.K. Varying Hypopnea Definitions Affect Obstructive Sleep Apnea Severity Classification and Association With Cardiovascular Disease. J. Clin. Sleep Med. 2018, 14, 1987–1994. [Google Scholar] [CrossRef]
- Randerath, W.; Bassetti, C.L.; Bonsignore, M.R.; Farre, R.; Ferini-Strambi, L.; Grote, L.; Hedner, J.; Kohler, M.; Martinez-Garcia, M.-A.; Mihaicuta, S.; et al. Challenges and perspectives in obstructive sleep apnoea: Report by an ad hoc working group of the Sleep Disordered Breathing Group of the European Respiratory Society and the European Sleep Research Society. Eur. Respir. J. 2018, 52, 1702616. [Google Scholar] [CrossRef] [PubMed]
- Edwards, B.A.; Redline, S.; Sands, S.A.; Owens, R.L. More than the sum of the respiratory events: Personalized medicine approaches for obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2019, 200, 691–703. [Google Scholar] [CrossRef]
- Malhotra, A.; Mesarwi, O.; Pepin, J.-L.; Owens, R.L. Endotypes and phenotypes in obstructive sleep apnea. Curr. Opin. Pulm. Med. 2020, 26, 609–614. [Google Scholar] [CrossRef]
- Sands, S.A.; Edwards, B.A.; Terrill, P.I.; Taranto-Montemurro, L.; Azarbarzin, A.; Marques, M.; Hess, L.B.; White, D.P.; Wellman, A. Phenotyping Pharyngeal Pathophysiology using Polysomnography in Patients with Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2018, 197, 1187–1197. [Google Scholar] [CrossRef]
- Eckert, D.J.; White, D.P.; Jordan, A.S.; Malhotra, A.; Wellman, A. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am. J. Respir. Crit. Care Med. 2013, 188, 996–1004. [Google Scholar] [CrossRef]
- Finnsson, E.; Ólafsdóttir, G.H.; Loftsdóttir, D.L.; Jónsson, S.; Helgadóttir, H.; Ágústsson, J.S.; Sands, S.A.; Wellman, A. A scalable method of determining physiological endotypes of sleep apnea from a polysomnographic sleep study. Sleep 2021, 44, zsaa168. [Google Scholar] [CrossRef]
- Pépin, J.-L.; Eastwood, P.; Eckert, D.J. Novel avenues to approach non-CPAP therapy and implement comprehensive obstructive sleep apnoea care. Eur. Respir. J. 2022, 59, 2101788. [Google Scholar] [CrossRef]
- Dutta, R.; Delaney, G.; Toson, B.; Jordan, A.S.; White, D.P.; Wellman, A.; Eckert, D.J. A Novel Model to Estimate Key Obstructive Sleep Apnea Endotypes from Standard Polysomnography and Clinical Data and Their Contribution to Obstructive Sleep Apnea Severity. Ann. Am. Thorac. Soc. 2021, 18, 656–667. [Google Scholar] [CrossRef]
- Dutta, R.; Tong, B.K.; Eckert, D.J. Development of a physiological-based model that uses standard polysomnography and clinical data to predict oral appliance treatment outcomes in obstructive sleep apnea. J. Clin. Sleep Med. 2022, 18, 861–870. [Google Scholar] [CrossRef]
- de Beeck, S.O.; Wellman, A.; Dieltjens, M.; Strohl, K.P.; Willemen, M.; Van de Heyning, P.H.; Verbraecken, J.A.; Vanderveken, O.M.; Sands, S.A.; the STAR Trial Investigators. Endotypic Mechanisms of Successful Hypoglossal Nerve Stimulation for Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2021, 203, 746–755. [Google Scholar] [CrossRef]
- Schmickl, C.N.; Orr, J.E.; Sands, S.A.; Alex, R.M.; Azarbarzin, A.; McGinnis, L.; White, S.; Mazzotti, D.R.; Nokes, B.; Owens, R.L.; et al. Loop Gain as a Predictor of Blood Pressure Response in Patients Treated for Obstructive Sleep Apnea. Ann. Am. Thorac. Soc. 2024, 21, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Parekh, A.; Tolbert, T.M.; Mooney, A.M.; Ramos-Cejudo, J.; Osorio, R.S.; Treml, M.; Herkenrath, S.-D.; Randerath, W.J.; Ayappa, I.; Rapoport, D.M. Endotyping Sleep Apnea One Breath at a Time: An Automated Approach for Separating Obstructive from Central Sleep-disordered Breathing. Am. J. Respir. Crit. Care Med. 2021, 204, 1452–1462. