Navigating Uncertain Waters: First-Trimester Screening’s Role in Identifying Neonatal Complications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Danilack, V.A.; Nunes, A.P.; Phipps, M.G. Unexpected complications of low-risk pregnancies in the United States. Am. J. Obstet. Gynecol. 2015, 212, 809.e1–809.e6. [Google Scholar] [CrossRef] [PubMed]
- Watson, H.; McLaren, J.; Carlisle, N.; Ratnavel, N.; Watts, T.; Zaima, A.; Tribe, R.M.; Shennan, A.H. All the right moves: Why in utero transfer is both important for the baby and difficult to achieve and new strategies for change. F1000Research 2020, 9, 979. [Google Scholar] [CrossRef] [PubMed]
- International Society of Ultrasound in Obstetrics and Gynecology; Bilardo, C.M.; Chaoui, R.; Hyett, J.A.; Kagan, K.O.; Karim, J.N.; Papageorghiou, A.T.; Poon, L.C.; Salomon, L.J.; Syngelaki, A.; et al. ISUOG Practice Guidelines (updated): Performance of 11–14-week ultrasound scan. Ultrasound Obstet. Gynecol. 2023, 61, 127–143. [Google Scholar] [CrossRef] [PubMed]
- Dugoff, L.; Hobbins, J.C.; Malone, F.D.; Porter, T.F.; Luthy, D.; Comstock, C.H.; Hankins, G.; Berkowitz, R.L.; Merkatz, I.; Craigo, S.D.; et al. First-trimester maternal serum PAPP-A and free-beta subunit human chorionic gonadotropin concentrations and nuchal translucency are associated with obstetric complications: A population-based screening study (the FASTER Trial). Am. J. Obstet. Gynecol. 2004, 191, 1446–1451. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.C.S.; Stenhouse, E.J.; Crossley, J.A.; Aitken, D.A.; Cameron, A.D.; Connor, J.M. Early Pregnancy Levels of Pregnancy-Associated Plasma Protein A and the Risk of Intrauterine Growth Restriction, Premature Birth, Preeclampsia, and Stillbirth. J. Clin. Endocrinol. Metab. 2002, 87, 1762–1767. [Google Scholar] [CrossRef] [PubMed]
- Mlodawska, M.; Pazera, G.; Mlodawski, J. Development of a preterm baby—An overview of current knowledge. Med. Stud./Stud. Med. 2021, 37, 65–69. [Google Scholar] [CrossRef]
- Nicolaides Kypros, H. The 11–13+6 Weeks Scan. Available online: https://fetalmedicine.org/fmf/FMF-English.pdf (accessed on 2 January 2024).
- Mlodawski, J.; Mlodawska, M.; Pazera, G.; Michalski, W.; Domanski, T.; Dolecka-Slusarczyk, M.; Gluszek, S.; Rokita, W. Cerebral palsy and obstetric-neonatological interventions. Ginekol. Polska 2019, 90, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 2022, 75, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Elmas, B.; Koç, B.L.; Ersak, D.T.; Zorlu, U.; Aydoğdu, E.; Yılmaz, G.; Özdemir, E.; Hançerlioğulları, N.; Tekin, M. The relationship between the first trimester maternal serum PAPP-A and β-hCG values and newborn intensive care needs in low-risk pregnancies. J. Turk. Soc. Obstet. Gynecol. 2022, 19, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Kirkegaard, I.; Uldbjerg, N.; Henriksen, T.B. PAPP-A and free β-hCG in relation to admission to neonatal intensive care unit and neonatal disease. Prenat. Diagn. 2011, 31, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Sirikunalai, P.; Wanapirak, C.; Sirichotiyakul, S.; Tongprasert, F.; Srisupundit, K.; Luewan, S.; Traisrisilp, K.; Tongsong, T. Associations between maternal serum free beta human chorionic gonadotropin (β-hCG) levels and adverse pregnancy outcomes. J. Obstet. Gynaecol. 2016, 36, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.; Cowans, N.J.; Avgidou, K.; Nicolaides, K.H. First-trimester ultrasound and biochemical markers of aneuploidy and the prediction of impending fetal death. Ultrasound Obstet. Gynecol. 2006, 28, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Yakistiran, B.; Karsli, M.; Canpolat, F. Can first trimester pregnancy-associated plasma protein-A predict the surfactant needs of preterm neonates? J. Neonatal-Perinatal Med. 2022, 15, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.C.K.; Sharma, A.; Prasad, S.; Kaul, A. Performance of Ductus Venosus Doppler (at 11–13+6 Weeks) in Predicting Adverse Fetal Outcomes in Indian Population: Going Beyond Aneuploidies: Going Beyond Aneuploidies. J. Ultrasound Med. 2022, 41, 2877–2883. [Google Scholar]
