Navigating Uncertain Waters: First-Trimester Screening’s Role in Identifying Neonatal Complications
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Danilack, V.A.; Nunes, A.P.; Phipps, M.G. Unexpected complications of low-risk pregnancies in the United States. Am. J. Obstet. Gynecol. 2015, 212, 809.e1–809.e6. [Google Scholar] [CrossRef] [PubMed]
- Watson, H.; McLaren, J.; Carlisle, N.; Ratnavel, N.; Watts, T.; Zaima, A.; Tribe, R.M.; Shennan, A.H. All the right moves: Why in utero transfer is both important for the baby and difficult to achieve and new strategies for change. F1000Research 2020, 9, 979. [Google Scholar] [CrossRef] [PubMed]
- International Society of Ultrasound in Obstetrics and Gynecology; Bilardo, C.M.; Chaoui, R.; Hyett, J.A.; Kagan, K.O.; Karim, J.N.; Papageorghiou, A.T.; Poon, L.C.; Salomon, L.J.; Syngelaki, A.; et al. ISUOG Practice Guidelines (updated): Performance of 11–14-week ultrasound scan. Ultrasound Obstet. Gynecol. 2023, 61, 127–143. [Google Scholar] [CrossRef] [PubMed]
- Dugoff, L.; Hobbins, J.C.; Malone, F.D.; Porter, T.F.; Luthy, D.; Comstock, C.H.; Hankins, G.; Berkowitz, R.L.; Merkatz, I.; Craigo, S.D.; et al. First-trimester maternal serum PAPP-A and free-beta subunit human chorionic gonadotropin concentrations and nuchal translucency are associated with obstetric complications: A population-based screening study (the FASTER Trial). Am. J. Obstet. Gynecol. 2004, 191, 1446–1451. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.C.S.; Stenhouse, E.J.; Crossley, J.A.; Aitken, D.A.; Cameron, A.D.; Connor, J.M. Early Pregnancy Levels of Pregnancy-Associated Plasma Protein A and the Risk of Intrauterine Growth Restriction, Premature Birth, Preeclampsia, and Stillbirth. J. Clin. Endocrinol. Metab. 2002, 87, 1762–1767. [Google Scholar] [CrossRef] [PubMed]
- Mlodawska, M.; Pazera, G.; Mlodawski, J. Development of a preterm baby—An overview of current knowledge. Med. Stud./Stud. Med. 2021, 37, 65–69. [Google Scholar] [CrossRef]
- Nicolaides Kypros, H. The 11–13+6 Weeks Scan. Available online: https://fetalmedicine.org/fmf/FMF-English.pdf (accessed on 2 January 2024).
- Mlodawski, J.; Mlodawska, M.; Pazera, G.; Michalski, W.; Domanski, T.; Dolecka-Slusarczyk, M.; Gluszek, S.; Rokita, W. Cerebral palsy and obstetric-neonatological interventions. Ginekol. Polska 2019, 90, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 2022, 75, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Elmas, B.; Koç, B.L.; Ersak, D.T.; Zorlu, U.; Aydoğdu, E.; Yılmaz, G.; Özdemir, E.; Hançerlioğulları, N.; Tekin, M. The relationship between the first trimester maternal serum PAPP-A and β-hCG values and newborn intensive care needs in low-risk pregnancies. J. Turk. Soc. Obstet. Gynecol. 2022, 19, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Kirkegaard, I.; Uldbjerg, N.; Henriksen, T.B. PAPP-A and free β-hCG in relation to admission to neonatal intensive care unit and neonatal disease. Prenat. Diagn. 2011, 31, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Sirikunalai, P.; Wanapirak, C.; Sirichotiyakul, S.; Tongprasert, F.; Srisupundit, K.; Luewan, S.; Traisrisilp, K.; Tongsong, T. Associations between maternal serum free beta human chorionic gonadotropin (β-hCG) levels and adverse pregnancy outcomes. J. Obstet. Gynaecol. 2016, 36, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.; Cowans, N.J.; Avgidou, K.; Nicolaides, K.H. First-trimester ultrasound and biochemical markers of aneuploidy and the prediction of impending fetal death. Ultrasound Obstet. Gynecol. 2006, 28, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Yakistiran, B.; Karsli, M.; Canpolat, F. Can first trimester pregnancy-associated plasma protein-A predict the surfactant needs of preterm neonates? J. Neonatal-Perinatal Med. 2022, 15, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.C.K.; Sharma, A.; Prasad, S.; Kaul, A. Performance of Ductus Venosus Doppler (at 11–13+6 Weeks) in Predicting Adverse Fetal Outcomes in Indian Population: Going Beyond Aneuploidies: Going Beyond Aneuploidies. J. Ultrasound Med. 2022, 41, 2877–2883. [Google Scholar]