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, C.D.; Stradling, J.R. Endotyping, phenotyping and personalised therapy in obstructive sleep apnoea: Are we there yet? Thorax 2023, 78, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Labarca, G.; Vena, D.; Hu, W.-H.; Esmaeili, N.; Gell, L.; Yang, H.C.; Wang, T.-Y.; Messineo, L.; Taranto-Montemurro, L.; Sofer, T.; et al. Sleep Apnea Physiological Burdens and Cardiovascular Morbidity and Mortality. Am. J. Respir. Crit. Care Med. 2023, 208, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Azarbarzin, A.; Sands, S.A.; Younes, M.; Taranto-Montemurro, L.; Sofer, T.; Vena, D.; Alex, R.M.; Kim, S.-W.; Gottlieb, D.J.; White, D.P.; et al. The Sleep Apnea–Specific Pulse-Rate Response Predicts Cardiovascular Morbidity and Mortality. Am. J. Respir. Crit. Care Med. 2021, 203, 1546–1555. [Google Scholar] [CrossRef]
- Solelhac, G.; Sánchez-de-la-Torre, M.; Blanchard, M.; Berger, M.; Hirotsu, C.; Imler, T.; Sánchez-de-la-Torre, A.; Haba-Rubio, J.; Marchi, N.A.; Bayon, V.; et al. Pulse Wave Amplitude Drops Index: A Biomarker of Cardiovascular Risk in Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2023, 207, 1620–1632. [Google Scholar] [CrossRef]
- Azarbarzin, A.; Zinchuk, A.; Wellman, A.; Labarca, G.; Vena, D.; Gell, L.; Messineo, L.; White, D.P.; Gottlieb, D.J.; Redline, S.; et al. Cardiovascular Benefit of Continuous Positive Airway Pressure in Adults with Coronary Artery Disease and Obstructive Sleep Apnea without Excessive Sleepiness. Am. J. Respir. Crit. Care Med. 2022, 206, 767–774. [Google Scholar] [CrossRef]
- Malhotra, A.; Younes, M.; Kuna, S.T.; Benca, R.; Kushida, C.A.; Walsh, J.; Hanlon, A.; Staley, B.; Pack, A.l.; Pien, G.W. Performance of an automated polysomnography scoring system versus computer-assisted manual scoring. Sleep 2013, 36, 573–582. [Google Scholar] [CrossRef]
- Choi, S.H.; Yoon, H.; Kim, H.S.; Kim, H.B.; Bin Kwon, H.; Oh, S.M.; Lee, Y.J.; Park, K.S. Real-time apnea-hypopnea event detection during sleep by convolutional neural networks. Comput. Biol. Med. 2018, 100, 123–131. [Google Scholar] [CrossRef]
- ElMoaqet, H.; Eid, M.; Glos, M.; Ryalat, M.; Penzel, T. Deep Recurrent Neural Networks for Automatic Detection of Sleep Apnea from Single Channel Respiration Signals. Sensors 2020, 20, 5037. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Yang, T.; Ji, S.; Wang, H.; Wang, J.; Wang, Y.; Wu, Q. Classification of sleep apnea based on EEG sub-band signal characteristics. Sci. Rep. 2021, 11, 5824. [Google Scholar] [CrossRef] [PubMed]
- Nikkonen, S.; Korkalainen, H.; Kainulainen, S.; Myllymaa, S.; Leino, A.; Kalevo, L.; Oksenberg, A.; Leppänen, T.; Töyräs, J. Estimating daytime sleepiness with previous night electroencephalography, electrooculography, and electromyography spectrograms in patients with suspected sleep apnea using a convolutional neural network. Sleep 2020, 43, zsaa106. [Google Scholar] [CrossRef]
- Brink-Kjaer, A.; Leary, E.B.; Sun, H.; Westover, M.B.; Stone, K.L.; Peppard, P.E.; Lane, N.E.; Cawthon, P.M.; Redline, S.; Jennum, P.; et al. Age estimation from sleep studies using deep learning predicts life expectancy. NPJ Digit. Med. 2022, 5, 103. [Google Scholar] [CrossRef] [PubMed]
- Azarbarzin, A.; Sands, S.A.; Han, S.; Sofer, T.; Labarca, G.; Stone, K.L.; Gottlieb, D.J.; Javaheri, S.; Wellman, A.; White, D.P.; et al. Relevance of cortical arousals for risk stratification in sleep apnea: A 3 cohort analysis. J. Clin. Sleep Med. 2023, 19, 1475–1484. [Google Scholar] [CrossRef]