- Baran, Y.; Kalaycı, H.; Durdağ, G.D.; Yetkinel, S.; Arslan, A.; Kılıçdağ, E.B. Does abnormal ductus venosus pulsatility index at the first-trimester effect on adverse pregnancy outcomes? J. Gynecol. Obstet. Hum. Reprod. 2020, 49, 101851. [Google Scholar] [CrossRef]
- Oh, C.; Harman, C.; Baschat, A.A. Abnormal first-trimester ductus venosus blood flow: A risk factor for adverse outcome in fetuses with normal nuchal translucency. Ultrasound Obstet. Gynecol. 2007, 30, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Rolnik, D.L.; Wright, D.; Poon, L.C.; O’Gorman, N.; Syngelaki, A.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N. Engl. J. Med. 2017, 377, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.; Yu, C.K.; Cowans, N.J.; Otigbah, C.; Nicolaides, K.H. Prediction of pregnancy complications by first-trimester maternal serum PAPP-A and free beta-hCG and with second-trimester uterine artery Doppler. Prenat. Diagn. 2005, 25, 949–953. [Google Scholar] [CrossRef] [PubMed]
- Borowski, D.; Pietryga, M.; Basta, P.; Cnota, W.; Czuba, B.; Dubiel, M.; Fuchs, T.; Huras, H.; Iciek, R.; Jaczynska, R.; et al. Practice guidelines of the Polish Society of Gynecologists and Obstetricians—Ultrasound Section for ultrasound screening in uncomplicated pregnancy—2020. Ginekol. Polska 2020, 91, 490–501. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Height [mean] | 165 cm (SD = 13.33) |
Weight [mean] | 66 kg (SD = 7.88) |
BMI [mean] | 24.82 kg/m2 (SD = 4.13) |
IVF pregnancy | 4.3% (n = 50) |
1st pregnancy | 37.8% (n = 440) |
Pre-pregnancy diabetes | 1.12% (n = 13) |
Pre-pregnancy hypertension | 0.6% (n = 7) |
High risk for trisomy 21 (>1:300) | 7.98% (n = 93) |
Intermediate risk for trisomy 21 (1:301–1:1000) | 14% (n = 163) |
High risk for trisomy 18 (>1:300) | 0.68% (n = 8) |
Intermediate risk for trisomy 18 (1:301–1:1000) | 1.97% (n = 1164) |
High risk for trisomy 13 (>1:300) | 0.51% (n = 6) |
Intermediate risk for trisomy 13 (1:301–1:1000) | 0.77% (n = 9) |
PAPP-A < 0.4 MoM | 3.78% (n = 44) |
Newborn Outcome | Prevalence |
---|---|
Apgar < 8 1st minute | 6.18% (72) |
Apgar < 4 1st minute | 0.94% (11) |
Apgar < 8 10th minute | 1.11% (13) |
Apgar < 4 10th minute | 0% (0) |
Apgar < 8 1st minute term pregnancy | 4.46% (52) |
Apgar < 4 1st minute term pregnancy | 0.06% (7) |
Apgar < 8 10th minute term pregnancy | 0.52% (6) |
Apgar < 4 10th minute term pregnancy | 0% (0) |
intensive care unit hospitalization | 5.58% (n = 65) |
low Ponderal index (<2) | 25.25% (294) |
pH < 7.2 | 1.03% (12/739) |
neonatal death | 0.3% (n = 4) |
pH < 7.1 | 0% |
Term Apgar < 8 at 1st Minute | Term Apgar < 8 at 10th Minute | ||||||
---|---|---|---|---|---|---|---|
yes | no | p | yes | no | |||
fb-HCG | 40.495 | 40.045 | 0.711 | fb-HCG | 43.245 | 40.025 | 0.977 |
fb-HCG MoM | 1.244 | 1.112 | 0.263 | fb-HCG MoM | 1.265 | 1.114 | 0.491 |
PAPP-A | 3.835 | 3.960 | 0.256 | PAPP-A | 4.380 | 3.950 | 0.975 |
PAPP-A MoM | 0.944 | 1.038 | 0.118 | PAPP-A MoM | 1.111 | 1.032 | 0.742 |
DV PI | 1.040 | 1.000 | 0.045 * | DV PI | 1.110 | 1.010 | 0.254 |
Term Apgar < 4 at 1st minute | General Apgar < 8 at 1st minute | ||||||