- Baran, Y.; Kalaycı, H.; Durdağ, G.D.; Yetkinel, S.; Arslan, A.; Kılıçdağ, E.B. Does abnormal ductus venosus pulsatility index at the first-trimester effect on adverse pregnancy outcomes? J. Gynecol. Obstet. Hum. Reprod. 2020, 49, 101851. [Google Scholar] [CrossRef]
- Oh, C.; Harman, C.; Baschat, A.A. Abnormal first-trimester ductus venosus blood flow: A risk factor for adverse outcome in fetuses with normal nuchal translucency. Ultrasound Obstet. Gynecol. 2007, 30, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Rolnik, D.L.; Wright, D.; Poon, L.C.; O’Gorman, N.; Syngelaki, A.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N. Engl. J. Med. 2017, 377, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.; Yu, C.K.; Cowans, N.J.; Otigbah, C.; Nicolaides, K.H. Prediction of pregnancy complications by first-trimester maternal serum PAPP-A and free beta-hCG and with second-trimester uterine artery Doppler. Prenat. Diagn. 2005, 25, 949–953. [Google Scholar] [CrossRef] [PubMed]
- Borowski, D.; Pietryga, M.; Basta, P.; Cnota, W.; Czuba, B.; Dubiel, M.; Fuchs, T.; Huras, H.; Iciek, R.; Jaczynska, R.; et al. Practice guidelines of the Polish Society of Gynecologists and Obstetricians—Ultrasound Section for ultrasound screening in uncomplicated pregnancy—2020. Ginekol. Polska 2020, 91, 490–501. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Height [mean] | 165 cm (SD = 13.33) |
Weight [mean] | 66 kg (SD = 7.88) |
BMI [mean] | 24.82 kg/m2 (SD = 4.13) |
IVF pregnancy | 4.3% (n = 50) |
1st pregnancy | 37.8% (n = 440) |
Pre-pregnancy diabetes | 1.12% (n = 13) |
Pre-pregnancy hypertension | 0.6% (n = 7) |
High risk for trisomy 21 (>1:300) | 7.98% (n = 93) |
Intermediate risk for trisomy 21 (1:301–1:1000) | 14% (n = 163) |
High risk for trisomy 18 (>1:300) | 0.68% (n = 8) |
Intermediate risk for trisomy 18 (1:301–1:1000) | 1.97% (n = 1164) |
High risk for trisomy 13 (>1:300) | 0.51% (n = 6) |
Intermediate risk for trisomy 13 (1:301–1:1000) | 0.77% (n = 9) |
PAPP-A < 0.4 MoM | 3.78% (n = 44) |
Newborn Outcome | Prevalence |
---|---|
Apgar < 8 1st minute | 6.18% (72) |
Apgar < 4 1st minute | 0.94% (11) |
Apgar < 8 10th minute | 1.11% (13) |
Apgar < 4 10th minute | 0% (0) |
Apgar < 8 1st minute term pregnancy | 4.46% (52) |
Apgar < 4 1st minute term pregnancy | 0.06% (7) |
Apgar < 8 10th minute term pregnancy | 0.52% (6) |
Apgar < 4 10th minute term pregnancy | 0% (0) |
intensive care unit hospitalization | 5.58% (n = 65) |
low Ponderal index (<2) | 25.25% (294) |
pH < 7.2 | 1.03% (12/739) |
neonatal death | 0.3% (n = 4) |
pH < 7.1 | 0% |
Term Apgar < 8 at 1st Minute | Term Apgar < 8 at 10th Minute | ||||||
---|---|---|---|---|---|---|---|
yes | no | p | yes | no | |||
fb-HCG | 40.495 | 40.045 | 0.711 | fb-HCG | 43.245 | 40.025 | 0.977 |
fb-HCG MoM | 1.244 | 1.112 | 0.263 | fb-HCG MoM | 1.265 | 1.114 | 0.491 |
PAPP-A | 3.835 | 3.960 | 0.256 | PAPP-A | 4.380 | 3.950 | 0.975 |
PAPP-A MoM | 0.944 | 1.038 | 0.118 | PAPP-A MoM | 1.111 | 1.032 | 0.742 |
DV PI | 1.040 | 1.000 | 0.045 * | DV PI | 1.110 | 1.010 | 0.254 |
Term Apgar < 4 at 1st minute | General Apgar < 8 at 1st minute | ||||||