- Feliciano, A.; Torres, V.M.; Vaz, F.; Carvalho, A.S.; Matthiesen, R.; Pinto, P.; Malhotra, A.; Bárbara, C.; Penque, D. Overview of proteomics studies in obstructive sleep apnea. Sleep Med. 2015, 16, 437–445. [Google Scholar] [CrossRef]
- Lebkuchen, A.; Freitas, L.S.; Cardozo, K.H.; Drager, L.F. Advances and challenges in pursuing biomarkers for obstructive sleep apnea: Implications for the cardiovascular risk. Trends Cardiovasc. Med. 2020, 31, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Lind, L.; Ärnlöv, J.; Lindahl, B.; Siegbahn, A.; Sundström, J.; Ingelsson, E. Use of a proximity extension assay proteomics chip to discover new biomarkers for human atherosclerosis. Atherosclerosis 2015, 242, 205–210. [Google Scholar] [CrossRef]
- Kulasingam, A.; Hvas, A.-M.; Grove, E.L.; Funck, K.L.; Kristensen, S.D. Detection of biomarkers using a novel proximity extension assay in patients with ST-elevation myocardial infarction. Thromb. Res. 2018, 172, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Wallentin, L.; Eriksson, N.; Olszowka, M.; Grammer, T.B.; Hagström, E.; Held, C.; Kleber, M.E.; Koenig, W.; März, W.; Stewart, R.A.H.; et al. Plasma proteins associated with cardiovascular death in patients with chronic coronary heart disease: A retrospective study. PLoS Med. 2021, 18, e1003513. [Google Scholar] [CrossRef] [PubMed]
- Zapater, A.; Gracia-Lavedan, E.; Torres, G.; Mínguez, O.; Pascual, L.; Cortijo, A.; Martínez, D.; Benítez, I.D.; De Batlle, J.; Henríquez-Beltrán, M.; et al. Proteomic profiling for prediction of recurrent cardiovascular event in patients with acute coronary syndrome and obstructive sleep apnea: A post-hoc analysis from the ISAACC study. Biomed. Pharmacother. 2023, 158, 114125. [Google Scholar] [CrossRef]
- Ljunggren, M.; Theorell-Haglöw, J.; Freyhult, E.; Sahlin, C.; Franklin, K.A.; Malinovschi, A.; Janson, C.; Lindberg, E. Association between proteomics and obstructive sleep apnea phenotypes in a community-based cohort of women. J. Sleep Res. 2020, 29, e13041. [Google Scholar] [CrossRef] [PubMed]
- Salahshor, S.; Woodgett, J.R. The links between axin and carcinogenesis. J. Clin. Pathol. 2005, 58, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.; Outeiro, T.F.; Cavadas, C. Emerging Role of Sirtuin 2 in the Regulation of Mammalian Metabolism. Trends Pharmacol. Sci. 2015, 36, 756–768. [Google Scholar] [CrossRef]
- Lemos, V.; de Oliveira, R.M.; Naia, L.; Szegö, É.; Ramos, E.; Pinho, S.; Magro, F.; Cavadas, C.; Rego, A.C.; Costa, V.; et al. The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Hum. Mol. Genet. 2017, 26, 4105–4117. [Google Scholar] [CrossRef]
- Ljunggren, M.; Zhou, X.; Theorell-Haglöw, J.; Janson, C.; Franklin, K.A.; Emilsson, Ö.; Lindberg, E. Sleep Apnea Indices Associated with Markers of Inflammation and Cardiovascular Disease: A Proteomic Study in the MUSTACHE Cohort. Ann. Am. Thorac. Soc. 2024, 21, 165–169. [Google Scholar] [CrossRef]
- Kundel, V.; Cohen, O.; Khan, S.; Patel, M.; Kim-Schulze, S.; Kovacic, J.; Suárez-Fariñas, M.; Shah, N.A. Advanced Proteomics and Cluster Analysis for Identifying Novel Obstructive Sleep Apnea Subtypes before and after Continuous Positive Airway Pressure Therapy. Ann. Am. Thorac. Soc. 2023, 20, 1038–1047. [Google Scholar] [CrossRef]