yes | no | yes | no | p | |||
fb-HCG | 41.040 | 40.030 | 0.825 | fb-HCG | 39.920 | 39.515 | 0.509 |
fb-HCG MoM | 1.066 | 1.117 | 0.633 | fb-HCG MoM | 1.278 | 1.102 | 0.128 |
PAPP-A | 4.100 | 3.950 | 0.513 | PAPP-A | 3.500 | 3.870 | 0.040 * |
PAPP-A MoM | 0.932 | 1.033 | 0.966 | PAPP-A MoM | 0.939 | 1.027 | 0.032 * |
DV PI | 0.980 | 1.010 | 0.843 | DV PI | 1.070 | 1.000 | 0.001 * |
General Apgar < 8 at 10th minute | General Apgar < 4 at 1st minute | ||||||
yes | no | yes | no | ||||
fb-HCG | 45.350 | 39.460 | 0.478 | fb-HCG | 39.570 | 33.260 | 0.635 |
fb-HCG MoM | 1.326 | 1.104 | 0.348 | fb-HCG MoM | 1.110 | 1.066 | 0.411 |
PAPP-A | 2.380 | 3.860 | 0.075 | PAPP-A | 3.860 | 2.380 | 0.104 |
PAPP-A MoM | 0.720 | 1.023 | 0.217 | PAPP-A MoM | 1.023 | 0.720 | 0.251 |
DV PI | 1.100 | 1.000 | 0.111 | DV PI | 1.005 | 1.010 | 0.276 |
pH < 7.2 | NICU admission | ||||||
yes | no | yes | no | ||||
fb-HCG | 44.665 | 39.450 | 0.641 | fb-HCG | 28.830 | 40.025 | 0.002 * |
fb-HCG MoM | 1.127 | 1.090 | 0.564 | fb-HCG MoM | 0.930 | 1.118 | 0.034 * |
PAPP-A | 2.890 | 3.900 | 0.084 | PAPP-A | 3.540 | 3.885 | 0.053 |
PAPP-A MoM | 0.694 | 1.018 | 0.045 * | PAPP-A MoM | 0.925 | 1.027 | 0.128 |
DV PI | 1.045 | 1.000 | 0.743 | DV PI | 1.010 | 1.000 | 0.176 |
Neonatal death | Low Ponderal index (<2) | ||||||
yes | no | yes | no | ||||
fb-HCG | 33.500 | 39.600 | 0.720 | fb-HCG | 38.475 | 39.685 | 0.713 |
fb-HCG MoM | 0.936 | 1.110 | 0.647 | fb-HCG MoM | 1.112 | 1.104 | 0.564 |
PAPP-A | 2.880 | 3.865 | 0.176 | PAPP-A | 3.595 | 3.940 | 0.031 * |
PAPP-A MoM | 0.895 | 1.018 | 0.791 | PAPP-A MoM | 0.934 | 1.056 | 0.001 * |
DV PI | 1.105 | 1.000 | 0.383 | DV PI | 1.005 | 1.010 | 0.682 |
Outcome | AUC | SE | AUC Low 95% | AUC High 95% | p | |
---|---|---|---|---|---|---|
Term Apgar < 8 at 1st minute | DV PI | 0.583 | 0.043 | 0.499 | 0.668 | 0.053 |
General Apgar < 8 at 1st munute | PAPP-A | 0.572 | 0.033 | 0.507 | 0.637 | 0.029 |
PAPP-A MoM | 0.575 | 0.034 | 0.508 | 0.642 | 0.028 | |
DV PI | 0.621 | 0.035 | 0.552 | 0.689 | 0.001 | |
pH < 7.2 | PAPP-A MoM | 0.669 | 0.082 | 0.508 | 0.829 | 0.039 |
Low Ponderal index | PAPP-A | 0.542 | 0.019 | 0.504 | 0.580 | 0.031 |
PAPP-A MoM | 0.563 | 0.019 | 0.525 | 0.601 | 0.001 | |
NICU hospitalization | fb-HCG | 0.616 | 0.037 | 0.544 | 0.688 | 0.002 |
fb-HCG MoM | 0.578 | 0.039 | 0.501 | 0.655 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swiercz, G.; Zmelonek-Znamirowska, A.; Szwabowicz, K.; Armanska, J.; Detka, K.; Mlodawska, M.; Mlodawski, J. Navigating Uncertain Waters: First-Trimester Screening’s Role in Identifying Neonatal Complications. J. Clin. Med. 2024, 13, 1982. https://doi.org/10.3390/jcm13071982
Swiercz G, Zmelonek-Znamirowska A, Szwabowicz K, Armanska J, Detka K, Mlodawska M, Mlodawski J. Navigating Uncertain Waters: First-Trimester Screening’s Role in Identifying Neonatal Complications. Journal of Clinical Medicine. 2024; 13(7):1982. https://doi.org/10.3390/jcm13071982
Chicago/Turabian StyleSwiercz, Grzegorz, Anna Zmelonek-Znamirowska, Karol Szwabowicz, Justyna Armanska, Karolina Detka, Marta Mlodawska, and Jakub Mlodawski. 2024. "Navigating Uncertain Waters: First-Trimester Screening’s Role in Identifying Neonatal Complications" Journal of Clinical Medicine 13, no. 7: 1982. https://doi.org/10.3390/jcm13071982
APA StyleSwiercz, G., Zmelonek-Znamirowska, A., Szwabowicz, K., Armanska, J., Detka, K., Mlodawska, M., & Mlodawski, J. (2024). Navigating Uncertain Waters: First-Trimester Screening’s Role in Identifying Neonatal Complications. Journal of Clinical Medicine, 13(7), 1982. https://doi.org/10.3390/jcm13071982