yes | no | yes | no | p | |||
fb-HCG | 41.040 | 40.030 | 0.825 | fb-HCG | 39.920 | 39.515 | 0.509 |
fb-HCG MoM | 1.066 | 1.117 | 0.633 | fb-HCG MoM | 1.278 | 1.102 | 0.128 |
PAPP-A | 4.100 | 3.950 | 0.513 | PAPP-A | 3.500 | 3.870 | 0.040 * |
PAPP-A MoM | 0.932 | 1.033 | 0.966 | PAPP-A MoM | 0.939 | 1.027 | 0.032 * |
DV PI | 0.980 | 1.010 | 0.843 | DV PI | 1.070 | 1.000 | 0.001 * |
General Apgar < 8 at 10th minute | General Apgar < 4 at 1st minute | ||||||
yes | no | yes | no | ||||
fb-HCG | 45.350 | 39.460 | 0.478 | fb-HCG | 39.570 | 33.260 | 0.635 |
fb-HCG MoM | 1.326 | 1.104 | 0.348 | fb-HCG MoM | 1.110 | 1.066 | 0.411 |
PAPP-A | 2.380 | 3.860 | 0.075 | PAPP-A | 3.860 | 2.380 | 0.104 |
PAPP-A MoM | 0.720 | 1.023 | 0.217 | PAPP-A MoM | 1.023 | 0.720 | 0.251 |
DV PI | 1.100 | 1.000 | 0.111 | DV PI | 1.005 | 1.010 | 0.276 |
pH < 7.2 | NICU admission | ||||||
yes | no | yes | no | ||||
fb-HCG | 44.665 | 39.450 | 0.641 | fb-HCG | 28.830 | 40.025 | 0.002 * |
fb-HCG MoM | 1.127 | 1.090 | 0.564 | fb-HCG MoM | 0.930 | 1.118 | 0.034 * |
PAPP-A | 2.890 | 3.900 | 0.084 | PAPP-A | 3.540 | 3.885 | 0.053 |
PAPP-A MoM | 0.694 | 1.018 | 0.045 * | PAPP-A MoM | 0.925 | 1.027 | 0.128 |
DV PI | 1.045 | 1.000 | 0.743 | DV PI | 1.010 | 1.000 | 0.176 |
Neonatal death | Low Ponderal index (<2) | ||||||
yes | no | yes | no | ||||
fb-HCG | 33.500 | 39.600 | 0.720 | fb-HCG | 38.475 | 39.685 | 0.713 |
fb-HCG MoM | 0.936 | 1.110 | 0.647 | fb-HCG MoM | 1.112 | 1.104 | 0.564 |
PAPP-A | 2.880 | 3.865 | 0.176 | PAPP-A | 3.595 | 3.940 | 0.031 * |
PAPP-A MoM | 0.895 | 1.018 | 0.791 | PAPP-A MoM | 0.934 | 1.056 | 0.001 * |
DV PI | 1.105 | 1.000 | 0.383 | DV PI | 1.005 | 1.010 | 0.682 |
Outcome | AUC | SE | AUC Low 95% | AUC High 95% | p | |
---|---|---|---|---|---|---|
Term Apgar < 8 at 1st minute | DV PI | 0.583 | 0.043 | 0.499 | 0.668 | 0.053 |
General Apgar < 8 at 1st munute | PAPP-A | 0.572 | 0.033 | 0.507 | 0.637 | 0.029 |
PAPP-A MoM | 0.575 | 0.034 | 0.508 | 0.642 | 0.028 | |
DV PI | 0.621 | 0.035 | 0.552 | 0.689 | 0.001 | |
pH < 7.2 | PAPP-A MoM | 0.669 | 0.082 | 0.508 | 0.829 | 0.039 |
Low Ponderal index | PAPP-A | 0.542 | 0.019 | 0.504 | 0.580 | 0.031 |
PAPP-A MoM | 0.563 | 0.019 | 0.525 | 0.601 | 0.001 | |
NICU hospitalization | fb-HCG | 0.616 | 0.037 | 0.544 | 0.688 | 0.002 |
fb-HCG MoM | 0.578 | 0.039 | 0.501 | 0.655 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swiercz, G.; Zmelonek-Znamirowska, A.; Szwabowicz, K.; Armanska, J.; Detka, K.; Mlodawska, M.; Mlodawski, J. Navigating Uncertain Waters: First-Trimester Screening’s Role in Identifying Neonatal Complications. J. Clin. Med. 2024, 13, 1982. https://doi.org/10.3390/jcm13071982
Swiercz G, Zmelonek-Znamirowska A, Szwabowicz K, Armanska J, Detka K, Mlodawska M, Mlodawski J. Navigating Uncertain Waters: First-Trimester Screening’s Role in Identifying Neonatal Complications. Journal of Clinical Medicine. 2024; 13(7):1982. https://doi.org/10.3390/jcm13071982
Chicago/Turabian StyleSwiercz, Grzegorz, Anna Zmelonek-Znamirowska, Karol Szwabowicz, Justyna Armanska, Karolina Detka, Marta Mlodawska, and Jakub Mlodawski. 2024. "Navigating Uncertain Waters: First-Trimester Screening’s Role in Identifying Neonatal Complications" Journal of Clinical Medicine 13, no. 7: 1982. https://doi.org/10.3390/jcm13071982
APA StyleSwiercz, G., Zmelonek-Znamirowska, A., Szwabowicz, K., Armanska, J., Detka, K., Mlodawska, M., & Mlodawski, J. (2024). Navigating Uncertain Waters: First-Trimester Screening’s Role in Identifying Neonatal Complications. Journal of Clinical Medicine, 13(7), 1982. https://doi.org/10.3390/jcm13071982