- Cohen, O.; Kaufman, A.E.; Choi, H.; Khan, S.; Robson, P.M.; Suárez-Fariñas, M.; Mani, V.; Shah, N.A. Pharyngeal Inflammation on Positron Emission Tomography/Magnetic Resonance Imaging Before and After Obstructive Sleep Apnea Treatment. Ann. Am. Thorac. Soc. 2023, 20, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Brennan, H.L.; Kirby, S.D. The role of artificial intelligence in the treatment of obstructive sleep apnea. J. Otolaryngol. Head Neck Surg. 2023, 52, 7. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liang, Z.; Wang, Q.; Ma, C.; Lei, Y.; Sanderson, J.E.; Hu, X.; Lin, W.; Liu, H.; Xie, F.; et al. Self-helped detection of obstructive sleep apnea based on automated facial recognition and machine learning. Sleep Breath. 2023, 27, 2379–2388. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, P.; Gilani, S.Z.; McArdle, N.; Hillman, D.; Walsh, J.; Maddison, K.; Goonewardene, M.; Mian, A. Predicting sleep apnea from three-dimensional face photography. J. Clin. Sleep Med. 2020, 16, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Monna, F.; Ben Messaoud, R.; Navarro, N.; Baillieul, S.; Sanchez, L.; Loiodice, C.; Tamisier, R.; Joyeux-Faure, M.; Pépin, J.-L. Machine learning and geometric morphometrics to predict obstructive sleep apnea from 3D craniofacial scans. Sleep Med. 2022, 95, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Tsuiki, S.; Nagaoka, T.; Fukuda, T.; Sakamoto, Y.; Almeida, F.R.; Nakayama, H.; Inoue, Y.; Enno, H. Machine learning for image-based detection of patients with obstructive sleep apnea: An exploratory study. Sleep Breath. 2021, 25, 2297–2305. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Li, Y.M.; Xiang, B.Y.; Han, T.; Wang, Y.; Wang, C. Association of Craniofacial and Upper Airway Morphology with Cardiovascular Risk in Adults with OSA. Nat. Sci. Sleep 2021, 13, 1689–1700. [Google Scholar] [CrossRef]
- de Bataille, C.; Bernard, D.; Dumoncel, J.; Vaysse, F.; Cussat-Blanc, S.; Telmon, N.; Maret, D.; Monsarrat, P. Machine Learning Analysis of the Anatomical Parameters of the Upper Airway Morphology: A Retrospective Study from Cone-Beam CT Examinations in a French Population. J. Clin. Med. 2022, 12, 84. [Google Scholar] [CrossRef]
- Shujaat, S.; Jazil, O.; Willems, H.; Van Gerven, A.; Shaheen, E.; Politis, C.; Jacobs, R. Automatic segmentation of the pharyngeal airway space with convolutional neural network. J. Dent. 2021, 111, 103705. [Google Scholar] [CrossRef]
- Shahid, M.L.U.R.; Mir, J.; Shaukat, F.; Saleem, M.K.; Tariq, M.A.U.R.; Nouman, A. Classification of Pharynx from MRI Using a Visual Analysis Tool to Study Obstructive Sleep Apnea. Curr. Med. Imaging 2021, 17, 613–622. [Google Scholar] [CrossRef]
- Ivanovska, T.; Daboul, A.; Kalentev, O.; Hosten, N.; Biffar, R.; Völzke, H.; Wörgötter, F. A deep cascaded segmentation of obstructive sleep apnea-relevant organs from sagittal spine MRI. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 579–588. [Google Scholar] [CrossRef]
- Bommineni, V.L.; Erus, G.; Doshi, J.; Singh, A.; Keenan, B.T.; Schwab, R.J.; Wiemken, A.; Davatzikos, C. Automatic Segmentation and Quantification of Upper Airway Anatomic Risk Factors for Obstructive Sleep Apnea on Unprocessed Magnetic Resonance Images. Acad. Radiol. 2023, 30, 421–430. [Google Scholar] [CrossRef]
- Molnár, V.; Lakner, Z.; Molnár, A.; Tárnoki, D.L.; Tárnoki, Á.D.; Kunos, L.; Jokkel, Z.; Tamás, L. The Predictive Role of the Upper-Airway Adipose Tissue in the Pathogenesis of Obstructive Sleep Apnoea. Life 2022, 12, 1543. [Google Scholar] [CrossRef] [PubMed]
- Yeom, S.H.; Na, J.S.; Jung, H.-D.; Cho, H.-J.; Choi, Y.J.; Lee, J.S. Computational analysis of airflow dynamics for predicting collapsible sites in the upper airways: Machine learning approach. J. Appl. Physiol. 2019, 127, 959–973. [Google Scholar] [CrossRef]
- Pang, B.; Doshi, S.; Roy, B.; Lai, M.; Ehlert, L.; Aysola, R.S.; Kang, D.W.; Anderson, A.; Joshi, S.H.; Tward, D.; et al. Machine learning approach for obstructive sleep apnea screening using brain diffusion tensor imaging. J. Sleep Res. 2023, 32, e13729. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shu, Y.; Yu, P.; Li, H.; Duan, W.; Wei, Z.; Li, K.; Xie, W.; Zeng, Y.; Peng, D. Classification of severe obstructive sleep apnea with cognitive impairment using degree centrality: A machine learning analysis. Front. Neurol. 2022, 13, 1005650. [Google Scholar] [CrossRef]
- Shu, Y.; Liu, X.; Yu, P.; Li, H.; Duan, W.; Wei, Z.; Li, K.; Xie, W.; Zeng, Y.; Peng, D. Inherent regional brain activity changes in male obstructive sleep apnea with mild cognitive impairment: A resting-state magnetic resonance study. Front. Aging Neurosci. 2022, 14, 1022628. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, C.; Gupta, S.; Najjar, M.; Weaver, T.E.; Zhou, X.J.; Schonfeld, D.; Prasad, B. Deep Learning Analyses of Brain MRI to Identify Sustained Attention Deficit in Treated Obstructive Sleep Apnea: A Pilot Study. Sleep Vigil. 2022, 6, 179–184. [Google Scholar] [CrossRef]
- Li, T.; Ou, Q.; Zhou, X.; Wei, X.; Cai, A.; Li, X.; Ren, G.; Du, Z.; Hong, Z.; Cheng, Y.; et al. Left ventricular remodeling and systolic function changes in patients with obstructive sleep apnea: A comprehensive contrast-enhanced cardiac magnetic resonance study. Cardiovasc. Diagn. Ther. 2022, 12, 436–452. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D.; Fernández-Delgado, A. Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? J. Mach. Learn. Res. 2014, 15, 3133–3181. Available online: http://www.mathworks.es/products/neural-network (accessed on 4 October 2023).
- Wallace, M.L.; Coleman, T.S.; Mentch, L.K.; Buysse, D.J.; Graves, J.L.; Hagen, E.W.; Hall, M.H.; Stone, K.L.; Redline, S.; Peppard, P.E. Physiological sleep measures predict time to 15-year mortality in community adults: Application of a novel machine learning framework. J. Sleep Res. 2021, 30, e13386. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, M.; Duval, J.; Bettega, F.; Tamisier, R.; Baillieul, S.; Bailly, S.; Pépin, J.-L. The individual and societal prices of non-adherence to continuous positive airway pressure, contributors, and strategies for improvement. Expert Rev. Respir. Med. 2023, 17, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Yeh, R.W.; Kramer, D.B. Decision Tools to improve personalized care in cardiovascular disease: Moving the art of medicine toward science. Circulation 2017, 135, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Kravitz, R.L.; Duan, N.; Braslow, J. Evidence-based medicine, heterogeneity of treatment effects, and the trouble with averages. Milbank Q. 2004, 82, 661–687. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, P.; Voisey, J.P.; Xia, T.; Watson, H.I.; O’neil, A.Q.; Tsaftaris, S.A. Causal machine learning for healthcare and precision medicine. R. Soc. Open Sci. 2022, 9, 220638. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Lagakos, S.W.; Ware, J.H.; Hunter, D.J.; Drazen, J.M. Statistics in Medicine—Reporting of Subgroup Analyses in Clinical Trials. N. Engl. J. Med. 2007, 357, 2189–2194. [Google Scholar] [CrossRef]
- Seibold, H.; Zeileis, A.; Hothorn, T. Model-Based Recursive Partitioning for Subgroup Analyses. Int. J. Biostat. 2016, 12, 45–63. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Seibold, H.; Vettore, M.V.; Song, W.-J.; François, V. Subgroup identification in clinical trials: An overview of available methods and their implementations with R. Ann. Transl. Med. 2018, 6, 122. [Google Scholar] [CrossRef]
- Garge, N.R.; Bobashev, G.; Eggleston, B. Random forest methodology for model-based recursive partitioning: The mobForest package for R. BMC Bioinform. 2013, 14, 125. [Google Scholar] [CrossRef]
- Athey, S.; Wager, S. Estimating Treatment Effects with Causal Forests: An Application. Obs. Stud. 2019, 5, 37–51. [Google Scholar] [CrossRef]
- Cui, Y.; Kosorok, M.R.; Sverdrup, E.; Wager, S.; Zhu, R. Estimating heterogeneous treatment effects with right-censored data via causal survival forests. J. R. Stat. Soc. Ser. B Stat. Methodol. 2023, 85, 179–211. [Google Scholar] [CrossRef]
- Robertson, S.E.; Steingrimsson, J.A.; Dahabreh, I.J. Regression-based estimation of heterogeneous treatment effects when extending inferences from a randomized trial to a target population. Eur. J. Epidemiol. 2023, 38, 123–133. [Google Scholar] [CrossRef]
- Falet, J.-P.R.; Durso-Finley, J.; Nichyporuk, B.; Schroeter, J.; Bovis, F.; Sormani, M.-P.; Precup, D.; Arbel, T.; Arnold, D.L. Estimating individual treatment effect on disability progression in multiple sclerosis using deep learning. Nat. Commun. 2022, 13, 5645. [Google Scholar] [CrossRef]
- Diao, E.; Ding, J.; Tarokh, V.; Hetero, F.L. Computation and Communication Efficient Federated Learning for Heterogeneous Clients. In Proceedings of the ICLR 2021—9th International Conference on Learning Representations, Virtual Event, Austria, 3–7 May 2021; Available online: https://arxiv.org/abs/2010.01264v3 (accessed on 28 January 2024).
- Sheller, M.J.; Edwards, B.; Reina, G.A.; Martin, J.; Pati, S.; Kotrotsou, A.; Milchenko, M.; Xu, W.; Marcus, D.; Colen, R.R.; et al. Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 2020, 10, 12598. [Google Scholar] [CrossRef] [PubMed]
- Reynor, A.; McArdle, N.; Shenoy, B.; Dhaliwal, S.S.; Rea, S.C.; Walsh, J.; Eastwood, P.R.; Maddison, K.; Hillman, D.R.; Ling, I.; et al. Continuous positive airway pressure and adverse cardiovascular events in obstructive sleep apnea: Are participants of randomized trials representative of sleep clinic patients? Sleep 2022, 45, zsab264. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, R.K.E.; Dey, K.; Hind, M.; Hoffman, S.C.; Houde, S.; Kannan, K.; Lohia, P.; Martino, J.; Mehta, S.; Mojsilovic, A.; et al. AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias. IBM J. Res. Dev. 2018, 63, 4:1–4:15. [Google Scholar] [CrossRef]
- Ribeiro, M.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, CA, USA, 12–17 June 2016; pp. 97–101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohen, O.; Kundel, V.; Robson, P.; Al-Taie, Z.; Suárez-Fariñas, M.; Shah, N.A. Achieving Better Understanding of Obstructive Sleep Apnea Treatment Effects on Cardiovascular Disease Outcomes through Machine Learning Approaches: A Narrative Review. J. Clin. Med. 2024, 13, 1415. https://doi.org/10.3390/jcm13051415
Cohen O, Kundel V, Robson P, Al-Taie Z, Suárez-Fariñas M, Shah NA. Achieving Better Understanding of Obstructive Sleep Apnea Treatment Effects on Cardiovascular Disease Outcomes through Machine Learning Approaches: A Narrative Review. Journal of Clinical Medicine. 2024; 13(5):1415. https://doi.org/10.3390/jcm13051415
Chicago/Turabian StyleCohen, Oren, Vaishnavi Kundel, Philip Robson, Zainab Al-Taie, Mayte Suárez-Fariñas, and Neomi A. Shah. 2024. "Achieving Better Understanding of Obstructive Sleep Apnea Treatment Effects on Cardiovascular Disease Outcomes through Machine Learning Approaches: A Narrative Review" Journal of Clinical Medicine 13, no. 5: 1415. https://doi.org/10.3390/jcm13051415
APA StyleCohen, O., Kundel, V., Robson, P., Al-Taie, Z., Suárez-Fariñas, M., & Shah, N. A. (2024). Achieving Better Understanding of Obstructive Sleep Apnea Treatment Effects on Cardiovascular Disease Outcomes through Machine Learning Approaches: A Narrative Review. Journal of Clinical Medicine, 13(5), 1415. https://doi.org/10.3390/jcm13051415